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Among the regulatory mechanisms of the renewal and differentiation of neural stem cells, recent evidences support that epigenetic
modifications such as DNA methylation, histone modification, and noncoding RNAs play critical roles in the regulation on the
proliferation and differentiation of neural stem cells. In this review, we discussed recent advances of DNA modifications on the
regulative mechanisms of neural stem cells. Among these epigenetic modifications, DNA 5-hydroxymethylcytosine (5hmC)
modification is emerging as an important modulator on the proliferation and differentiation of neural stem cells. At the same
time, Ten-eleven translocation (Tet) methylcytosine dioxygenases, the rate-limiting enzyme for the 5-hydroxymethylation
reaction from 5-methylcytosine to 5-hydroxymethylcytosine, play a critical role in the tumorigenesis and the proliferation and
differentiation of stem cells. The functions of 5hmC and TET proteins on neural stem cells and their roles in neurological
diseases are discussed.

1. Introduction

Human beings are developed from a fertilized egg into a
complete individual; during the whole process, a series of
precise regulations on the development are included, such
as gene expression and gene silence [1], transcriptional regu-
lation [2], posttranscriptional regulation [3], hormone
regulation [4], chromosome behavior regulation [5], and
apoptosis [6]. For these different regulative pathways, their
target cells are embryonic stem cells (ESCs). ESCs are totipo-
tent stem cells that had a capability to proliferate and differ-
entiate into appropriate lineages to form specialized cells and
organs and play a central role in the developmental process
[7]. Due to the powerful plasticity and potential of ESCs as
a high potential cell replacement therapy for many diseases,
stem cells are considered to have an appreciable translational
prospect in the field of regenerative medicine [8]. Except for
ESCs at the embryonic stage of the development, adult stem
cells (ASCs) exist in different tissues at the adult stage of
the development [9]. ASCs are often in a resting state in

individuals and exhibit different potentials of regeneration
and differentiation under pathological conditions or special
incentives. Reynolds and Weiss first found that the neurons
isolated from the striatum of the adult mouse brain could
proliferate and differentiate in vitro with epidermal growth
factors [9], indicating the existence of neural stem cells
(NSCs) in the mature nervous system. They also demon-
strated that NSC has the ability to self-renew and differenti-
ate into other types of cells like neurons, astrocytes, and
oligodendrocytes under many conditions such as growth fac-
tors, neurotransmitters, hormones, injury, or environmental
factors [9]. However, the renewal and differentiation ability
of NSC is limited; in the process of aging or pathological
conditions, neuronal cell loss is much more than newly gen-
erated neurons and glial cells from NSCs, resulting in differ-
ent neurological disorders including Alzheimer’s disease
[10], Parkinson’s disease [11], Huntington’s disease [12],
neuroendocrine tumors [13], and ataxia [14]. Therefore, the
regulation on the renewal and differentiation of NSCs or
NSC transplantation therapy are considered an important
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therapeutic strategy for the treatment of these neurodegener-
ative diseases.

Among the regulatory mechanisms of the renewal and
differentiation of NSCs, epigenetic modification plays a crit-
ical role in monitoring the phase transition during individual
development, maintaining the directional differentiation of
stem cells, regulating the proliferation of specific cells, and
controlling the process of differentiation [15, 16]. For exam-
ple, in the process of umbilical cord mesenchymal stem cells
(UMSCs) being differentiated to neural stem-like cells
(uNSCLs), E1A-like inhibitor of differentiation 3 (EID3), an
important member of EID gene family that has the main
function of p300/CBP inhibitors (a transcriptional coactiva-
tor) in response to cell transformation, growth arrest, or cell
apoptosis, directly interacts with DNMT3A, a DNA methyl-
transferase (DNMT) for DNA methylation, suggesting that
DNAmethylation may be involved the regulation of transdif-
ferentiating from UMSCs to uNSCLs as a key mechanism in
epigenetic regulation of stem cell reprogramming [17]. So far,
epigenetic modification is a hot topic in recent years. Except
for DNA methylation, histone modification, micro-RNA,
chromatin remodeling, and other epigenetic modification
are found to play important roles in the regulation of stem
cells [18]. In this article, we will review the recent advances
of different epigenetic modifications on NSCs, but mainly
focus on the role of 5hmC as a new player in the regulation
of the renewal and differentiation of ESCs or NSCs.

