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Abstract

Spatial genetic and phenotypic diversity within solid tumors has been well documented. Nevertheless, how this hetero-
geneity affects temporal dynamics of tumorigenesis has not been rigorously examined because solid tumors do not evolve
as the standard population genetic model due to the spatial constraint. We therefore, propose a neutral spatial (NS)
model whereby the mutation accumulation increases toward the periphery; the genealogical relationship is spatially
determined and the selection efficacy is blunted (due to kin competition). In this model, neutral mutations are accrued
and spatially distributed in manners different from those of advantageous mutations. Importantly, the distinctions could
be blurred in the conventional model. To test the NS model, we performed a three-dimensional multiple microsampling
of two hepatocellular carcinomas. Whole-genome sequencing (WGS) revealed a 2-fold increase in mutations going from
the center to the periphery. The operation of natural selection can then be tested by examining the spatially determined
clonal relationships and the clonal sizes. Due to limited migration, only the expansion of highly advantageous clones can
sweep through a large part of the tumor to reveal the selective advantages. Hence, even multiregional sampling can only
reveal a fraction of fitness differences in solid tumors. Our results suggest that the NS patterns are crucial for testing the
influence of natural selection during tumorigenesis, especially for small solid tumors.

Key words: cancer evolution, tumor spatial growth model, intra-tumoral heterogeneity, natural selection, phenotypic
diversity.

Introduction
Tumorigenesis starts from a single cell that grows into a pop-
ulation of more than 109 cells through a process of somatic
evolution and spatial range expansion (Sottoriva et al. 2015;
Wu et al. 2016; Sun et al. 2017). As solid tumors usually form a
compact structure that obstructs tumor cells from free mi-
gration, it is reasonable to expect that intratumor heteroge-
neity may result from independent progression of spatially

distributed segments. Indeed, spatial phenotypic heterogene-
ity within tumors has been well documented in genomic
analyses and pathological characterization of various types
of cancers (Ling, et al. 2015; Sottoriva et al. 2015; Waclaw
et al. 2015; Uchi et al. 2016; Yuan 2016; Carmona-Fontaine
et al. 2017; Li et al. 2017; Chan-Seng-Yue et al. 2020; Gerstung
et al. 2020; Losic et al. 2020; Dentro et al. 2021). For instance,
Ki-67 staining suggests that proliferating cells at the tumor
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edge outnumber cells at the core (Waclaw et al. 2015; Lloyd
et al. 2016; Zhao et al. 2021). In addition, cells in the central
hypoxic regions are thought to be the most aggressive and
therapy-resistant (Terry et al. 2017), whereas cells at the tu-
mor margin may be replenished frequently by the continually
fluctuating microenvironment, leading to more division and
death (Li et al. 2020). This evidence indicates that evolution-
ary rates and population dynamics may vary across the range
of structured tumor cell populations.

Although understanding the process of population differ-
entiation and adaptation driven by evolutionary forces, in-
cluding genetic drift, migration, and natural selection, is the
central theme in evolutionary biology (Yoshida et al. 2003;
Schoener 2011; Hendry 2016), most evolutionary theories
attempting to explain population dynamics are based on a
simplified assumption that populations are at spatial pan-
mixia. Accordingly, many studies assume homogeneous dis-
tribution of genetic variation within tumors (Williams et al.
2016; Chowell et al. 2018; Williams et al. 2018). Since solid
tumors do not evolve as the standard population genetic
model due to the spatial constraint, a new “null” model for
the study of intratumor genetic heterogeneity is thus
necessary.

Here, we build a neutral spatial (NS) model of tumor
growth. We assume tumor growth in a discrete-time
birth-death process initiated from a single cell. Under neu-
tral conditions, the tumor expanded at a constant rate as
the growth rate of each subclone was similar. As a result,
the shapes and relative sizes of all subclones were stable
over time. Because of spatial constraint, peripheral regions
exhibited higher proliferation rate than central regions
which led to a higher generation numbers, the former ac-
cumulated more mutations and showed longer branch
lengths than the latter. To test the NS model, we performed
a three-dimensional microdissection of two tumors
obtained from a single hepatocellular carcinoma (HCC) pa-
tient. The results of whole-genome sequencing (WGS) and
genotyping revealed a roughly 2-fold increase in mutations
going from the center to the periphery.

We also tested the operation of natural selection by ex-
amining the spatially determined clonal relationships and
the clonal sizes. When the tumor grows under Darwinian
evolution, random accumulation of driver mutations in dif-
ferent subclones resulted in changes in their shapes and
proportions. Dominant clones with the highest fitness in-
creased its proportions in the tumor rapidly, whereas other
small clones that occurred early went extinct as the expan-
sion of dominant clones. In addition, due to spatial con-
straints, only the expansion of highly advantageous clones
can sweep through a large part of the tumor to reveal the
selective advantages. Hence, even multiregional sampling
can only reveal a fraction of fitness differences in solid
tumors. This modeling yielded insights into the neutral
and environmental constraints that drive the formation
and progression of intratumor genetic structure, as well as
the tempo and mode of tumor diversification and clonal
expansion.

Results

Tumor Growth under Strict Spatial Constraint
We first evaluate a neutral tumor expansion model with strict
spatial constraints. Suppose that the shape of tumor is an
ideal sphere consisting of layers of cells. The most recent
common ancestor (TMRCA) of the tumor is at layer 0.
Layer n is the ring of cells with n cells distant from layer 0.
Cells in layer n is generated from those in layer n � 1. The
number of cells in layer n is 4pn2 (supplementary fig. 1A,
Supplementary Material online). Assume the birth and death
rates of each tumor cell are b and 1 � b, respectively. The
average number of divisions for cells in layer n is

Dn ¼ log2b 4pþ 1ð Þ
Yn�1

i¼1

1þ iþ 1

i

� �2� �" #
; n � 2

Dn is approximate linear related with n (supplementary fig.
1B, Supplementary Material online).

