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Angiosarcoma is a rare cancer of blood vessel–forming cells with a high patient mortality
and few treatment options. Although chemotherapy often produces initial clinical
responses, outcomes remain poor, largely due to the development of drug resistance.
We previously identified a subset of doxorubicin-resistant cells in human angiosarcoma
and canine hemangiosarcoma cell lines that exhibit high lysosomal accumulation of
doxorubicin. Hydrophobic, weak base chemotherapeutics, like doxorubicin, are known
to sequester within lysosomes, promoting resistance by limiting drug accessibility to
cellular targets. Drug synergy between the beta adrenergic receptor (b-AR) antagonist,
propranolol, and multiple chemotherapeutics has been documented in vitro, and clinical
data have corroborated the increased therapeutic potential of propranolol with
chemotherapy in angiosarcoma patients. Because propranolol is also a weak base and
accumulates in lysosomes, we sought to determine whether propranolol enhanced
doxorubicin cytotoxicity via antagonism of b-ARs or by preventing the lysosomal
accumulation of doxorubicin. b-AR-like immunoreactivities were confirmed in primary
tumor tissues and cell lines; receptor function was verified by monitoring downstream
signaling pathways of b-ARs in response to receptor agonists and antagonists.
Mechanistically, propranolol increased cytoplasmic doxorubicin concentrations in
sarcoma cells by decreasing the lysosomal accumulation and cellular efflux of this
chemotherapeutic agent. Equivalent concentrations of the receptor-active S-(−) and
-inactive R-(+) enantiomers of propranolol produced similar effects, supporting a b-AR-
independent mechanism. Long-term exposure of hemangiosarcoma cells to propranolol
expanded both lysosomal size and number, yet cells remained sensitive to doxorubicin in
the presence of propranolol. In contrast, removal of propranolol increased cellular
resistance to doxorubicin, underscoring lysosomal doxorubicin sequestration as a key
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mechanism of resistance. Our results support the repurposing of the R-(+) enantiomer of
propranolol with weak base chemotherapeutics to increase cytotoxicity and reduce the
development of drug-resistant cell populations without the cardiovascular and other side
effects associated with antagonism of b-ARs.
Keywords: angiosarcoma, hemangiosarcoma, propranolol, doxorubicin, drug resistance, lysosome
INTRODUCTION

Angiosarcoma is an extremely rare (0.01% of all cancers) and
highly aggressive malignancy of blood vessel forming cells with
few effective treatment options and a high incidence of patient
mortality (1–5). The median overall survival time for local disease
is approximately 30–50 months, but for patients with metastatic
disease, survival drops to approximately 10–12 months (6–8).
Treatment for local disease involves wide surgical resection, with
the option of radiotherapy, and the addition of adjuvant
chemotherapy for patients with nonresectable tumors or
metastatic disease (2). Despite these aggressive approaches and
initial responses produced by anthracycline-based regimens or
taxanes, most angiosarcomas eventually become resistant to
chemotherapy (9, 10). Identification of the mechanisms used by
angiosarcomas to evade chemotherapies, and the pursuit of
approaches to override these mechanisms remains a key strategy
to improve patient survival.

Due to the rare occurrence of angiosarcoma, undertaking
extensive studies to identify and dissect treatment resistance
mechanisms that develop in these tumors remains a challenge.
Hemangiosarcoma is a common cancer in dogs that closely models
the genetic landscape and pathogenesis of human angiosarcoma
and follows a similar clinical course (11). Survival times remain
short for most dogs, with a median survival of 4 to 6 months when
treated with the standard of care of surgery followed by adjuvant
chemotherapy (12–14). Although initial responses to chemotherapy
are often observed, the development of drug resistance along with
disease progression eventually follow. Hence, canine
hemangiosarcoma provides a relevant clinical model to study and
identify drug resistance mechanisms for human angiosarcoma.

We previously identified a subset of cells in human
angiosarcoma and canine hemangiosarcoma cell lines that is
highly resistant to doxorubicin due to its accumulation within
lysosomes (15). Weakly basic, lipid-soluble compounds can
accumulate in lysosomes through a process known as lysosomal
sequestration or trapping and are referred to as lysosomotropic
molecules (16, 17). Chemotherapies are often formulated as
weakly basic amines, and many of these drugs have been shown
to undergo lysosomal sequestration (18–21). Lysosomal
accumulation of chemotherapies occurs by their passive
diffusion across cell membranes, where they are rapidly
protonated due to the acidic environment of the lysosomes (16,
17). Protonated molecules are less able to move back across the
membrane and out of the lysosome due to their decreased
membrane permeability and remain trapped inside the acidic
lumen. As a result, the sequestered drugs fail to reach their
target sites and exert a cytotoxic effect (22–24).
2

Drug resistance due to lysosomal sequestration is both an
intrinsic cellular feature as well as an acquired response to drug
treatment. Naïve cancer cell lines harboring a higher number of
lysosomes were more inherently resistant to the cytotoxic effects
of drug treatment compared to those with lower numbers (25).
In contrast, development of resistance occurred after exposure of
cancer cell lines to several cytotoxic drugs known to sequester
within lysosomes (25). These drugs induced lysosome biogenesis,
which is regulated through the activation of the transcription
factor EB (TFEB) (25). Drug-induced activation of TFEB
initiated the transcription of genes responsible for lysosome
biogenesis, allowing cells to increase lysosome numbers as well
as lysosomal volume, further enhancing lysosomal drug
sequestrations and drug resistance (25). Developing strategies
to reduce lysosomal drug sequestration of chemotherapy drugs
in angiosarcoma and hemangiosarcoma represents a viable
approach to overcome this mode of chemoresistance in
these tumors.