2. Recent Advances on Epigenetic Regulation on
Stem Cells

It is strongly believed that the basis of cell differentiation in
ontogeny is based on the regulation of intracellular factors,
while environmental factors also play a role as a main cause
[19]. Epigenetic modifications including methylation, acety-
lation, ubiquitination, and phosphorylation on DNA, RNA,
or proteins mediate the interaction between the environment
and the organism [20]. Interestingly, recent evidences dem-
onstrate that epigenetic modification changes can be inher-
ited to the next generation [21]. Here, we present a brief
overview of current advances on epigenetic modifications
and NSCs.

2.1. DNAMethylation. The increasing evidences demonstrate
that DNA methylation is involved in the proliferation and
differentiation of stem cells [22]. DNA methylation prevents
transcriptional factors from binding to promoters, such as
Oct4 and Nanog, thereby limiting gene expression [23].
The process of DNA methylation is catalyzed by DNA meth-
yltransferase, mainly DNMT1, DNMT3A, and DNMT3B.
DNMT3 enzyme is a de novo methyltransferase [24] and
DNMT1 is mainly involved in the maintaining of DNA
methylation in dividing somatic cells [25]. The deletion of
DNMT3A in hematopoietic stem cells impaired the differen-
tiation of transplanted hematopoietic stem cells and
increased the level of hematopoietic stem cells in the bone
marrow [22]. In skeletal muscle stem cells, the DNA methyl-
ation of CpG dinucleotide in the promoter or enhancer
region reduces gene expression of Pax7 and MyoD [26].

Similarly, Uhrf1 (ubiquitin-like PHD ring finger-1; also
known as Np95) mainly interacts with DNMT1 to maintain
DNA methylation in NSCs; the deletion of Uhrf1 in NSCs
leads to increase the global DNA methylation and delayed
neurodegeneration [27]. Recent evidences showed that
Methyl CpG binding domain protein 1 (MBD1) is expressed
in neural stem cells (aNSCs) of dentate gyrus of the adult
hippocampus and maintains the integrity and stemness of
NSC by inhibiting differentiation [28]. MBD1 and Methyl
CpG binding protein 2 (Mecp2) belong to the methyl-CpG-
binding protein family and play a key role to link DNAmeth-
ylation and transcriptional regulation on differentiation
genes [29]. MBD1 deficiency leads to the accumulation of
undifferentiated NSCs and impaired transition into the neu-
ronal lineage [28]. DNA methylation is closely related to
stem cell-related diseases. A recent study found that there
are a large number of gene mutations of DNMT3A in acute
myeloid leukemia which is a malignant tumor characterized
by clonal stem cell proliferation and aberrant block in differ-
entiation [30]. Fetal alcohol syndrome showed that alcohol
exposure to cultured NSCs altered normal DNA methylation
programming of key neural stem cell genes and retarded NSC
migration and differentiation [31], supporting the role of
aberrant patterns of DNA methylation in fetal neural devel-
opment after embryonic alcohol exposure.

2.2. Histone Modification. Histone modification refers to the
process of histone methylation, acetylation, phosphorylation,
polyadenylation, ubiquitination, and ADP glycosylation
under the action of related enzymes. Histone-mediated epi-
genetic gene silencing is to remove acetyl groups from
histone tails catalyzed by histone deacetylase (HDAC)
enzymes and enhance the binding of histones to DNA and
the aggregation of chromosomes, preventing transcription
factors into the regulatory region [32]. HDAC1 is highly
expressed in the oligodendrocyte differentiation period of
the corpus callosum; HDAC inhibitors blocked oligodendro-
cyte differentiation and cause demyelination in the corpus
callosum of postnatal rats [33]. The recent study indicated
that the Arf-p53 axis also might be involved in the regulation
of histone acetylation on the proliferation and senescence of
the neurospheres [34].