For cells in layer n and kn, Dkn

Dn
approximates to k as n

increase (supplementary fig. 1C, Supplementary Material
online). Under the assumption that mutation rate is constant,
mutations accumulated in cells of layer kn are k folds than
those of cells in layer n. Therefore, spatial heterogeneity of
solid tumors can be simply due to limited migration within
the tumor mass. Under a simple spatial growth model, muta-
tions accumulate more rapidly in the periphery than in the
interior.

Modeling Tumor Growth with NS Structure
To investigate how spatial heterogeneity is generated under
NS model in solid tumors in more detail, we propose a spatial
tumor growth model (Lloyd et al. 2016). For cells in a periph-
eral region, the birth rate was b0 and death rate was 1 � b0,
whereas cells in the central region stay quiescent when
resources are limited, and the birth, quiescence, and death
rates are b1, q, and 1-b1-q, respectively (fig. 1A and supple-
mentary table 1, Supplementary Material online). We dem-
onstrated modeled tumor growth under neutral evolution,
where mutations have no effect on cell growth rate. We
simulated tumor growth in a discrete-time birth-death pro-
cess initiated from a single cell to more than 106 cells (corre-
sponding to 109 in three dimensions).

Under neutral evolution, higher birth and death rates for
cells in a peripheral region than in a central region result in
more generations, which further cause more mutations ac-
cumulated at the surface. To explore mutation accumula-
tion under different birth and death rates, we performed
5,000 simulations with q sampled from the [0.1, 0.9] interval
and b0 from [0.51, 0.6]. The range of b1 depended on the
value of q and b0, as b1 must be bigger than central cell
death rate (1-q-b1) and smaller than b0. Therefore, the value
of b1 was sampled from [(1-q)/2þ 0.02, min (b0, 1-q)-0.02].
To define the location of a cell, we first estimated the radius
of the circle-like tumor, r. For each cell, we calculated the
distance between its position with the center of the tumor,
d. We also set up a value m to determine the central and
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peripheral regions. In this study, we used m¼ 0.9. That is if
d< 0.9*r, the cells are in the central region, otherwise, it is in
the periphery. It is worth of mentioning that different m
values should only affect the proportion of peripheral re-
gion, but not mutation accumulation and clonal structure
of the tumors.

Mutations accumulate randomly according to the Poisson
distribution during cell proliferation, assuming infinite site
model and a constant mutation rate. The neutral mutation
rate is l and the probability that i neutral mutations accu-
mulate after each cell division is:

P x ¼ ið Þ ¼ lie�l

i!
:

The neutral mutation rate l ¼ 15 per genome (corre-
sponding to 5� 10�9 per site per cell division for the human
genome) (Sun et al. 2017). For each simulation, 16 samples
were taken from the virtual tumor uniformly (fig. 1B), se-
quenced in silico, and single-nucleotide variants (SNVs)
were called and analyzed. The ratio of average mutation num-
ber in samples from peripheral regions to the count from
central regions (RP=C) was calculated.

FIG. 1. Spatial tumor growth model. (A) Schematic of the spatial tumor growth model. Cells at the periphery and the center have different birth and
death rates. (B) Schematic of the sampling and virtual sequencing strategy. When the tumor grows to 5� 105, 1� 106, 1.5� 106, or 2� 106 cells, 16
samples are taken uniformly to comprehensively investigate the genetic diversity of the simulated tumor. Each sample is sequenced virtually and
all samples are combined to construct mutation frequency spectra and phylogenetic relationships within a whole tumor. Sample size is about 200
cells. (C) Relationships between average mutation number in samples from the periphery or the center (RP=C) (n¼ 5,000 tumors; R square is
reported) and parameters used in the model. q, b0, and b1 are quiescent rate, birth rate of cells at the periphery, and birth rate of cells at the center.
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The ratio of average mutation number in peripheral sam-
ples to that from the center, RP/C, was about 1.5 on average,
and the 95% confidence interval was [0.79, 2.25] (supplemen-
tary fig. 2, Supplementary Material online). RP/C is positively
correlated with q (fig. 1C), demonstrating that if more cells are
quiescent in central regions, fewer mutations are generated.
In contrast, if central cells divide more frequently, the differ-
ence between the central and peripheral regions is reduced.
Thus, we observe a negative correlation between b1 and RP/C.
The range of values for RP/C is relatively stable, regardless of
the peripheral birth rate b0.

We also explored the genetic diversity and clonal structure
of the simulated tumors. In this setting, a moderate initial
birth rate b0 ¼ 0:53 was used (Sun et al. 2017). The q and b1

were set to 0.5 and 0.3, respectively, based on previous sim-
ulations (supplementary table 1, Supplementary Material on-
line and see Materials and Methods). Sixteen virtual samples
were taken (fig. 2A) when tumor size reached 5 � 105, 1 �
106, 1.5 � 106, and 2 � 106. SNVs were used to delineate
clones and estimate phylogenetic relationships among sub-
clones. Under neutral conditions, the tumor expanded at a
constant rate as the growth rate of each subclone was similar.
As a result, the shapes and relative sizes of all subclones were
stable over time. Cancer cell fractions (CCFs) of all SNVs were
low and always exponentially distributed (fig. 2B). Since pe-
ripheral regions exhibited higher birth and death rates than
central regions, leading to higher generation numbers, periph-
eral cells accumulated significantly more mutations and had
longer branches than central samples (fig. 2C). The RP/C values
are 1.39, 1.23, 1.30, and 1.40 for the four panels in figure 2C.