The b-AR antagonist, propranolol, contains a weakly basic
amine moiety and has been shown to accumulate in lysosomes
(26). The drug exists as a racemic mixture, consisting of equal
amounts of its receptor-active S-(−) and -inactive R-(+)
enantiomers (27). Originally developed as an anti-hypertensive
drug and currently indicated for the treatment of hypertension,
arrhythmia, ischemic heart disease, anxiety, and migraines, a
number of preclinical studies and clinical reports suggest that
propranolol can be repurposed for the treatment of angiosarcoma
(28–34). This application stemmed from the serendipitous
discovery (35) and positive findings from a subsequent clinical
trial (36) that propranolol could be used to treat infantile
hemangioma, a benign vascular tumor. This discovery has led to
the repurposing of propranolol as the gold standard for the
management of problematic hemangiomas (36, 37). Although
propranolol has been used as a single agent to treat infantile
hemangioma, it has been combined with various chemotherapies
and found to synergize with doxorubicin, paclitaxel, and
vinblastine to enhance the antiproliferative and antiangiogenic
properties of these drugs in cancer cell lines and to increase their
anti-tumor efficacy in mouse models of triple negative breast
cancer and neuroblastoma (32, 38, 39). Several studies have
evaluated the efficacy of propranolol in combination with
chemotherapy in angiosarcoma patients (28–32, 34). In one
study, treatment with propranolol and the chemotherapeutic
Vinca alkaloid, vinblastine, resulted in partial or complete
responses in a group of seven patients with metastatic or
recurrent angiosarcoma and reported an increase in the median
overall survival of 16 months (32). Partial and complete responses
have also been described in a handful of patients presented as
February 2021 | Volume 10 | Article 614288
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individual case studies, further bolstering support for the use of
propranolol in combination with chemotherapy for the treatment
of localized and advanced disease (28–31).

Here, we report that propranolol synergizes with doxorubicin
in vitro, independent of its b-AR antagonism but consistent with
its properties as a weakly basic lysosomotropic drug. Our results
suggest that by targeting the lysosomal compartment, propranolol
reduces the sequestration of doxorubicin within lysosomes while
simultaneously blocking doxorubicin efflux and increasing its total
intracellular accumulation. Understanding how propranolol
promotes synergy with doxorubicin or other chemotherapies
could be used to develop new strategies to overcome
chemoresistance and to improve treatment outcomes for human
angiosarcoma and canine hemangiosarcoma.
MATERIALS AND METHODS

Cell Culture
The COSB canine hemangiosarcoma cell line was derived from a
xenograft of the original cell line, SB-HSA (40), and the DD-1
cell line was derived from a splenic hemangiosarcoma (41). The
human angiosarcoma cell line, ISO-HAS (42) was kindly
provided by Dr. Mamiko Masuzawa (Kitasato University
School of Medicine, Japan), and the mouse angiosarcoma cell
line, SVR (43, 44), was purchased from the American Type
Culture Collection (CRL-2280, Manassas, VA, USA). All cell
lines were grown and maintained in endothelial cell growth
medium (41, 45, 46) for approximately 8–10 weeks before new
vials were thawed to ensure similar passage numbers were used
for the experiments. All cell lines were tested for mycoplasma
and authenticated by IDEXX Laboratories (Westbrook, ME,
USA) to verify cell line purity and quality.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on 4 µm sections
of formalin-fixed, paraffin-embedded samples as described
previously with some modifications (33, 47). Sections were
dewaxed in xylene and hydrated in graded ethanol.
Endogenous peroxidase activity was blocked with 0.3% H2O2

in distilled water for 20 min at room temperature, followed by
three washes in phosphate buffered saline (PBS; pH 7.4, 137 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4) with
0.1% Tween® 20 (PBST). Antigen retrieval was attained by
boiling tissue sections in citric acid buffer (pH 6.0) for 10 min
in a microwave oven (700 W, high power). After cooling, the
slides were washed three times in PBST. Sections were then
incubated with primary antibodies at room temperature for 2 h.
The primary antibodies used against epitopes in the b-ARs were
rabbit anti-b1-AR (1:200, #250919, Abbiotec, San Diego, CA,
USA; recognizing a sequence within the center region of human
b1-AR), rabbit anti-b2-AR (1:200, #251604, Abbiotec;
recognizing a sequence within the center region of human b2-
AR), and rabbit anti-b3-AR (1:200, #251434, Abbiotec;
recognizing a sequence within the C-term region of human b3-
AR). The antibodies for b1-AR and b2-AR were reported on the
Frontiers in Oncology | www.frontiersin.org 3
vendor website to recognize the analogous canine receptor
proteins, and reactivity was confirmed by immunoblotting
using human and canine cell lines. Primary antibody binding
was detected by the use of EXPOSE Mouse and Rabbit Specific
HRP/DAB Detection IHC Kit (#ab80436, Abcam, Cambridge,
UK; for anti-b1-AR, anti-b2-AR, and anti-b3-AR). Sections were
counterstained with Harris hematoxylin (#3530-16, RICCA
Chemical Company, Arlington, TX, USA). Rabbit IgG
antibody (#31235, Thermo Fischer Scientific, Waltham, MA,
USA) was used as a negative isotype control. Immunostaining
was assessed semi-quantitatively at high power magnification
(400X). The percentage of immunoreactive cells was scored 0 to
3+, where 0 reflects specific staining in < 1% of the cells, 1+
reflects specific staining in < 25% of the cells, 2+ reflects specific
staining in 25–75% of the cells, and 3+ reflects specific staining in
> 75% of the cells. The intensity was assessed as weak, moderate,
or strong. Immunostaining results were scored by multiplying
the percentage of positive cells by the intensity.

Immunoblotting
Immunoblotting was performed based on standard techniques
(48, 49). Briefly, protein samples were collected as indicated for
each experiment, subjected to SDS-polyacrylamide gel
electrophoresis, and transferred to a nitrocellulose membrane
or polyvinylidene fluoride (PVDF) membrane. Membranes were
blocked with 50% Odyssey® Blocking Buffer (#927-50000, LI-
COR Biosciences, Lincoln, NE, USA) diluted in TBST (20 mM
Tris– HCl, pH 7.4, 137 mM NaCl, 0.1% Tween 20) or TBST plus
3% bovine serum albumin (BSA). After blocking, the membranes
were incubated overnight at 4°C with one of the following
antibodies diluted in Odyssey® Blocking Buffer or TBST +3%
BSA: anti-b1-AR (1:1000, #250919, Abbiotec), anti-b2-AR
(1:1000, #251604, Abbiotec), anti-b3-AR (1:1000, #251434,
Abbiotec), anti-phospho-checkpoint kinase 1 (CHK1) (Ser345)
(1:1000, #2348, Cell Signaling, Danvers, MA, USA), anti-
phospho-checkpoint kinase 2 (CHK2) (Thr68) (1:1000, #2197,
Cell Signaling), anti-phospho-ataxia telangiectasia- and Rad3-
related protein (ATM) (Ser428) (1:1000, #2853, Cell Signaling),
anti-phospho-protein kinase ataxia-telangiectasia mutated
protein (ATR) (Ser1981) (1:1000, #5883, Cell Signaling), and
anti-b-actin (1:5000, #sc8432, Santa Cruz Biotechnology, Dallas,
TX, USA; 1:5000, #A5441, Sigma-Aldrich, St. Louis, MO, USA).
After incubation with primary antibodies, the membranes were
washed three times with TBST, followed by incubation with LI-
COR IRDye 800CW (780 nm) donkey anti-rabbit (1:10,000-
1:20,000, #925-32213, LI-COR Biosciences) and IRDye 680RD
(680 nm) donkey anti-mouse (1:10,000–1:20,000, #925-68072,
LI-COR Biosciences) infrared fluorescence dye conjugated
secondary antibodies for 60 min at room temperature. The
membranes were washed 3 times with TBST followed by one
wash with TBS (without Tween 20). The membranes were then
scanned and documented using an Odyssey infrared imaging
system (LI-COR Biosciences) at 680 nm and 780 nm emission
wavelengths. For membranes blocked with TBST and 3% BSA,
primary antibodies were detected using HRP-conjugated
secondary antibody, subjected to Supersignal West Dura
Extended Duration Substrate (#34075, Thermo Fisher
February 2021 | Volume 10 | Article 614288
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Scientific, Waltham, MA, USA) and digitally captured using a
GE Image Quant Las4000 imaging system.