Histone demethylation is also an important histone mod-
ification. It has two families, LSD1 (Lysine-specific demethy-
lase 1) and JmjC (a domain), to regulate the proliferation and
differentiation of stem cells. Inhibiting the activity of LSD1 or
knockdown of LSD1 expression leads to the decreased prolif-
eration of neural stem cells [35]. In addition, LSD1 plays a
crucial role in maintaining the silencing of several develop-
mental genes in human embryonic stem cells by regulating
the balance between H3K4 (lysine 4 on histone H3 protein)
and H3K27 methylation in its regulatory region [36]. Thus,
histone modifications play a role in inducing NSC differenti-
ation into neurons and glial lineages, but the mechanisms are
still not clear.

2.3. Noncoding RNA. Noncoding RNAs (ncRNAs) are a class
of RNA molecules that have no ability to translate into pro-
teins but function as regulatory factors at transcriptional or
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posttranscriptional levels, including ribosomal RNAs
(rRNAs), microRNAs (miRNAs), piwi-interacting RNAs
(piRNAs), long noncoding RNAs (lncRNAs), and others
[37]. These ncRNAs have shown to play distinct but also con-
served roles in regulation of differentiation of NSCs [38–40].
Among different ncRNAs, current evidences demonstrate
that miRNAs play critical roles in the regulation of differen-
tiation of NSCs. miRNAs are a group of small RNA mole-
cules of 20–24 nucleotides widely found in eukaryotes.
They bind to target mRNAs to regulate their gene expression
by promoting the degradation of target mRNAs. Similarly,
microRNA is also involved in the regulation of NSC differen-
tiation and proliferation dynamic homeostasis; for example,
high levels of miR-184, which are inhibited by methyl-CpG
binding protein 1, promote stem cell proliferation but inhibit
adult neural stem/progenitor cell (aNSCs) differentiation
[41]. MiR-145 directly regulates Nurr1 (a nuclear receptor)
expression level, and overexpression of miR-145 inhibits
the differentiation effect of BMP2; knockdown of miR-145
promoted the upregulation of Nurr1, resulting in the differ-
entiation of NSCs into dopaminergic neurons [42]. Micro-
RNA can regulate many factors such as CT4, SOX2, and
KLF4 in embryonic stem cells that are the direct targets of
miR-145. The deletion of miR-145 increases the expression
of OCT4, SOX2, and KLF4 and further inhibits the differen-
tiation of NSC [43]. Recent studies showed that aging process
begin when hypothalamic stem cells that coexpress Sox2 and
Bmi1 are ablated accompanying with substantial loss of
hypothalamic cells; the injection of exosomal miRNA in the
cerebrospinal fluid, greatly prevented the cell aging process
[44]. Therefore, more and more evidences showed that
ncRNAs like miRNA are involved in the regulation of differ-
entiation of NSCs.

3. Ten-Eleven Translocation (Tet) Proteins-
5hmC Modification-Related Enzymes

Tet family proteins are a group of α-ketoglutarate (α-KG)
and Fe2+ ‐dependent monooxygenase to catalyze the con-
version of 5mC to 5hmC, concluding Tet1, Tet2, and Tet2
[45]. In 2009, Tahiliani et al. found that Tet1 catalyzes the
reaction of 5mC to 5hmC [46]; thereafter, Tet2 and Tet3 have
been found to have similar catalytic activity [47]. Although
the main functions of the three enzymes are to oxidize 5mC
to 5hmC, the distribution of the enzymes is different. The
expression of Tet1 protein in embryonic stem cells and ner-
vous system is high [48–50]; Tet2 is widely distributed and
relatively high in hematopoietic system; Tet3 is mainly
expressed in colon, muscle tissues, and less in brain tissues
[51]. The three Tet enzymes contain a structurally similar
carboxyl terminal catalytic region, which catalyzes the syn-
thesis of 5hmC activity [45]. The catalytic domain of Tet
proteins has 3 metal ion (Fe2+) and α-KG binding site to
enhance its catalytic activity [46]. Tet1 and Tet3 have an
amino terminal CXXC zinc finger protein domain, whereas
Tet2 lacks this structure and needs to be assisted by IDAX
protein with similar functions [52]. The CXXC domain
protein of Tet2 is encoded by a distinct gene IDAX. The
IDAX CXXC domain binds DNA sequences containing