Three-Dimensional Microsampling and Sequencing
To comprehensively trace the mutation accumulation pro-
cess of solid tumors and describe their clonal distribution, we
performed three-dimensional microdissection (fig. 3A and B)
and WGS of two tumors, T1 and T2, obtained from an HCC
patient who was a chronic hepatitis B virus (HBV) carrier and
had undergone liver transplantation (see Materials and
Methods). The three-dimensional microsampling of the 11
slices of T1 yielded 169 samples. We obtained 160 samples
from six T2 slices. Samples were taken uniformly from each
slice, with central and peripheral regions represented (fig. 4).
Sixteen samples from three slices of T1 and nine samples from
two slices of T2, each containing�3,200 cells, were subjected
to WGS. The average depth was �78� per sample, yielding
1,264� coverage of T1 and 691� of T2. A peripheral blood
sample was collected as the normal control and sequenced to
�74� coverage with estimated purity ranging from 0.70 to
0.94 (supplementary table 2, Supplementary Material online).

We identified 254,268 SNVs in T1 and 142,032 SNVs in T2.
Of these, only 6,869 (2.7%) mutations from T1 and 3,721
(2.6%) from T2 were shared by all samples from the same
tumor. No SNVs were found in common between T1 and T2,
indicating that they originated independently. The number of
SNVs varied greatly across samples from the same tumor,
from 21,345 in T1L13 to 68,149 in T1F24, and from 24,370
in T2Z11 to 70,093 in T2Z1 (supplementary tables 2 and 3,
Supplementary Material online). Mutations in CIC, KMT2B,

and DYRK1A were found in all T1 samples and SCAF4 and
HNF1A in all T2 samples (Zhai et al. 2017; Bailey et al. 2018),
whereas the PKHD1L1 mutation was detected as a subclonal
event both in T1 and T2 (supplementary fig. 3 and supple-
mentary materials, Supplementary Material online).

Diverse copy number alternations (CNA) profiles among
samples within the same tumor, as well as between T1 and
T2, were detected (supplementary fig. 4, Supplementary
Material online). Specifically, we found significant arm-level
gains of almost all chromosomes in both T1 and T2. Losses of
6q were observed in T1 and of 4p and 13q in T2. We also
observed CNAs of canonical HCC driver genes at focal levels.
For example, amplification of CCNE1 (Li et al. 2018) and TERT
(Li et al. 2018, 2020) were found in T1 and T2, respectively,
and deletion of RB1 (Wang et al. 2013) was found in T2
(supplementary fig. 4, Supplementary Material online).
Genome-wide CNAs were quite different at both focal and
arm levels in both T1 and T2, indicating varying evolutionary
processes in tumors even in the same patient.

HBV integration into the human genome may play a cru-
cial role in triggering oncogenic processes (Br�echot et al.
2000). We found that the HBV integrations in an intron of
ATP2B2 and the intergenic region between LOC100506444
and RPL21P44 were common in T1. An HBV integration in
the 50 UTR of TERT (Sung et al. 2012; Totoki et al. 2014) was
found in all T2 samples (supplementary table 4,
Supplementary Material online).

We also explore mutation profiles of 96 trinucleotide
changes. Five mutation signatures were identified (supple-
mentary fig. 5A–C, Supplementary Material online) and com-
pared with all signatures described in the Catalog of Somatic
Mutations in Cancer (COSMIC) (Tate et al. 2019). The first,
second, and fourth signatures were enriched for T: A>A: T
mutations, which have been found in urothelial (renal pelvis)
carcinomas and liver cancers with known exposure to aristo-
lochic acid (Alexandrov et al. 2020) (COSMIC signature 22,
q¼ 0.974, 0.972, and 0.731, respectively).

Mutation Accumulation and Subclone Spatial
Structure
Phylogenetic trees were constructed based on SNVs from
each sample using peripheral blood as the outgroup (fig. 3C
and D). In the T1 phylogeny, T1Z5 branched out first (defined
as clone c), followed by five samples sharing 721 SNVs (clone
b), and ten samples sharing 16,412 SNVs (clone a). In T2, six
samples sharing 17,493 SNVs clustered together (clone d).
T2Z1 and T2Z13 shared 5,141 SNVs, constituting clone h.
Phylogenetic trees show that branch lengths vary greatly
with the long-branched subclones tending to occur in periph-
eral regions (fig. 4C–F). The RP=C for T1 is 2.19 and T2 2.07,
within the range of simulated results. Collectively, T1 and T2
underwent independent evolutionary paths but had similar
spatial patterns, that is peripheral regions accumulated more
mutations than central locations, both containing bigger
subclones.

To further delineate the size and spatial distribution of
subclones and investigate the relationship between branch
length and subclone size, we conducted additional
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genotyping of selected 906 and 565 SNVs in 153 T1 and 151
T2 samples, using the Ampliseq method (supplementary
tables 5 and 6, Supplementary Material online). The geno-
types were used to construct expanded phylogenies including
all the sequenced and validated samples to delineate clonal
distribution in each slice. Consistent with the phylogenies
based on WGS data, the three clones a, b, and c from T1
and the two clones h and d from T2 were identified in the
expanded phylogenies (fig. 4A and B). According to the phy-
logenies, both a and d are of the same age as the other clones,
implying that their larger sizes resulted from a growth advan-
tage over other cells. Clonal structure of slices shows that
subclones (b in T1 and h in T2) containing long-branch
samples occur in peripheral regions of the tumors (fig. 4C
and E).

Most subclones defined using selected SNVs were highly
consistent with those characterized by whole-genome var-
iants. For example, 78 SNVs were chosen from the shared

SNVs of subclone a from WGS, an average 95.7% of which
were identified in all validation a samples. The values for
subclone b, c, d, and h were 96.3%, 97.2%, 99.1%, and
59.4%, respectively (supplementary table 7, Supplementary
Material online). Consistency for subclone h is relatively
low. The possible reason might be that subclone h was lo-
cated at the surface of the tumor with higher genetic
diversity.