Phospho-Antibody Array
COSB cells were treated with epinephrine (1 µM) (#E4642,
Sigma Aldrich), propranolol (100 nM) (#0624, Tocris,
Minneapolis, MN, USA), or phentolamine (100 nM) (#6431,
Tocris) alone or in combination for 30 min, and lysates were
analyzed using the Phospho-Mitogen-Activated Protein Kinase
(MAPK) Antibody Array (#ARY002B, R&D Systems,
Minneapolis, MN, USA) as described (34, 49). Densitometry of
each antibody array signal was performed using ImageJ software.
Reference spots on each array were used to normalize the pixel
densities. The numerical protein expression data was
normalized, and centroid linkage based on an uncentered
correlation similarity metric was performed using Gene Cluster
3.0 software. Heatmaps were generated using Java
TreeView software.

Cell Viability Assay
Cells were plated in triplicate at 7,000-10,000 cells per well in 96-
well plates in 100 µL of cell culture medium and exposed to
increasing concentrations of doxorubicin (Bedford Laboratories,
Bedford, OH, USA), propranolol, or the S-(−) (#0834, Tocris) or
R-(+) (#0835, Tocris) enantiomers of propranolol, as indicated.
For assays using LysoTracker®, cells were plated as above with 50
nM LysoTracker Deep Red (#L12492, Thermo Fisher Scientific).
Cell viability was determined 72 h later using a colorimetric MTS
reagent (Cell Titer 96® Aqueous Non-Radioactive Cell
Proliferation Assay, Promega, Madison, WI, USA), according
to the manufacturer’s instructions. The relative median lethal
concentration (LC50) values were determined using GraphPad
Prism 6 software (GraphPad Software Inc., La Jolla, CA, USA).
For the drug synergy studies, cells were plated as above and
allowed to adhere overnight. Cells were treated with
combinations of doxorubicin (1–250 nM) and propranolol (3–
100 µM) for 72 h and viability was determined as described
above. Combination index (CI) values for all tested drug
concentrations were determined according to the method of
Chou and Talalay (50) and calculated using Compusyn software
(Combosyn Inc., NJ, USA), as described (51, 52). The CI theorem
quantitatively defines the CI values as additivity (0.9 ≤ CI ≤ 1.1),
synergy (CI < 0.9), and antagonism (CI > 1.1).

LysoTracker Deep Red Assay
Cells were harvested by trypsinization, plated at 50,000 per well
in 96 well plates, and allowed to adhere overnight. The next day,
cells were washed with PBS and incubated with 50 nM
LysoTracker Deep Red and increasing concentrations of
propranolol in serum free medium, on ice for 30 min. The
cells were washed, and the relative levels of LysoTracker Deep
Red were detected using a TECAN Infinite m200 PRO plate
reader (ex/em 647/668) (Tecan US, Morrisville, North Carolina).

DCV Efflux Assay
DyeCycle Violet (DCV) (#V35003, Thermo Fisher Scientific)
efflux assays was carried out as previously described (15). Briefly,
Frontiers in Oncology | www.frontiersin.org 4
each cell line was plated in 60 mm cell culture dishes in
endothelial cell growth medium and allowed to adhere
overnight. The cells were washed with PBS, and low serum
endothelial growth medium (2% FBS) was added to each dish.
The cells were then treated with propranolol for 18 h in low
serum medium, washed, and propranolol added back to the cells
for 1 h. The cells were harvested using trypsin, followed by
incubation with or without 50 µM verapamil for 15 min at 37°C
while maintaining all the treatment conditions. DCV was added
to a final concentration of 10 µM, and the cells were incubated
for an additional 60 min at 37°C with intermittent mixing. Cells
were washed and maintained on ice until analysis. Propidium
iodide (#R37108, Thermo Fisher Scientific) was added to each
sample before flow cytometry to exclude dead cells from analysis.
DCV emission was detected using an LSRII flow cytometer (BD
Biosciences). Verapamil, a well-known drug efflux pump
inhibitor, was used to define the efflux gates. The data were
analyzed using FlowJo software (Tree Star Inc., Ashland,
OR, USA).

Doxorubicin Exclusion/Retention Assay
Cells were plated at 250,000 cells per well in 6-well plates in
standard cell culture medium. After the cells had adhered, the
medium was changed to a low serum medium (2% FBS), and the
cells were incubated for 1 h under standard conditions. The cells
were treated with 1 µM doxorubicin for 1 h. The cells were then
washed with PBS, harvested by trypsinization, and the relative
levels of intracellular doxorubicin assessed by flow cytometry
using a BD Accuri instrument (BD Biosciences, Franklin Lakes,
NJ, USA). To evaluate the effects of propranolol on doxorubicin
retention, 100,000 cells per well were plated in 1 mL of culture
medium in 12-well cell culture plates. After the cells had adhered,
the medium was changed to the low serummedium, and the cells
incubated for 18–20 h. The cells were then treated with 1 µM
doxorubicin for 1 h, washed, and treated with 50 or 100 µM
propranolol for 24 h. Cells not treated with propranolol were
used as a control. Cells were washed with PBS, harvested using
trypsin, and the relative levels of doxorubicin were analyzed by
flow cytometry using a BD Accuri instrument. To exclude dead
cells from analysis, 7-AAD (#A1310, Thermo Fisher Scientific)
was added to cells for all treatment conditions for 10 min before
data acquisition.