unmethylated CpG dinucleotides, localizes to promoters
and CpG islands in genomic DNA, and interacts directly
with the catalytic domain of Tet2 [52]. IDAX (also known
as CXXC4), a reported inhibitor of Wnt signaling, regulates
Tet2 protein expression [53]. Unexpectedly, IDAX expres-
sion results in caspase activation and Tet2 protein downreg-
ulation in a manner that depends on DNA binding through
the IDAX CXXC domain, suggesting that IDAX recruits
Tet2 to DNA before degradation [52]. Notably, the IDAX-
related protein CXXC5 resembles IDAX in inhibiting Wnt
signaling [54]. Therefore, the distribution and structure of
Tet enzymes determine the distribution of 5hmC modifica-
tions in brain and their different roles in different diseases.
Tet1 knockout mice showed impaired hippocampal neuro-
genesis resulting in learning and memory deficiency [55].
Tet2 functional disruption or knockout influences hemato-
poietic cell homeostasis and hematopoietic differentiation
and promotes the development of myeloid malignancies
[56]. Although either Tet1 or tet2 knockout mice are viable
and fertile, Tet3 knockout mice are perinatally lethal [51].
These demonstrate the different roles of Tet proteins in the
different tissues and in the devolvement of different organs.
The functions of Tet proteins and its related phenotypes in
rodent animals and diseases in human are summarized in
Table 1.

5-Hydroxymethylcytosine (5hmC), the oxidative product
of 5mC, was found in mammals with surprisingly high abun-
dance in 2009 [46, 57]. Recent studies showed that 5mC is
not the final chemical steps for gene silencing; Tet protein-
associated DNA demethylation can transform 5-methyl
cytosine (5mC) into 5-hydroxymethycytosine (5hmC), 5-
formylcytosine (5fC), and 5-carbosycytosine (5caC), but
5fC and 5caC is much less than 5-hydroxymethylcytosine
[58, 59]. Interestingly, for individual tissues, the levels of
5hmC, 5fC, and 5caC were not significantly related; for
example, although 5hmC is more abundant in mouse brains
than in ESCs, the levels of 5fC and 5caC are less abundant
[45]. 5fC and 5caC can be further removed by the base exci-
sion repair (BER) pathway and thymine-DNA glycosylase
[60]. This pattern suggests that the different steps of demeth-
ylation cycle are different in different tissues [61]. In addi-
tion, Tet protein overexpression or depletion can increase
or decrease the content of 5hmC, 5fC, and 5caC in the
genome [61]. The discovery of Tet proteins speeds the explo-
ration of the functions of 5hmC [46, 57]. Because of its
important functions, 5hmC in DNA has been considered as
the sixth base. More evidences show that demethylation by
5hmC regulates the proliferation of NSCs and neurogenesis
[27]. Therefore, we further discuss the regulation of 5hmC
on NSCs and related neurological diseases.

4. Tet Proteins and DNA 5hmC Modifications
Are Involved in the Regulation on the
Proliferation and Differentiation of NSCs

The direction of cell differentiation is determined by the
specific expression of tissue-specific genes, while DNA 5mC
is involved in the regulation of gene expression and
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differentiation of cells in a specific direction [62–64]. Previ-
ous studies have shown that about 1.4% of CpG islands
undergo a significant remethylation process during the dif-
ferentiation of embryonic stem cells into NSCs and NPCs
[65]. The increasing line of evidences indicate that 5mC
directly inhibits transcription factors to bind to DNA [23]
or recruits MeCP2 and MBD to form a complex and further
prevent gene transcriptions that relate to the differentiation
of NSCs [66]. Therefore, DNA methylation plays an impor-
tant role in neural cell differentiation. Apparently, as an
important demethylation mechanism, DNA 5hmCmodifica-
tion and Tet enzymes can be involved in the regulations of
NSCs in theory.