Using clone distributions across slices, we inferred
changes in subclone composition in three dimensions for
both tumors. Subclone a, accounting for 42.6% of T1, was
further divided into a1 and a2. The subclone d (84.4% of
T2) was further divided into d1, d2, and d3 (fig. 4D and F).
Clone a was the biggest in slice T1F, T1H, and T1K. a, b;
and c were similar in size in slices T1O, T1Q, and T1S. b was
the dominant subclone in slice T1V and c was similar to b
in size in slices T1Y and T1AB. Different subclonal distri-
butions across slices suggests a significant spatial

FIG. 2. Clonal structures and phylogenies of tumors under neutral evolution over time. (A) Clonal distributions of the same virtual tumor when cell
population size is 5� 105, 1� 106, 1.5� 106, and 2� 106. Colors represent subclones. (B) Sixteen samples, each with about 200 cells, are taken
uniformly from each tumor and sequenced virtually at each time point. Position of each sample is in the panel 4 of (A). Histograms are the
distributions of CCFs for all SNVs detected. (C) Sample phylogenetic trees. Normal sample without any SNVs is used as the outgroup. Samples
marked with red stars are from central regions. Internal branch lengths are significantly shorter than peripheral branches (P< 0.001, ¼ 0.043,
<0.001, and<0.001 for population size 5� 105, 1� 106, 1.5� 106, and 2� 106, respectively). The RP/C values are 1.39, 1.23, 1.30, and 1.40. Unit of
branch length in (C) is evolutionary distance in maximum parsimony.
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heterogeneity in T1 (fig. 4C). Clone a size decreases from
the center to the surface, whereas the size of clone b and c
increases (fig. 4C). Subclones from different slices showed a
similar pattern of both boundaries and sizes in T2. d was
the dominant subclone for all slices, and subclone h was
much smaller than d (fig. 4E), indicating spatial diversity of
T2 was much lower than in T1. In both T1 and T2, some
samples located at the tumor peripheral regions did not
belong to any subclones detected by WGS, implying higher
genetic diversity on the surface of the tumor.

We noticed that peripheral regions not only accumu-
lated more mutations, but also contained more changes in
genes related to cell proliferation and cell cycle function
(supplementary table 8, Supplementary Material online).
For example, only three and six mutations in these genes
were identified in the central region samples from T1 and
T2. In contrast, 56 and 30 SNVs were found in the periph-
eral samples from T1 and T2, respectively. In particular, the
two longest branches, T1Z1 had 19 and T2Z1 had 17 of

these mutated genes. These mutations may have acceler-
ated cell division rates in the peripheral samples, in turn
coinciding with a higher number of mutations found in
these regions.

Tracing the Temporal and Spatial Tumor Growth
under Neutrality and Natural Selection
Although modeling neutrality, we observed that diversity and
the subclonal structure emerged rapidly, and higher birth and
death rates at the periphery compared with the center led to
more mutations and longer branches, consistent with our
empirical observations. It suggests that the spatial pattern
of mutation accumulation is an intrinsic feature of solid
tumors and can be generated in a short period of time.

However, the rapid clonal expansion in central regions of
tumors has not appeared in our simulations. Furthermore,
whereas a and d are large, both have low intra-clonal diver-
sity compared with other clones, implying that they might
have growth advantages and experienced recent expansion.

FIG. 3. Sampling strategy and phylogenetic relationships. (A) Tumor locations in the liver. (B) Sketch map of the three-dimensional sampling and
sequencing strategy. Half of a tumor was cut into dozens of slices. We took samples from several slices to perform WGS (dark red) and genotyping
(light red). (C) Phylogenetic tree for T1 based on WGS data. Branch colors (red, yellow, and green) represent different clones in the same tumor. (D)
Phylogenetic tree for T2 based on WGS data. Branch colors (green and blue) represent different clones in the same tumor. Unit of branch length in
(C) and (D) is mutation number. Label 10,000 represents 10,000 mutations.
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FIG. 4. Extended sample phylogenetic relationships. (A) Extended phylogenetic tree of T1 samples based on WGS and genotyping data. Colors are
consistent with figure 1C. (B) Extended phylogenetic tree of T2 samples based on WGS and genotyping data. Colors are consistent with figure 1D. Unit
of branch length in (A) and (B) is evolutionary distance in maximum parsimony method. (C) Clonal structure of 11 T1 slices (T1F, T1H, T1K, T1L, T1O,
T1Q, T1S, T1V, T1Y, T1Z, and T1AB). These slices were taken from a half of the spherical tumor sequentially from the center to the periphery. T1F is the
biggest and T1AB the smallest slice. (D) Proportion of each subclone within T1. (E) Clonal structure of six T2 slices (T2F, T2M, T2Q, T2R, T2Z, and T2AB).
The order of slices is also from top to the bottom of the sampled half tumor. T2Q is the largest and T2AB is the smallest slice. (F) Proportion of each
subclone within T2. Samples marked with red stars were used for WGS in (A) and (B). Samples in red circles are WGS samples and in gray circles are
genotyped samples in (C) and (E). Colors represent different subclones. Tumor regions marked with gray do not belong to defined clones.
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We tested whether the growth of the tumors was within
neutral expectation by comparing the expected site fre-
quency spectrum (SFS) of exponentially growing cancer
cell populations (Durrett 2013; Ohtsuki and Innan 2017)
with the observed data (see Materials and Methods). The
observed SFSs in both T1 and T2 were significantly different
from the expectation under the neutral model (fig. 5A and
supplementary table 9, Supplementary Material online)
(v2 ¼ 363; 125; p < 2:2e�16 For T1, v2 ¼ 247; 540; p <
2:2e�16 For T2). We then investigated the distribution of
adjusted variant allele frequencies (VAFs) (supplementary
figs. 6–8 and supplementary material, Supplementary
Material online) and CCFs for all SNVs (fig. 5B). If tumor
growth is neutral, polymorphic snvs only occur in subclones
that are at low frequencies. In contrast, Darwinian selection
increases the growth rate of fitter cells, elevating frequencies
of snvs they accumulate (Fay and Wu 2000). There was a
peak between 0.3–0.4 for VAF and 0.5–0.8 for CCF distribu-
tions in both tumors, suggesting selection shaped their
growth (Williams et al. 2018). Therefore, Darwinian selection
may have driven the evolution of these tumors. We next
modeled tumor growth under Darwinian evolution (supple-
mentary table 1, Supplementary Material online ). Instead of
maintaining similar shapes and proportions of all subclones
during tumor progression under the neutral model, random
accumulation of driver mutations in different subclones
changed these parameters (figs. 2A and 6A). Dominant
clones with the highest fitness rapidly increased their pro-
portions in the tumor, whereas other small clones occurring
early went extinct as the dominant clone expanded. The
distribution of cCFs of SNVs under natural selection had
an extra peak in addition to the low-frequency peak after
the appearance and expansion of the dominant clone. The
peak gradually shifted to the right and finally became fixed
when the selected clone accounted for all tumor cells
(fig. 6B).