DNA Damage Response
COSB cells were plated in standard cell culture medium in 6-well
plates at 1 x 106 cells per well and allowed to adhere overnight.
The next day, the cells were pretreated with 50 µM or 100 µM
propranolol for 3 h, followed by treatment with 2 µM
doxorubicin for 1 h in medium supplemented with 10% FBS.
Cell lysates were generated as described above, and the changes
in the expression levels of phospho-CHK1 (Ser345), phospho-
CHK2 (Thr68), phospho-ATR (Ser428), and phospho-ATM
(Ser1981) were assessed by immunoblotting.

Transmission Electron Microscopy
Cells were fixed overnight in a 1:1 mixture of 5% glutaraldehyde
(#16120, Electron Microscopy Sciences, Hatfield, PA) and PBS at
February 2021 | Volume 10 | Article 614288
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4°C. Following three washes with PBS, cells were treated with a
1:1 mixture of 2% osmium tetroxide (#19170, Electron
Microscopy Sciences) and PBS for 2 h at 4°C. Samples were
rinsed three times in deionized water then stored overnight at 4°
C in uranyl acetate (#22400, Electron Microscopy Sciences) en-
bloc stain. Following two washes with water, cells were
dehydrated in a graded ethanol series, then infiltrated with
Spurrs resin (#14300, Electron Microscopy Sciences) using
acetone as the transitional solvent. Infiltrated samples were
embedded in fresh resin which was then polymerized
overnight at 70°C. Approximately 90 nm sections were cut
with a diamond knife, collected on mesh grids, and post-
stained with uranyl acetate and lead citrate (#17800, Electron
Microscopy Sciences). Cells were photographed using a Hitachi
H-7000 transmission electron microscope (Tokyo, Japan)
operating at 75KeV. Images were digitized at 800 dpi and
analyzed using Magnification Version 2 (Orbicule, Inc.,
Leuven, Belgium). The percentage of the cell cytoplasm
occupied by organelles of the lysosomal system (primary
lysosomes, secondary lysosomes, and lipid-laden membrane
whorls) was determined for 11 cells of each treatment.

Statistical Analysis
All data are expressed as mean ± standard deviation (S.D.) or
mean ± standard error (S.E.), as applicable. The means were
analyzed, as appropriate, by unpaired t test (two-tailed) or one-
way analysis of variance (ANOVA) with GraphPad Prism 6.0
software to determine statistical significance. All LC50 values
were determined as the concentration of propranolol or
doxorubicin that was lethal for 50% of the cell population
using GraphPad Prism.
RESULTS

Propranolol Reduces Hemangiosarcoma
and Angiosarcoma Cell Viability via b-AR-
Independent Pathways
Using IHC, we evaluated the expression of b1-, b2-, and b3-AR-like
immunoreactivities in 10 samples from visceral hemangiosarcomas
and sections from five, non-malignant splenic hematomas. The
sample demographic characteristics are shown in Supplemental
Table S1. Similar to our findings in human angiosarcoma (33),
immunoreactivities were found against all three b-ARs in the
hemangiosarcoma samples (Figure 1A). Immunoreactivity against
b1-AR appeared to be localized to the nucleus with weak
cytoplasmic staining. In contrast, immunoreactivities against b2-
and b3-ARs were largely observed in the cytoplasm of these tumor
cells, but some cells did show nuclear expression. Receptor-like
immunoreactivities were not associated with cell membranes.
Samples from splenic hematomas similarly displayed b-AR-like
immunoreactivities in the cytoplasm of endothelial cells and
lymphocytes (data not shown). Hemangiosarcomas appeared to
express higher levels of immunoreactivity towards all three b-ARs
when compared to the non-malignant hematoma samples. (Figure
1B; Supplemental Table S2). We also determined the relative levels
Frontiers in Oncology | www.frontiersin.org 5
of b-AR-like immunoreactivities in two canine hemangiosarcoma
cell lines, COSB and DD-1, a human angiosarcoma cell line, ISO-
HAS, and a mouse angiosarcoma line, SVR, by immunoblotting.
Expression of immunoreactivities for the b-AR subtypes was
detected in all four cell lines (Figure 1C).

To confirm that b-AR signaling is active in the cell lines, we
treated COSB cells with epinephrine, which acts as both an a-
and b-AR agonist, in the absence or presence of propranolol, or
phentolamine, a selective a-AR antagonist. Compared to
untreated controls, epinephrine treatment increased mTOR,
p38 kinase, GSK-3a/b , and MKK6, but reduced the
phosphorylation of Akt (Supplemental Figure S1). In contrast,
propranolol increased the phosphorylation of Akt, a response we
previously observed in angiosarcoma and breast cancer cell lines
(34, 49), while phentolamine strongly increased the
phosphorylation of JNK2 and CREB. Treatment of cells with
epinephrine in combination with propranolol or phentolamine
substantially reduced or completely eliminated the changes in
phosphorylation in cells treated with epinephrine or the
adrenergic receptor antagonists. These data demonstrate that
a-AR and b-AR signaling occurs in COSB cells.

We and others have shown that high concentrations (> 100 µM)
of propranolol alone are required to reduce hemangiosarcoma and
angiosarcoma cell viability (32, 33), suggesting that the previously
reported effects of propranolol on reducing tumor cell survival are
not mediated by b-AR antagonism. Therefore, we treated our
hemangiosarcoma and angiosarcoma cell line panel (COSB, DD-1,
ISO-HAS, and SVR) with increasing concentrations of racemic
propranolol, or its receptor-active S-(−) and -inactive R-(+)
enantiomers (27). Racemic propranolol reduced cell viability in
all of the cell lines in a concentration-dependent manner (Table 1;
Supplemental Figure S2). Substantial differences in the
concentrations needed to reduce cell viability were not observed
between propranolol and its S-(−) and R-(+) enantiomers, or a
reconstituted racemic mixture of the two enantiomers.
Furthermore, assessment of viability in cell lines treated with
concentrations of propranolol in the range appropriate to the
affinities of the drug for b1- and b2-ARs (100 nM-1 µM) (53)
did not affect cell viability (data not shown). These results suggest
that the actions of propranolol on tumor cell viability are
independent of b-AR expression.