Recently, 5hmC has been found in the mammalian
genome and has been shown to be about 10 times more
abundant in neurons than in some peripheral nervous tissues
[67]. This suggests that 5hmC may be a stable epigenetic
marker involved in cell specific mechanisms to achieve its
function in the brain. More and more evidences demon-
strated that Tet enzymes and Tet-mediated 5hmC modifica-
tions are involved in the proliferation and differentiation of
ESCs and NSCs [29, 58, 68, 69]. Hahn et al. found that the
increase of 5hmC modification in gene bodies is associated
with genes important for neuronal functions during neuronal

differentiation in mouse brain regions; however, gene activa-
tion for neuronal differentiation is not related to substantial
DNA demethylation [69]. At the same time, overexpression
of Tet2 and Tet3 also promotes the progression of neuronal
differentiation [69]. Similarly, in Sirt6-knockout ESCs, the
expression of Oct4, Sox2, and Nanog (the downstream of
Sirt6) is inhibited and the upregulation of Tet enzymes and
the significant increase of DNA 5hmC are found, resulting
in ESC skewed development towards neuroectoderm [68].
This suggests that Sirt6-regulated ESC differentiation is in a
Tet enzyme and 5hmC-dependent manner [68], supporting
Hahn et al.’s results. A recent study further demonstrates that
5hmC dynamics is correlated with the differentiation of
aNSCs; however, Tet2 primarily contributes to 5hmC acqui-
sition during the differentiation of aNSCs [58]. Therefore,
these evidences support the critical role of 5hmC modifica-
tions in the differentiation of NSCs.

Tet proteins, as the important enzymes for the conver-
sion of 5mC to 5hmC, also showed their functions on the
proliferation/differentiation of NSCs. Tet1 depletion impairs
hippocampal neurogenesis accompanied with poor learning
and memory in mice; at the same time, Tet1 deficiency
results in reduced neural progenitor pool in adult subgranu-
lar zone [55]. These results provided in vivo evidences that

Table 1: Tet proteins and their functions.

Genes Distribution Structure
Functions of Tet enzymes
Knockout phenotypes in rodents Related diseases in humans

Tet1
Mainly in ESCs and
nervous system [48].

Contains CXXC,
Cys-rich, and DSBH

domains

(1) Abnormal hippocampal neurogenesis,
with learning and memory fading [55].

(2) Antidepressive phenotypes [94]
(3) Skews differentiation towards

extraembryonic lineages in the
teratoma [99].

(1) Acute leukemia [100].
(2) Gastric cancer ([101, 102],

Deng, [103]).
(3) Breast cancer [104].

Tet2
Widely distributed and
high in hematopoietic

system [48].

Contains Cys-rich
and DSBH domains

without CXXC domain

(1) Hematopoietic cell homeostasis and
hematopoietic differentiation
impairment, myeloid malignancies [56].

(2) Retinal neurons developmental failure
in zebrafish [105].

(1) Polycythemia vera [106, 107].
(2) Primary myelofibrosis [107].
(3) Myelodysplastic syndrome

[106].
(4) Myeloproliferative neoplasm

[108].
(5) Melanoma [109].

Tet3
Mainly in colon and
muscle tissues, less in
brain tissue [51].

Contains CXXC,
Cys-rich, and DSBH

domains

(1) Developmental failure [72] and
embryonic sublethality [110].

(2) Impaired differentiation and increased
apoptosis [72].

(3) Fear extinction impairments in mice
[111].

(4) Abnormal morphogenesis of retinal
neurons in zebrafish [105].

(5) Abnormal neural differentiation and
skewed toward cardiac mesodermal
fate in mouse ESC [112].

NA

Tet1/2 DKO
Embryonic stage death and little normal
growth [113]

NA

Tet1/3 DKO
(1) Dendritic arborization inhibition in

mice [114]
(2) Holoprosencephaly [115].

NA

Tet1/2/3 TKO Developmental disorders [116] NA

CXXC: Cys-X-X-Cys domain; DSBH: double-stranded beta helix; DKO: double knockout; ESCs: embryonic stem cells; TKO: triple knockout; NA: not available.
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Tet1 deficiency in the central nervous system decrease the
proliferation of adult NSCs in the hippocampal dentate
gyrus. Moran-Crusio et al. showed that the depletion of
Tet2 stimulates aNSCs proliferation but impairs the differ-
entiation of aNSCs [56]. Tet2 interacted with the neuronal
transcription activator Foxo3a, a member of the helix-turn-
helix-like family proteins [70], and coregulated key genes
involved in aNSC differentiation [58]. Moreover, Tet3 plays
critical roles in neural progenitor cell maintenance [71] but
is not required for NSC fate [72]. However, how Tet proteins
interact with cofactors to regulate target genes responsible
for the proliferation and differentiation of NSCs remains
unclear. The possible regulative mechanisms are proposed
in Figure 1.