Tree shapes in adaptively evolving tumors also varied
according to stage (fig. 6C). Before the emergence of the
dominant clone, the tree structure was similar to that of
neutral tumors. Once formed, the dominant clone rapidly
increased in size and contained an increasing number of
samples. Nevertheless, regardless of stage, the subclones
that accumulated more mutations were from peripheral
regions. This pattern is evident even when the selected clone
arose from the central region.

We also explored the relationships between Fst and the
physical distance of paired samples within each tumor.
Assuming the tumor evolved neutrally, a positive correlation
between Fst and physical sample distance is expected. That is
because as tumor growth, cells that are farther apart shall
have more mutation accumulated between them which, in
turn, leads to higher Fst. Nevertheless, tumors under positive
selection will increase their size shortly which leaves no time
for mutation to accumulate. Thus, a positive correlation be-
tween Fst and the physical distance of samples within tumor
would not be expected. As shown in supplementary figure 9,
Supplementary Material online, there is no correlation be-
tween Fst and physical distance of samples within tumor.

Nevertheless, a strong positive correlation between them is
revealed in simulated neutral tumors (supplementary fig. 10A,
Supplementary Material online). Furthermore, strong positive
correlation between Fst and physical distance of samples is
found before the emergence of the dominant clone (supple-
mentary fig. 10B, Supplementary Material online). This corre-
lation vanishes as the emergence of dominant clone and
reappears after the selected clone accounted for all tumor
mass.

The distribution of CCFs of SNVs and clonal structure of
T1 and T2 are consistent with simulation results of tumor
growth under selection. To estimate the mutation rate (l)
and the number of driver mutations (N) needed to invade of
each tumor, we developed a framework incorporating our
spatial growth model into approximate Bayesian computa-
tion (ABC) (see Materials and Methods) (Beaumont et al.
2002). Mutation rates of T1 and T2 are similar, about 15
per genome per cell division (corresponding to 5� 10�9

per site per cell division) (table 1). N is four in T1 and three
in T2 (table 1). T2 has a smaller N, consistent with the smaller
T2 population, and a bigger dominant subclone.

Discussion
Spatial genetic and phenotypic diversity within solid tumors
has been well documented (Ling, et al. 2015; Sottoriva et al.
2015; Waclaw et al. 2015; Uchi et al. 2016; Li et al. 2017; Maley
et al. 2017; Losic et al. 2020). Nevertheless, how this hetero-
geneity affects temporal dynamics of tumorigenesis has not
been rigorously examined. Here, we developed a spatial tu-
mor growth model where molecular heterogeneity among
cancer cells is governed by the rigidity of solid tumors.
Relatively high turnover rates of cells at the periphery leads
them to accumulate more mutations than at the center. By
examining two independently originated tumors, we find that
samples from the edge have twice the number of SNVs com-
pared with samples from the core, consistent with our model
prediction. As the spatial heterogeneity is generated by the
constraint of solid tumors, we propose the model should be
applied to at least all small tumors with limited cell migration.
For large tumors, angiogenesis can generate a network of
blood vessels that sustains optimal growth in the central
part of a tumor mass. Therefore, the distinction between
peripheral and central is blurred.

A recent study of clear cell renal cell carcinoma (ccRCC)
found that cells in the tumor interior exhibited higher Ki67
staining and somatic copy number alteration burden (Zhao
et al. 2021). Although the mechanism of higher cellular pro-
liferation at the center of ccRCC requires further investigation,
the results actually support the notion that elevated cellular
division increases mutation burden and population dynamics
actually vary across the range of structured tumor cell pop-
ulations. It has to point out that, in Zhao et al. (2021), the
median tumor size was nine cm and the tumor margin was
one cm from the nearest boundary. As the tumors in this
study were only 1.5 and 2 cm in size, the definition of central
and peripheral are quite different from Zhao et al. (2021). The
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results derived from the two studies should not be directly
compared.

Long dendrogram branches of peripheral samples have not
been previously reported in the literature. This happens due
to the high proliferation rate of the cells in these samples. We
can detect this pattern because we collected multiple samples
that are dense enough within the tumor to capture the spa-
tial heterogeneity. However, as we show in figure 6, natural
selection can blur this phenomenon. During and right after
selection, the dominant clone can grow quickly making the
distinction between the interior and peripheral regions less
clear.