Propranolol Increases the Sensitivity of
Cells to Doxorubicin by Altering Drug
Sequestration in Cellular Lysosomes
Because propranolol and doxorubicin both accumulate within
lysosomes (20, 26) and are often administered in combination to
treat human angiosarcoma (34, 54) and canine hemangiosarcoma
(55), we sought to determine if propranolol could potentiate the
antiproliferative effects of doxorubicin through reduction of
lysosomal doxorubicin entrapment. We first confirmed previous
observations that propranolol accumulates in lysosomes by
incubating the COSB cell line with LysoTracker Deep Red, a
fluorescent dye that is highly selective for acidic organelles.
Lipophilic amines, such as propranolol, have been shown to
induce the concentration-dependent inhibition of LysoTracker
February 2021 | Volume 10 | Article 614288
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Deep Red accumulation within lysosomes (20). Propranolol
decreased the relative fluorescence of LysoTracker Deep Red in
COSB cells in a concentration-dependent manner (Supplemental
Figure S3A). Next, drug combination studies using a viability assay
were performed to determine whether propranolol could potentiate
the antiproliferative effects of doxorubicin. We treated our collective
cell line panel with increasing concentrations of doxorubicin alone
or in combination with a fixed concentration of propranolol (50
µM), a concentration well below the determined LC50 values for
each line and assessed changes in cell viability 72 h after drug
treatment. Propranolol decreased the relative LC50 values to
doxorubicin in the COSB, DD-1, ISO-HAS, and SVR cell lines by
Frontiers in Oncology | www.frontiersin.org 6
8.3-, 3.2-, 1.4-, and 5.7-fold, respectively, when compared to cells
treated with doxorubicin alone (Figure 2A). The differences
between the LC50 values for control and drug treated cells were
significant for the COSB (p ≤ 0.05), DD-1 (p ≤ 0.01), and SVR (p ≤
0.01) cell lines, while the difference for the ISO-HAS line was not
significant (p = 0.3115). To confirm that sensitization of the tumor
cells to doxorubicin by propranolol occurs through a b-AR-
independent mechanism, we treated COSB cells with the S-(−)
and R-(+) enantiomers of propranolol, or a reconstituted racemic
mixture of the enantiomers. The enantiomers alone or in
combination sensitized the cells to doxorubicin to the same extent
as cells treated with racemic propranolol or a reconstituted mixture
TABLE 1 | LC50 concentrations (µM) for propranolol and its enantiomers.

COSB DD-1 ISO-HAS SVR

Propranolol 216.3 ± 58.6 328.4 ± 25.5 307.6 ± 27.5 115.05 ± 3.89
R-(+) 253.5 ± 46.6 263.8 ± 61.5 278.8 ± 12.4 138.85 ± 4.17
S-(−) 230.6 ± 60.1 274.3 ± 82.1 294.7 ± 8.1 125.15 ± 6.29
R+S 222.3 ± 41.2 349.2 ± 39.8 261.3 ± 21.1 121.2 ± 6.22
February 2021 | Volume 10 |
A
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FIGURE 1 | Expression of b-ARs in primary hemangiosarcomas and hemangiosarcoma cell lines. (A) Representative images of b1-AR, b2-AR, and b3-AR
expression in visceral hemangiosarcomas (n = 10) from dogs. IHC; horseradish peroxidase; counter stain = hematoxylin. (B) Box and whiskers plot of b1-AR, b2-AR,
and b3-AR IHC scores from the analyzed tissues and the expression in canine splenic hematomas as a control (n = 5). (C) Expression of b-ARs by canine
hemangiosarcoma (COSB, DD-1), human angiosarcoma (ISO-HAS), and mouse angiosarcoma (SVR) cell lines. Proteins were detected in cell lysates by
immunoblotting. b-actin was used as a gel-loading control.
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of the enantiomers (Supplemental Figure S3B). To further test
whether the decrease in the relative LC50 values was due, at least in
part, to competition for lysosomal accumulation, we incubated the
COSB and DD-1 cell lines with increasing concentrations of
doxorubicin with or without LysoTracker Deep Red for 72 h.
LysoTracker Deep Red in combination with doxorubicin
consistently reduced the relative LC50 values for COSB and DD-1
cells by approximately 1.5-fold when compared to cells treated with
doxorubicin alone (Figure 2B), although the reductions were not
statistically significant. The interaction of propranolol with
doxorubicin was then quantified using the method of Chou and
Talalay (50). Analyses showed that the combination index (CI) for
the association of propranolol with doxorubicin was moderately to
highly synergistic in the DD-1, ISO-HAS, and SVR cell lines and
moderately synergistic to slightly additive in COSB cells
(Figure 2C).

Because propranolol has been shown to increase both the
size and number of lysosomes in fibroblasts after continuous,
long-term treatment (26), we sought to confirm that
propranolol induced a similar effect in the sarcoma cell lines.
We also determined if changes in lysosomal volume and
removal of propranolol would alter the sensitivity of cells to
doxorubicin. This is relevant to the clinical application of
propranolol in combination with doxorubicin because
continuous, long-term treatment regimens of propranolol
with chemotherapy have been incorporated into treatment
protocols for angiosarcoma patients (28–32, 34). We treated
COSB cells with 50 µM or 100 µM propranolol every other day
for 30 days to mimic long-term drug treatment. Using this
approach, cell viability consistently remained above 90% (data
not shown). In control cells, the lysosomal system occupied
approximately 3.5% of the cell cytoplasm and consisted of
primary (P) and secondary (S) lysosomes (Figure 3A and
Table 2). Long-term exposure to 50 µM or 100 µM
propranolol significantly (p ≤ 0.001) increased the proportion
(both size and number) of lysosomal organelles making up the
cell cytoplasm (Figures 3B-D). An increase in the number of
secondary lysosomes and lysosomes containing lipid-laden
membrane whorls (W) was more apparent in cells treated
with 100 µM propranolol compared to those treated with 50
µM propranolol, along with a concomitant decrease in primary
lysosome number.

