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a b s t r a c t 

Although COVID-19 has been spreading throughout Belgium since February, 2020, its spatial dynamics in 

Belgium remain poorly understood, partly due to the limited testing of suspected cases during the epi- 

demic’s early phase. We analyse data of COVID-19 symptoms, as self-reported in a weekly online survey, 

which is open to all Belgian citizens. We predict symptoms’ incidence using binomial models for spatially 

discrete data, and we introduce these as a covariate in the spatial analysis of COVID-19 incidence, as re- 

ported by the Belgian government during the days following a survey round. The symptoms’ incidence 

is moderately predictive of the variation in the relative risks based on the confirmed cases; exceedance 

probability maps of the symptoms’ incidence and confirmed cases’ relative risks overlap partly. We con- 

clude that this framework can be used to detect COVID-19 clusters of substantial sizes, but it necessitates 

spatial information on finer scales to locate small clusters. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

COVID-19 is a respiratory disease caused by a highly infectious 

ingle-stranded RNA corona virus, SARS-CoV-2 ( Chen et al., 2020; 

u et al., 2020 ). It was first observed in Wuhan, the capital of

he Hubei province in the People’s Republic of China, in Decem- 

er 2019 ( Zhu et al., 2020 ). The virus most likely has a zoonotic

rigin, but human-to-human transmission, which happens mainly 

ia droplets and fomites, combined with a high basic reproduc- 

ive number, has caused the disease to rapidly spread across con- 

inents. It has been declared a global pandemic on March 11, 2020 

 World Health Organization, 2020 ). 

The first imported COVID-19 case in Belgium was reported on 

ebruary 4, 2020, in Brussels; this case did not lead to further in- 

ections. Due to various further introductions, the disease spread 
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hroughout the country. The Belgian government has undertaken 

everal measures to slow down community transmission, the most 

otable of which has been the implementation of a lockdown of 

he country on March 18, 2020. Due to limited capacity, only a 

raction of suspected Belgian COVID-19 patients has been tested 

o confirm SARS-CoV-2 infection. These are primarily severe cases, 

hich has complicated the assessment of the true extent of the 

isease’s spatio-temporal spread. 

The University of Antwerp, in collaboration with Hasselt Uni- 

ersity and KU Leuven, has designed an ethically approved weekly 

nline COVID-19 survey ( https://www.uantwerpen.be/en/projects/ 

orona-study/ ), which is open to the general Belgian public. A 

ey objective of the survey is to collect information on COVID- 

9 symptoms from the general public. The weekly number of par- 

icipants has been large; during its first four rounds, the survey 

eached 537,172; 334,935; 397,529; and 215,138 respondents, re- 

pectively, with complete residential and personal information to 

onduct a spatial analysis. However, as the survey may not reach 

ll segments of society equally ( Alessi and Martin, 2010; Andrews 

https://doi.org/10.1016/j.sste.2020.100379
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sste
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sste.2020.100379&domain=pdf
mailto:thomas.neyens@uhasselt.be
https://www.uantwerpen.be/en/projects/corona-study/
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t al., 2003 ), it remains unclear whether sampling bias invali- 

ates statistical inference on the spatial dynamics of COVID-19-like 

ymptoms as a proxy for the distribution of COVID-19. 

Geostatistical models are often applied to analyse and pre- 

ict disease risk in a population ( Diggle and Ribeiro, 2007 ). Using 

ethods for spatially discrete outcomes ( Besag et al., 1991; Law- 

on, 2013; Leroux et al., 1999 ), we can predict COVID-19 incidence 

ia crowd-sourced data of symptoms obtained by self-reporting in 

he online survey. We can use these predictions to optimally model 

he geographical risk distribution of confirmed COVID-19 cases, as 

eported by the Belgian government. This additionally allows to 

nvestigate routes to develop an early-warning framework aimed 

t detecting COVID-19 cases by self-reporting citizens, when large- 

cale testing and tracing of the general public is not feasible, and 

o supplement information obtained from testing and tracing oth- 

rwise. 