Our observation that peripheral cells grow faster than in-
terior in solid tumors may be important to consider in devis-
ing cancer therapy. Conventional chemotherapy aims at
quickly proliferating cells (Tr�edan et al. 2007), which may
effectively kill peripheral cells but leave interior cells intact.
This explains why initial chemotherapy can lead to tumor
shrinkage but rarely to complete elimination. That is because
interior tumor cells are not dividing much, and are thus rel-
atively insensitive to drugs that interfere with the cell cycle.
After eliminating peripheral cells, interior cells get access to
more resources and proliferate rapidly. Combination therapy
considering diverse phenotypes and tumor microenviron-
ments may be required (Hausser and Alon 2020).

In addition to cancer therapy, our results that tumor cells
in different regions have different survival rates resemble the r
and K strategies of life history in natural populations
(MacArthur 1962; Pianka 1970). Individuals with high repro-
ductive rates are favored in an r-selective environment,
whereas those with high survival rates are favored in K-selec-
tive conditions. This is a trade-off between proliferation and
survival (Aktipis et al. 2013; Li et al. 2020). As population
density decreases from the tumor core to edge, we expect
that peripheral cells may exhibit decreased survival and in-
creased proliferation. Intriguingly, we find increased cell pro-
liferation and cell cycle gene mutations in peripheral samples,
consistent with life-history theory in natural populations.

Our model also demonstrates that detecting positive se-
lection in tumors is a challenging task. Completely different
conclusions may have been drawn if samples would have
been taken at a different stage of tumor progression. For
example, if we would have tested for selection at the four
time points from figure 6A, the results would have been neu-
tral, neutral, selection, and neutral, depending on the stage.
The main driving forces, that is natural selection and genetic
drift, may alternatively dominate during tumor progression
(fig. 7). Selection may not be noticed unless samples are taken
at the right time and sample size is sufficient to represent the
clonal structure of the whole tumor. That is probably why

FIG. 5. Distributions of SNV frequencies in tumors. (A) Comparison of the observed site frequency spectrum (SFS) (gray) and the SFS calculated
using equation (1) (white). T1 has 16 and T2 has nine samples. (B) Histograms of CCFs of private and shared SNVs for each tumor. VAF of each SNV
is adjusted and CCF is calculated (see Materials and Methods) to investigate the prevalence of each SNV in the tumor. Insets are enlarged pictures
of the peaks between 0.5–0.8 for T1 and 0.4–0.9 for T2.
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several seminal studies suggested that no dominant sub-
clones can be found, indicating non-Darwinian evolution
within tumors (Ling et al. 2015; Sottoriva et al. 2015; Uchi
et al. 2016). For example, it has been proposed that tumor
evolution is neutral based on a linear relationship between

the expected number of mutations (M) and inverse allele
frequency (1/f) from one sample per tumor (Williams et al.
2016). Using this model, one-third of the tumors tested were
evolving neutrally. However, this method has been widely
doubted (Wang et al. 2018; McDonald et al. 2018; Tarabichi
et al. 2018). Employing this approach to our data, we find that
T1 and T2 are both evolving neutrally (supplementary fig. 11,
Supplementary Material online), a conclusion that conflicts
with the clonal structure of the two tumors. In conclusion,
extremely high spatial intratumor diversity precludes robust
interference of evolution modes with only one sequenced
sample, necessitating multiregion sampling.

Materials and Methods

NS Model Construction
We constructed an agent-based spatial lattice model to
simulate the process of tumor growth and mutation accu-
mulation integrating a heterogeneous tumor microenvi-
ronment. Expansion of tumor cells is constrained by the
spatial structure (Moore neighborhood, eight neighbors),
giving rise to distinct subclones in separate tumor regions.

FIG. 6. Clonal structures and phylogenies of tumors under natural selection over time. (A) Clonal distributions in the same virtual tumor when cell
population size is 5� 105, 1� 106, 1.5� 106, and 2� 106. Colors represent subclones. (B) Sixteen samples, each with about 200 cells, are taken
uniformly from the tumor and sequenced virtually at each time point. Position of each sample is in the panel 4 of (A). Histograms are distributions
of CCFs for all SNVs detected. (C) Sample phylogenetic trees. Normal sample without any SNVs is used as the outgroup. Samples marked with red
stars are from central regions. Unit of branch length in (C) is evolutionary distance in maximum parsimony method.

Table 1. Mutation Rate and Driver Mutation Number Estimation.

Parameter Value Posterior Probability

T1 T2

ua 6 0.04 0
15 0.95 0.97
30 0.01 0.03

Nb 2 0 0.007
3 0.34 0.937
4 0.64 0.056
5 0.02 0

NOTE—To estimate parameters using in the spatial growth model, we used ABC,
generating 30,000 virtual tumors to compare with the real tumor. Details are de-
scribed in Results and Materials and Methods.
aMutation rate.
bDriver mutation number.
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Under neutral evolution, the clonal structure is deter-
mined by both spatial constraints and random effects of
cell division. Specifically, all simulations were initiated with
a single cell and one generation was used as the time unit
for a discrete birth-death process. At each time step, each
cell either divides, stays quiescent, or dies. When tumors
grow to a certain size, spatial structure limits the ranges of
cell activities, leading to microenvironment differentiation
for cells from distinct regions. Peripheral cells grow faster
than inner cells, as there are more resources in their sur-
roundings (Lloyd et al. 2016). The density of immune cells
at tumor margins is also higher than that at the cores
(Kather et al. 2018), potentially causing higher death rates.
Thus, we set different growth rates of inner and outer
regions of tumors in our model.