To determine whether expansion of the lysosomal system
alters the sensitivity of cells to doxorubicin, we treated the cell
line panel with 50 µM propranolol every other day for two weeks
to expand the lysosomal volume. After two weeks, cells were
treated with propranolol in the presence of increasing
concentrations of doxorubicin, and the cell viability was
determined after 72 h of treatment. We also removed
propranolol from the cells during the 72-hour incubation
period with doxorubicin to address the hypothesis that the
expanded lysosomal volume of the propranolol-treated cells
would increase the capacity of cells to sequester doxorubicin
when propranolol was removed. Removal of propranolol should
then lead to an increase in the overall resistance of the cells to the
chemotherapy. Long-term exposure to propranolol sensitized all
A

B

C

FIGURE 2 | Propranolol synergizes with doxorubicin in vitro. (A) Cell viability
assays were performed on COSB, DD-1, ISO-HAS, and SVR cells after 72 h of
incubation with doxorubicin or doxorubicin with propranolol. Percent cell viability
was determined by comparing the survival of treated wells to untreated controls.
The LC50 values were determined using Prism software. Data are presented as
the means ± S.D. of two to five independent experiments for each cell line.
Statistical analysis was performed by comparing the cytotoxic effect of doxorubicin
alone and in combination with propranolol by unpaired t test (two-tailed)
(*p ≤ 0.05; **p ≤ 0.01). (B) Cell viability assays performed on COSB and DD-1
cells 72 h after incubation with propranolol or propranolol with LysoTracker Deep
Red. Data are presented as the means ± S.D. of at least three independent
experiments for each cell line. Statistical analysis was performed by comparing the
cytotoxic effect of doxorubicin alone and in combination with LysoTracker Deep
Red by unpaired t test (two-tailed). (C) Dot plot representation of the combination
index (CI) of propranolol in association with doxorubicin across the cell line panel.
Cell viability assays were performed after 72 h of incubation with a range of
propranolol and doxorubicin drug concentrations. Untreated cells or cells treated
only with propranolol or doxorubicin served as controls and were used to
determine the relative LC50 values for each drug in each experiment. The CI
values were determined based on the method of Chou and Talalay for all
combinations of the drugs tested. Data shown are from a representative
experiment from each cell line performed in duplicate. Each set of conditions was
tested in at least three independent experiments for each cell line. The gray bar is
used to mark the range for drug additivity (0.9 ≤ CI ≤ 1.1).
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of the cell lines to doxorubicin when compared to cells treated
with doxorubicin alone (Figure 4). In contrast, removal of
propranolol from the assay during doxorubicin treatment led
to a significant (p ≤ 0.05) increase in the LC50 values for 3 of the
4 cell lines when compared to the LC50 values from cells treated
with doxorubicin and propranolol in combination. Collectively,
our results indicate that lysosomal volume is associated with the
sensitivity of the cell lines to doxorubicin. Our results also
Frontiers in Oncology | www.frontiersin.org 8
suggest that propranolol competes effectively with doxorubicin
for the lysosomal space, during both short- and long-term
exposures to propranolol, rendering the tumor cells more
sensitive to the chemotherapy.

Propranolol Increases the Intracellular
Levels of Doxorubicin and Enhances the
DNA Damage Response
Propranolol has been shown to increase the intracellular
accumulation of vinblastine in neuroblastoma cells (39),
prompting us to investigate whether propranolol also promotes
the accumulation of doxorubicin. We evaluated the impact of
propranolol on doxorubicin retention across our cell line panel
FIGURE 3 | Propranolol increases lysosomal volume. Transmission electron micrographs representative of COSB cells from three different treatment groups.
(A) Control cell (not exposed to propranolol). The lysosomal system consisted of primary (P) and secondary (S) lysosomes. (B) Cell exposed to 50 µM propranolol for
30 days with lipid-laden membrane whorls (W) present. (C) Cell exposed to 100 µM propranolol for 30 days. (D) Higher magnification view of the cell in panel (B)
illustrating the three types of lysosomal organelles observed in COSB cells exposed to propranolol. Scale bars = 1 µm. One-way ANOVA was used to determine
statistical significance between treatment groups based on the percentage of cytoplasm occupied by the lysosomal organelles. Eleven cells were analyzed per
treatment group, and the data are presented in Table 2 as mean percentage ± S.D.
TABLE 2 | Percentage of cytoplasm occupied by lysosomal organelles.

Control (DMSO) 3.5 +/− 1.1%
50 µM propranolol 6.6 +/− 3.0%
100 µM propranolol 16.0 +/− 4.8%
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by treating cells with doxorubicin for 1 h followed by treatment
with propranolol for 18 h. We chose an 18 h exposure period to
provide sufficient time for doxorubicin efflux, allowing easier
visualization of changes in the drug’s retention under different
conditions (15). Propranolol significantly (p ≤ 0.05) increased
the number of doxorubicin positive cells in the DD-1, ISO-HAS,
and SVR cell lines (Figure 5A). Overall, the percentage of
positive cells increased by approximately 2- to 10-fold
(Supplemental Figure S4A). To determine whether the
increased doxorubicin retention was through a b-AR
independent mechanism, we treated the COSB cell line with
the S-(−) and R-(+) enantiomers of propranolol or a
reconstituted mixture of the enantiomers. Similar increases in
intracellular doxorubicin retention were observed under all
treatment conditions (Supplemental Figure S4B). To further
rule out a contribution from b-ARs, we treated the ISO-HAS and
SVR cell lines with levels of propranolol within a concentration
range appropriate to the affinities of the drug for b1- and b2-
ARs, 100 nM and 1 µM, respectively (53). The two cell lines were
chosen because of the significant increase observed in the
number of doxorubicin positive cells in the presence of
propranolol (Figure 5A). Increased retention of doxorubicin
Frontiers in Oncology | www.frontiersin.org 9
was not observed in either cell line using the lower
concentrations of propranolol (Supplemental Figure S4C).

Because propranolol increased the intracellular levels of
doxorubicin and doxorubicin induces DNA damage, we
surmised that propranolol might enhance DNA damage
response pathways. Treatment of COSB cells with propranolol
or doxorubicin enhanced DNA damage pathway activation
based on the increased levels of phosphorylation observed in
the DNA damage response proteins ATR, CHK1, and CHK2
(Figure 5B). Additional increases in phosphorylation were
observed for CHK1 and CHK2 when cells were pretreated with
propranolol followed by treatment with doxorubicin. A slight
increase in phospho-ATM was observed under all treatment
conditions when compared to untreated controls.