5. Abnormal 5hmC and Neurological Diseases

The growing evidences demonstrate that 5hmC has high
abundance in the brain and play a critical role to in the main-
tenance of normal neurodevelopment and functions of cen-
tral nervous system. Thus, accumulating evidences showed
that abnormal 5hmC modifications are involved the patho-
physiology of different neurological diseases.

5.1. Alzheimer’s Disease (AD). Alzheimer’s disease (AD) is
one of the most common age-related neurodegenerative dis-
orders in the central nervous system, characterized by pro-
gressive cognitive decline and loss of neuronal cells [73].
The pathogenesis of AD has yet to be defined, but there are
evidences to support its genetic abnormalities, such as the
mutations in β-amyloid precursor gene and presenilin1/2.
Previous study has shown that AD is associated with DNA
methylation [74]. It has been found that levels of 5mC and
DNMT in neurons are reduced in patients with AD [74].
At the same time, 5hmC level was reported to decrease in
the hippocampal tissue of patients with AD [75]. However,
a study has shown that brain 5mC and 5hmC levels increased
in patients with AD [76]. The reasons for this inconsistency
need to be further investigated. In APP-presenilin1 double
transgenic mice, 5hmC abundance in different brain regions
showed differential response to the pathogenesis [77].
Further gene ontology analyses indicated that differential
hydroxymethylation region- (DhMR-) associated genes are
highly enriched in multiple signaling pathways involving
neuronal development/differentiation [77], suggesting that
DNA 5hmCmodification is an epigenetic modifier on neuro-
genesis or NSC differentiation in aging or AD [78]. Interest-
ingly, Tet1 is found to decrease in the hippocampus of
patients with AD [79]. Tet1 knockout mice show impaired
hippocampal neurogenesis as well as learning and memory
defects [55, 80]. Therefore, Tet1 functions as a critical
enzyme to regulate 5hmC modifications on those genes
related to the proliferation and differentiation of NSCs and
further promotes neurogenesis in adult brains.

5.2. Huntington’s Disease (HD). HD is an autosomal domi-
nant disorder characterized by chorea, dystonia, slow and
unexpected decline in cognitive function, and mental disor-
ders [81]. At present, Huntington gene exon CAG repeats

are considered as the major cause that leads to abnormal
accumulation of the first amino acid polyglutamine in hun-
tingtin proteins. Despite extensive research, the pathogenesis
of neurodegeneration in HD is still unknown. ADORA2A
gene encodes an adenylate A2A receptor, a G protein-
coupled receptor that is highly expressed in the normal basal
ganglia and is severely reduced in HD [82]. Recent studies
have shown that HD results in an increase of 5mC expression
and a decrease of 5hmC expression at the 5′-UTR end of the
ADORA2A gene compared with the same age group [83].
Except for the decreased of ADORA2A gene 5hmCmodifica-
tion, a significant decrease of global 5hmC modification is
found in HD mice with 128 CAG repeats, indicating the
involvement of 5hmC in the pathogenesis of HD and a novel
epigenetic marker in HD [82]. Further 5hmC profiling anal-
ysis indicates that most genes with differentially hydroxy-
methylated regions are highly related to the pathological
changes in HD, suggesting that gene 5hmC modifications
are involved in the regulation of neurogenesis, neuronal
function, and survival in HD brain [82]. Because previous
studies have shown the abnormal neurogenesis in HD [84],
aberrant epigenetic regulation on relevant genes may impair
the neurogenesis in brains with HD. Recent study demon-
strated that targeting histone modification to downregulate
the key genes for the pathology of HD causes beneficial
effects in a Drosophila model of HD [85]. Therefore, the
modulation of 5hmC signature in HD may be an effective
strategy to ameliorate the symptoms of HD.