The initial birth rate is b0 and death rate is d0 ¼ 1� b0.
Every cell has a unique spatial position in the two-
dimensional coordinate system. Each cell’s destiny is decided
by a random value generated from a uniform distribution
Uniform (0, 1). When the value is smaller than or equal to
b0 and there is an adjacent vacancy in the Moore neighbor-
hood, the cell proliferates. If all neighborhood positions are
occupied, a cell stays quiescent. If the random value is bigger
than b0, the cell dies. We used a moderate initial birth rate
and relatively high death rate: b0 ¼ 0:53; d0 ¼ 0:47, based
on the previous estimates in solid tumors (Sun et al. 2017).
When spatial structure influences tumor cell growth, cells in
central and peripheral regions differ in birth and death rates.
The time point where the spatial structure starts to influence
cell phenotypes is at�80 generations, when the tumor pop-
ulation size is approximately 200 cells. The quiescent rate q in
central regions is 0.5. The birth rate decreases to b1 ¼ 0.3 and
the death rate is 1� b1 � q. The birth rate and death rate of
cells at the tumor margin remain b0 and 1� b0, respectively.
To define the tumor regions, we first estimate the radius of
the circle-like tumor, r. For each cell, we calculate its distance
to the tumor center, d. If d< 0.9*r, the cell is assigned to the
central region. Otherwise, it is considered peripheral.

Mutations accumulate randomly according to the Poisson
distribution during cell proliferation, assuming infinite site
model and a constant mutation rate. The neutral mutation
rate is l and the probability that i neutral mutations accu-
mulate after each cell division is:

P x ¼ ið Þ ¼ lie�l

i!
:

The mutation accumulation parameters are set according
to previous studies. The neutral mutation rate l ¼ 15 per
genome (corresponding to 5� 10�9 per site per cell division
for the human genome) (Sun et al. 2017). Parameters used in
the spatial tumor growth model are listed in supplementary
table 1, Supplementary Material online.

To investigate the dynamics of clonal structure and cell
lineages, we took 16 samples uniformly when tumor size
reached 5 � 105, 1 � 106, 1.5 � 106, and 2 � 106 (fig. 2).
To simulate the sequencing process for each bulk sample, we
used a negative binomial distribution to generate read depth
of each virtual point mutation and a binomial distribution to
generate the mutant allele read counts. The parameters of the
negative binomial distribution were estimated by fitting the
depth distribution from real sequencing data, and are NB
(15.8, 0.155). The binomial distribution parameters are the
generated depth and the true VAF. We applied the same
filtering condition to these simulated SNVs as we did to
real data to make them comparable to the observed VAFs.
CCFs of SNVs were two times the VAFs. CCFs and VAFs of all
SNVs from whole tumors were obtained by integrating virtual
sequencing results from all samples.

Clinical Information
The patient was a 57-year-old man with a chronic Hepatitis B
Virus (HBV) infection and liver cirrhosis. He had undergone
liver transplantation in the General Hospital of Chinese
People’s Armed Police Forces. Two well-encapsulated tumors:
T1,� 2 cm in diameter, and T2,�1.5 cm in diameter, were on
the right lobe and left lobe of the liver, respectively. Both
tumors were diagnosed as moderately differentiated
Hepatocellular carcinoma (HCC). This study was approved
by the Ethics Review Committee of the General Hospital of
Chinese People’s Armed Police Forces. Informed consent was
signed according to the regulations of the institutional ethics
review board.

Three-Dimensional Microsampling and WGS
We performed a three-dimensional microsampling of both
tumors (fig. 3). Half of each tumor was embedded in the
optimal cutting temperature (OCT) compound and sliced
into 200-lm-thick pieces using the Leica CM1950 cryostat
platform. We chose three slices of T1 (T1F, T1L, and T1Z) and
two slices of T2 (T2F and T2Z) to conduct microdissection
sampling for sequencing. To identify subclonal alterations at a
high resolution, we performed a sampling of the frozen slices
using syringes with blunt tip needles of 210 lm inner diam-
eter. The 20 ll of cell lysis buffer (20 mM Tris, 2 mM EDTA,
20 mM KCl, 1 lg/ll QIAGEN protease, 1 lg/ll RNAse A) was

FIG. 7. Tumor evolutionary process. Dominant driving forces of tu-
mor evolution change according to stage. Genetic drift and natural
selection alternate to drive this process. For example, the dominant
forces at time points 1, 2, 3, and 4 are genetic drift, genetic drift,
natural selection, and genetic drift.

Genetic and Phenotypic Diversity within Solid Tumors . doi:10.1093/molbev/msab335 MBE

11

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab335#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab335#supplementary-data


piped into the syringes before sampling to maximize a sam-
pling success rate. We obtained 16 samples from T1 and nine
samples from T2. Given that tumor cell radius on the hema-
toxylin-eosin-stained slice is �8 lm and the volume of a
cylinder-like microsample is �7� 106 lm3, there are
�3,200 cells in a sample.

Cells were directly lysed to reduce DNA loss and increase
the efficiency of library preparation for WGS. DNA from
blood cells collected from the patient before liver transplan-
tation was used as the normal control. Libraries were con-
structed using Ovation Ultralow System Kit (NuGEN, USA).
Genomic DNA was fragmented into about 500 bp segments
using a Covaris S220 instrument. DNA fragments were end-
repaired, ligated to adapters, and amplified following the
Ovation Ultralow System Kit protocol. Purified libraries
were paired-end sequenced (2� 150 bp) using Illumina
HiSeq X Ten sequencers at Novogene.

Paired-end reads were mapped to the human reference
genome (UCSC hg19) using the Burrows-Wheeler Aligner
(BWA) (Li and Durbin 2010). All aligned reads were further
processed using PICARD (http://broadinstitute.github.io/pi-
card) and the Genome Analysis Toolkit (GATK) (DePristo
et al. 2011), including de-duplication, base quality recalibra-
tion, and multiple-sequence realignment prior to mutation
detection. The alignments were assessed using Qualimap
(Okonechnikov et al. 2016) Sequence data summaries for
each sample are listed in Supplementary table 2,
Supplementary Material online.