Propranolol Inhibits Drug Efflux
Based on the increased retention of doxorubicin in the presence
of propranolol, we undertook a functional analysis of ATP-
binding cassette (ABC) transporter activity to determine if
propranolol inhibited drug efflux by blocking transporter
function. To evaluate efflux, we used DCV, a viable dye
eliminated from cells by several ABC efflux transporters,
FIGURE 4 | Effect of long-term propranolol treatment on doxorubicin cytotoxicity. COSB, DD-1, ISO-HAS, and SVR cells were treated with 50 µM propranolol every other
day for two weeks, and cell viability assays were carried out 72 h after incubation with doxorubicin, doxorubicin with propranolol, or doxorubicin alone after propranolol was
removed. Percent cell viability was determined by comparison to untreated control cells. The LC50 values were determined using Prism software. Data are presented as
means ± S.D. of at least three independent experiments. Statistical analysis was performed by comparing the cytotoxic effect of doxorubicin (Control), doxorubicin with
propranolol (Dox + Pro), or doxorubicin after the removal of propranolol (Dox – Pro) using one-way ANOVA.*p ≤ 0.05, n.s., no significance.
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including those encoded by the ABCB1 (P-glycoprotein or P-gp)
and ABCG2 (encoding the breast cancer resistance protein or
BCRP) genes (56, 57). Doxorubicin is a substrate for both the P-
gp and BCRP transporters (58, 59). We previously verified the
expression of these two transporters in the COSB and DD-1 cell
lines along with the ability of these cells to efflux DCV (15).
Furthermore, previous studies have shown that propranolol is a
potent inhibitor of P-gp (60).

We first defined dye efflux (E) and dye retention (R) within
subpopulations of each cell line by observing efflux in the
presence and absence of verapamil, a broad inhibitor of ABC
transporter activity (57, 59). Efflux and retention populations for
the DD-1 cell line from a representative experiment are shown as
an example (Figures 6A, B). We then used this gating strategy
for all cell lines to determine the effects of propranolol on DCV
efflux. Propranolol consistently reduced dye efflux across the cell
lines by approximately 1.8- to 2.4-fold (Figures 6C–E). The dye
effluxing and retaining cell population data for each line are fully
summarized in Supplemental Table 3. We also examined the
effects of the S-(−) and R-(+) enantiomers of propranolol on
DCV efflux in DD-1 cells. Substantial differences in dye efflux
were not observed between racemic propranolol, equimolar
concentrations of each enantiomer, or a reconstituted racemic
mixture (Supplemental Figures S5A, B). Taken together, these
data suggest that propranolol increases the intracellular levels of
doxorubicin by blocking ABC transporter drug efflux pumps
through a b-AR-independent mechanism.
DISCUSSION

Drug repurposing or repositioning is a strategy for identifying
new uses for already approved drugs or compounds that fall
outside the scope of the originally intended indication. Our
investigation identified two potential mechanisms by which
Frontiers in Oncology | www.frontiersin.org 10
propranolol potentiates the anti-proliferative properties of
doxorubicin in vitro. First, our data suggest that propranolol
sensitizes cells to doxorubicin by reducing its accumulation in
lysosomes, thereby increasing its concentration at its site of
action in the cell nucleus. By taking advantage of the b-AR
receptor-active S-(−) and -inactive R-(+) enantiomers of
propranolol, we discovered that the potentiating effect of
propranolol is not attributable to its stereoselective interactions with
b-ARs. Rather, its action appears to stem from the physicochemical
properties of propranolol as a lipophilic organic base. Viability assays
with propranolol and LysoTracker Deep Red reduced the relative
LC50 values of doxorubicin on multiple cell lines. Expansion of the
lysosomal volume by propranolol and its abrupt removal led to
increases in tumor cell resistance to doxorubicin. These observations
are consistent with previous data showing that propranolol synergizes
with multiple lysosomotropic chemotherapeutics (25, 39, 61), and
their accumulation in lysosomes (20, 26). Collectively, our results
indicate that lysosomal volume is associated with the sensitivity of
angiosarcoma and hemangiosarcoma cells to doxorubicin and
suggest that propranolol synergizes with doxorubicin by competing
with the chemotherapeutic for lysosomal accumulation.

Second, we demonstrated that propranolol increases the
intracellular accumulation of doxorubicin, as we observed an
increase in the number of doxorubicin-positive cells after
treatment with propranolol. This result is in line with previous
observations showing that propranolol increased the intracellular
accumulation of the lysosomotropic plant alkaloid, vincristine, in
neuroblastoma cell lines (39) and doxorubicin in sarcoma cell lines
(62). Using a DCV efflux assay, we found that propranolol reduced
dye efflux across all of the cell lines used in this study. Because
DCV and doxorubicin can be effluxed from these cells by P-gp (57,
59), and propranolol is a potent inhibitor of this transporter (60,
63, 64), our observations support the hypothesis that propranolol
blocks the efflux of doxorubicin from cells through inhibition of P-
gp and possibly other transporters. Taken together, our data show
A B

FIGURE 5 | Propranolol alters the cellular retention of doxorubicin. (A) Cytotoxic effects of doxorubicin in the presence of propranolol. The percentage of
doxorubicin positive cells was assessed by flow cytometry. Data are presented as the means ± S.D of at least two independent experiments with each treatment
performed in duplicate. Statistical significance was determined by unpaired t test (two-tailed) (*P < 0.05; ***P < 0.001), n.s., no significance. (B) Immunoblot showing
changes in DNA damage response proteins in COSB cells in response to different treatments with propranolol and doxorubicin.
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that propranolol increases the intracellular accumulation of
doxorubicin and support previous studies showing that
propranolol blocks drug efflux. This mechanism also supports
our observations that propranolol in combination with
doxorubicin enhances the DNA damage response, as an
enhanced response may be due to increased accumulation of
doxorubicin in the cell nucleus.

The competition between two different lysosomotropic drugs
and their respective lysosomal accumulation depends on two
physicochemical properties, the basic pKa (acid dissociation
constant for the conjugated acid of the weak base) and logP (the
logarithm of the partition coefficient of a compound between
octanol and water, representing membrane permeability) (20, 65).
These properties influence drug accumulation by affecting the
extent of lysosomal trapping and passive membrane permeation,
respectively. Lysosomotropic amine-containing drugs are
generally thought to inhibit the lysosomal uptake of each other
based on the ability of these drugs to increase the lysosomal pH
(66–71); however, other studies suggest that some drugs may
Frontiers in Oncology | www.frontiersin.org 11
induce a transient increase in pH followed by restoration of
lysosomal pH after prolonged compound sequestration (26, 65,
72). Previous reports have shown that propranolol synergizes with
lysosomotropic chemotherapeutics in vitro, including vinblastine,
paclitaxel, doxorubicin, and the lysosomotropic tyrosine kinase
inhibitor, sunitinib (32, 38, 39, 61). All of these compounds carry a
basic moiety with basic pKa values ranging from 8.7 to 10.9, and
all are lipophilic with calculated logP values spanning from 0.92 to
3.13 (25, 73).