5.3. Rett Syndrome. Rett syndrome is considered as an inher-
ited disease characterized by progressive mental decline,
autistic behavior, ataxia, and anxiety in the early life of those
who suffer from the disease. The etiology and genetic pattern
of this disease remain unknown. The primary cause of Rett
syndrome is caused by methyl CpG binding protein 2
(MeCP2) gene mutations that result in loss of function of
MeCP2 [86]. Because brains have the highest expression of
MeCP2, MeCP2 functional deficiency causes neurological
diseases such as Rett syndrome [87]. Recent study showed
that MeCP2 was identified as the major 5hmc binding pro-
tein in the brain to facilitate gene expression by organizing
the chromatin [88]. Previous study showed a reverse correla-
tion between MeCP2 and 5hmC level, suggesting that
MeCP2 binds to 5mC blocking the conversion of 5mC to
5hmC [67]. MeCP2 mutations such as R133C (an MeCP2
residue mutated in Rett syndrome) preferentially abolish its
binding ability to 5hmC and account for the role of 5hmC
in the pathophysiology of Rett syndrome, supporting that
5hmC and MeCP2 constitute an epigenetic regulation com-
plex to control cell differentiation or chromatin structure
[88]. Recent studies have shown that MeCP2 is required for
brain development and neuronal differentiation by inhibiting
the ID1/Her2 (the zebrafish ortholog of mammalian Hes5)
axis in zebrafish because genetic depletion of MeCP2 inhib-
ited neuronal differentiation but its overexpression promoted
neuronal differentiation [89]. However, it is still unclear
whether the blocking of MeCP2 binding to 5hmC is respon-
sible for neuronal differentiation in Rett syndrome, as awaits
more investigations.
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5.4. Major Depressive Disorders (MDD). The high morbidity
and suicide of depression has become a major health concern
in the world [90]. However, the pathogenesis of MDD
remains unclear. So far, genetic and environmental factors
are considered to interact and participate in the MDD, in
which environmental factors mainly affect gene transcription
and expression through epigenetic modification. DNAmeth-
ylation is considered a major epigenetic modification from
environmental stress [91]. 5hmC functions as a new DNA
demethylation mechanism, however, its role in depressive
disorders is unclear. Epigenetic 5hmC modification, to some
extent, provides a possible mechanism for explaining envi-
ronmental factors that affect gene expression. Recent reports
showed that patients with MDD had decreased gray matter
volume and white matter integrity in the hippocampus
[92]. In addition, Bansal et al. found structural changes in
the cerebral cortex of patients with MDD, indicating that
thickening of the cerebral cortex is a compensatory nerve
growth response [93]. Recent studies have also provided evi-
dence that Tet1 knockout showed antidepressive phenotypes

by affecting neurogenesis in the hippocampus [94]. There-
fore, Tet proteins-mediated 5hmC modifications on
depression-related genes are involved the regulation of neu-
rogenesis in the mechanisms of MDD.

6. Conclusions

Epigenetic modification is likely to be the collective response
to changes in environmental factors as a means of cells or
organisms to mitigate the adverse effects [95]. The dynamic
changes of methylation (5mC) and demethylation (5hmC)
in DNA could affect its structure as well as the functions of
genes and further lead to different kinds of diseases. Recent
advances on 5hmC modification have demonstrated that
Tet proteins and Tet-mediated 5hmC play important roles
in the proliferation and differentiation of NSCs. However, it
is unclear how Tet protein, Tet-interacting factors, and
DNA 5hmC in target genes interplay and regulate the devol-
vement of NSCs. These need more investigations in the
future. Recently, DNA N6-Methyldeoxyadenosine (6mA) is
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Figure 1: Tet proteins and 5-hmC mediated regulation of NSC proliferation and differentiation. Under the conditions of environmental
stimuli, some transcriptional factors (TFs) such as FOXO3a enhance the affinity to Tet proteins along with cofactors of Tet enzymes
including α-KG and Fe2+ to form a functional complex. By binding to DNA motifs of the targeting genes, the TFs guide the Tet enzymes
to catalyze the conversion of 5mC to 5hmC. Generation of 5hmC facilitates the recruitment of the 5hmC binding proteins or other factors
to enhance the transcription of targeting genes, thereby regulating the proliferation and differentiation of NSCs.
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emerging as a newDNAmodification and plays an important
role in the regulation of the proliferation and differentiation
of NSCs [96–98]. The interaction or crosstalking of DNA
5hmC modification and 6mA modification will be an inter-
esting topic. Considering the critical role of neuronal stem
cells in the neurological diseases, targeting epigenetic regula-
tion, especially on DNA 5hmC modification, is a promising
strategy for the treatment of these neurological diseases.
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