Sample Purity Estimation
All samples from a single tumor originated from the same
ancestor with thousands of SNVs in common. Theoretically,
the frequency of these ubiquitous SNVs located at regions
without CNAs and LOHs in a single tumor should be 0.5 if the
sample purity is 100%. Next-generation sequencing for each
SNV is a binomial sampling process and therefore ubiquitous
SNV frequencies are normally distributed. Using two-copy
SNVs with minor and major allele both one in each sample,
we fit a normal distribution to obtain the mean value, l. The
purity of a sample is then 2l (supplementary table 2,
Supplementary Material online).

Phylogenetic Tree Reconstruction of Samples Subject
to WGS
We reconstructed the sample phylogenies using maximum
parsimony methods in PHYLIP (Felsenstein 1989) based on
SNVs detected by WGS in each tumor. We only used SNVs
outside regions exhibiting loss of heterozygosity (LOH).

Test of Selection
The SFS is the allele frequency distribution of a given set of
loci in a population. It is often used to test for the presence of
natural selection in population genetics. In this study, the loci
are all SNVs obtained from the WGS and the populations are
the 16 T1, nine T2 samples. The observed SFS for each tumor
was obtained by counting the number of derived allele occur-
rences in all samples (supplementary table 9, Supplementary

Material online). The expected SFS for each tumor is calcu-
lated using the formula (Durrett 2013):

Eei ¼

l
r

XNr

k¼1

n

nþ k

k

nþ k� 1
i ¼ 1

l
r

n

iði� 1Þ 2 � i < n

:

8>>><
>>>:

Since
Pn
i¼2

nu
r

1
iði�1Þ ¼

Pn
i¼2

Observed SFS, we obtained u
r for

each tumor and calculated all SFS values.

Spatial Tumor Growth Model under Natural Selection
We next modeled tumor growth under Darwinian evolution
to further investigate the effects of different forces driving
cancer progression. We assumed driver mutations occur at
the rate of 10�6 per cell division (Bozic et al. 2010). The
probability of j driver mutations after each cell division is:

P y ¼ jð Þ ¼ uj
se
�ls

j!
:

Driver mutations elevate the birth rate in models with
selection. When a cell gains a beneficial mutation, the birth
rate b, increases by the selection coefficient (s) and the death
rate decreases. We calculated birth and death rates for each
cell at the tumor core as

b ¼ b1ð1þ sÞna ; d ¼ 1� b� q:

In this equation, b1 is the initial central cell birth rate, q is
the quiescence rate, and na is the number of accumulated
driver mutations. We modeled tumor growth with a strong
selective advantage (s¼ 0.1) (Uchi et al. 2016). The birth and
death rates for every cell at the tumor margin were b0 and
1� b0, respectively (fig. 6A), with b0 higher than b1. Given
that the number of drivers accumulated is limited in tumor
progression (Tomasetti et al. 2015; The ICGC/TCGA Pan-
Cancer Analysis of Whole Genomes Consortium 2020), we
assumed that cells gained ability to expand quickly when they
have N driver mutations. In our simulations, N is chosen to be
four, according to previous estimates from solid tumors
(Martincorena et al. 2017).

Estimation of Tumor Growth Model Parameters
We combined our spatial tumor growth model with the ap-
proximate Bayesian computation (ABC) (Beaumont et al.
2002) framework to estimate mutation rate (l) and the num-
ber of driver mutations (N) needed for tumors to expand
quickly. Mutation rate (l) was randomly sampled from a
discrete uniform distribution with five values from one to
30 (1, 3, 6, 15, 30, per genome per cell division). The prior
distribution of N was also a discrete uniform distribution with
six values from one to six. We simulated 1,000 tumors for
each combination of the two parameters, generating 30,000
virtual tumors. We estimated parameters of T1 and T2 inde-
pendently considering their size and evolutionary process.
Cell numbers for a two-dimensional slice of T1 and T2
were estimated at about 1.5� 106 and 106, respectively.
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When virtual tumors grew to about 106, we took nine sam-
ples uniformly and simulated the sequencing process de-
scribed above to compare the simulated to T2 sequence
data. We performed the same procedure for 1.5� 106 T1
cells. The ABC procedure is as follows:

(1) Sample parameter h ¼ ½l; N� from the prior distribu-
tion f hð Þ.

(2) Simulate tumor growth with the sampled parameters h
and calculate summary statistics S0.

(3) Compare S0 with the observed S using a distance func-
tion d and tolerance rate e. If d S0; Sð Þ < e, accept h.

(4) Go to step (1).

We accepted parameters which generated sequencing
results similar to those we observed in T1 and T2 using a
distance function d, a set of summary statistics S, and an error
threshold e. The distance function d was Euclidean distance
and error threshold e was 0.01. We used 15 summary statistics
to incorporate as much information as possible to compare
observed and simulated data. The summary statistics are:

(1) The number of mutations present in four intervals:
[0.02, 0.25], [0.25, 0.4], [0.4, 0.9], and [0.9, 1], designated
as S1, S2, S3, and S4, respectively. These four values reflect
the distribution of SNV frequencies.

(2) The median, mean, and standard deviation of Fst be-
tween samples, designated as SF1, SF2, and SF3, respec-
tively. These three values reflect the genetic distance
between samples in a tumor.

(3) The median, mean, and standard deviation of
Kolmogorov-Smirnov distance between samples, desig-
nated as SK1, SK2, and SK3, respectively. These three values
reflect the similarity of mutation frequency spectra
among samples within a tumor.

(4) The maximum, minimum, mean, median, and standard
deviation of mutation numbers detected for each tu-
mor, designated as SN1, SN2, SN3, SN4, and SN5, respectively.
These five values reflect the difference of mutation num-
bers among samples in a tumor.

We performed 30,000 spatial simulations described above
and calculated the summary statistics. abc (Csill�ery et al.
2012) package was used to calculate distances and generate
posterior distributions of the two parameters.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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