Our results showed moderate to high synergy between
propranolol and doxorubicin in the DD-1, ISO-HAS, and SVR
cell lines and moderate synergy in COSB cells. In contrast to our
findings, only marginal effects with doxorubicin were reported in
synergy studies using transformed endothelial cells as a model of
angiosarcoma (32). Instead, propranolol strongly potentiated the
anti-proliferative effects of vinblastine in these cells. These results
led to the design of a pilot study combining oral propranolol and
metronomic vinblastine in a small number of patients with
advanced metastatic or recurrent angiosarcoma (32). In contrast
A B

C D

E

FIGURE 6 | Propranolol inhibits the cellular efflux of DyeCycle Violet. (A) Representative experiment showing the identification of cell populations capable of effluxing
(indicated by “E” in each panel) and retaining (indicated by “R” in each panel) DyeCycle Violet in DD-1 cells and (B) inhibition of dye efflux by verapamil. Analysis of
the effects of (C) propranolol and (D) propranolol and verapamil on DCV efflux and retention. Propidium iodide was added immediately before examination of the
samples by flow cytometry in order to exclude dead cells from the analysis. (E) Summary of the changes in dye efflux in response to propranolol in all four cell lines.
The complete dye efflux and dye retention data for the four cell lines are summarized in Supplementary Table 3. The results for each line are presented as the
means ± S.E. of at least three independent experiments for each line.
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to the synergistic responses observed with lysosomotropic agents,
the non-lysosomotropic, pyrimidine analogue, 5-fluorouracil,
produced largely antagonistic effects in the majority of the cell
lines analyzed (38). An interpretation of these data is that new
combinatorial approaches for the treatment of angiosarcoma and
hemangiosarcoma should focus on the addition of propranolol to
hydrophobic, weak base chemotherapeutics. Screening additional
chemotherapy drugs in an expanded panel of angiosarcoma and
hemangiosarcoma cell lines and translation of these findings to
xenograft models of angiosarcoma (33) and hemangiosarcoma
(40) may further refine the identification of effective combinatorial
strategies for clinical translation.

In addition to altering intracellular drug concentrations and
distribution, propranolol may also impact other mechanisms used
by cancer cells to induce resistance, such as altered cell cycle
regulation and increased DNA repair. Evidence suggests these
processes may be regulated, at least in part, by the
microphthalmia/transcription factor E (MiT/TFE) family of
transcription factors (MITF, TFE3, TFEB, and TFEC), which
control transcriptional programs for autophagy and lysosome
biogenesis to sustain cancer cell growth and survival under
stress conditions (74). Hydrophobic weak base compounds,
including doxorubicin and propranolol, trigger lysosomal stress
and lysosomal biogenesis through the activation of the
transcription factor TFEB by promoting its migration from the
cytoplasm to the nucleus (25, 26). This TFEB-mediated, drug
induced activation of lysosomal biogenesis results in a significant
increase in lysosome number as well as size, which we confirmed
through long-term exposure of COSB cells to propranolol.

TFEB has also been shown to activate p53, a key transcriptional
regulator of the DNA damage response that activates essential
genes involved in cell cycle arrest, DNA repair, and ultimately
apoptosis (75–77). We previously showed that propranolol
increased the expression of p53 in angiosarcoma and breast
cancer cells in vitro and in the tumor tissue from a breast cancer
patient treated with propranolol (33, 78). Based on the results
from our synergy studies and our observation that propranolol
increased the number of doxorubicin-positive cells in our assays,
we tested the idea that propranolol would enhance DNA damage
response pathways. Compared to each drug alone, our results
showed enhanced DNA damage pathway activation by
propranolol and doxorubicin based on the increased levels of
phosphorylation observed in DNA damage response proteins. At
lower drug concentrations in combination or individually, TFEB
may contribute to cell survival by blocking the cell cycle and
facilitating DNA repair. Under conditions of heightened stress or
prolonged DNA damage when cells are treated with the drugs in
combination, cells may further activate p53, overcoming the
apoptotic threshold and switching the p53 cell fate from arrest
to apoptosis (77). Future studies should evaluate changes in the
expression of p53 in response to different propranolol
combinations with different genotoxic drugs and lysosomotropic
chemotherapeutics and also consider the p53 status of each
cell line.

The rare occurrence and heterogeneity of angiosarcoma
present a logistical challenge for performing randomized trials to
Frontiers in Oncology | www.frontiersin.org 12
evaluate new treatment approaches for these patients. In contrast,
canine hemangiosarcoma occurs frequently in dogs at a rate
sufficient to power clinical trials, yet it closely models the genetic
landscape and the histopathology of human angiosarcoma and
follows a similar clinical course (11, 79). Our findings showing that
propranolol sensitizes canine hemangiosarcoma and human
angiosarcoma cell lines to doxorubicin have important
implications for improving treatment outcomes in both species
as identical chemotherapeutics and adrenergic antagonist are used
in veterinary and human medicine, allowing for drug repurposing
in the canine disease setting. Furthermore, the compressed course
of cancer progression in dogs (months versus years), the ability to
carry out treatment in the setting of an intact immune system, and
the heterogeneity of canine hemangiosarcoma allows for the
timely assessment of potential new therapies to treat
angiosarcoma (80).

In summary, our study suggests that propranolol synergizes
with doxorubicin by decreasing the lysosomal sequestration and
the cellular efflux of doxorubicin while increasing its intracellular
concentration. These changes may allow for the higher
accumulation of doxorubicin in the cell nucleus, leading to
prolonged cell stress and apoptosis. Because lysosomal
sequestration is a common phenomenon of weakly basic
amines, propranolol could be repurposed with chemotherapeutic
regimens for the treatment of other cancers, including sarcomas.
Finally, we propose that the repurposing and clinical translation of
the R-(+) enantiomer would spare patients from many of the
common side effects associated with racemic propranolol acting at
b-ARs in the heart, airways and other locations (e.g. negative
inotropic and chronotropic effects, bronchospasm, changes in
glucose and lipid metabolism), while maintaining its therapeutic
benefit in cancer chemotherapy. The only side effect reported for
R-(+) propranolol in humans is a small reduction in thyroxine to
triiodothyronine conversion, which appears to be more
pronounced in hypothyroid patients (81). Recent discoveries
showing the R-(+) enantiomer is also effective for treating
benign vascular diseases (82, 83) suggest that it might be more
broadly repurposed for the treatment of other diseases.
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