In this study, we fit spatial models to data obtained during the 

hird round of the online survey, conducted on March 31, 2020, 

nd data of confirmed cases, as reported by the Belgian population 

ealth institute (Sciensano) between April 7 and April 9, 2020. We 

se approximate Bayesian estimation methods to spatially analyse 

elf-reported COVID-19 symptoms. We then use mean incidence 

redictions as a plug-in covariate in a spatial model to analyse 

onfirmed cases. Our aim is to investigate whether symptoms that 

re reported in an online survey, which is ordinarily subject to 

ampling bias, are useful to predict the spatial spread of detected 

OVID-19 disease approximately one week later. 

. Methodology 

.1. Data 

The Belgian population health institute (Sciensano) collects 

aily numbers on confirmed cases in Belgium, an aggregated ver- 

ion of which is made publicly available ( https://epistat.wiv-isp.be/ 

ovid/ ). We make use of the raw, publicly unavailable, data of 5183 

ndividuals with known residential, age, and gender information, 

ho were diagnosed with COVID-19 on April 7, April 8, or April 9, 

020 (henceforth, covid data). Fig. 1 depicts the standardized inci- 

ence rates, SIR i = O i / E i , with O i and E i the observed number of

ases and the internally age-gender standardised expected counts, 

espectively, for municipality i = 1 , . . . , N, with N = 589 . We use

ge groups in the standardisation process, more specifically the age 

ntervals, 0–24, 25–44, 45–64, and +65 years old. The widths of 

he age intervals are based on considerations related to the online 

urvey data set; more information is provided in Section 2.2 . Note 

hat on Jan 1, 2019, a number of Belgian municipalities have been 

eographically and administratively united, which reduced the to- 

al number of Belgian municipalities from 589 to 581. We use the 

elgian municipality structure of 2018 to improve spatial resolu- 

ion, along with demographical information from the same year, 

hich differs only minimally from the demography in 2020. 

Secondly, we use data on COVID-19 symptoms, as self-reported 

y participants in the third round of the online COVID-19 survey 

March 31, 2020; henceforth, symptoms data), for which all neces- 

ary ethical approvals have been obtained. The survey can be filled 

n by all members of the public and is designed to collect data 

bout spatial trends in COVID-19 symptoms within Belgium, the 

xtent to which members of the public adhere to measures taken 

y the government, contact behaviour, and mental health dynam- 

cs, among others. We investigate data of the third round in the 

ain analysis presented here, since (i) the survey in round 1 only 

ontained one general question that gauged whether individuals 

xperienced any flu-like symptoms. From round 2 onwards, this 

uestion was replaced by thirteen separate questions regarding 

pecific COVID-19 symptoms; (ii) of the remaining surveys, round 3 
2 
ad the largest sample size and the best coverage in Wallonia, the 

outhern part of Belgium; (iii) during rounds 1 and 2, there was 

onsiderable overlap with the end of the influenza season, while 

xploratory analyses of symptom shifts through time signal the 

tart of the pollen allergy season in round 4. We provide analy- 

is results of survey rounds 2 and 4 as an Appendix ( Section A.3 ).

e use data of males and females - not intersex due to the cate- 

ory’s limited sample size - with available age and residential in- 

ormation. This yields 397,529 data records, with at least one re- 

pondent from each of the 589 Belgian municipalities. The ma- 

ority of the respondents comes from Flanders, the northern part 

f Belgium ( Fig. 2 ). All participants were asked to indicate which 

f the following COVID-19-like symptoms they experienced dur- 

ng the week preceding the online survey (March 24 − 30 , 2020), 

f any: (i) a rapidly increasing fever, (ii) a high fever, (iii) a dry 

ough, (iv) shortness of breath, (v) chest pain, (vi) muscle pain, 

vii) exhaustion, (viii) chills, (ix) nausea, (x) painful eyes, (xi) a sore 

hroat, (xii) a rattling cough, and/or (xiii) a running nose. A binary 

ariable Y ij takes a value 1 when person j = 1 , . . . , n i in munic-

pality i experienced at least one of the most typical symptoms, 

hich we define as symptoms (i)-(iv), based on Jiang et al. (2020) , 

ang et al. (2020) , and World Health Organization (2020) ; other- 

ise, Y i j = 0 . 

.2. Statistical methods 

We fit models for spatially discrete data to the symptoms and 

ovid data, using integrated nested Laplace approximation (INLA, 

 Rue et al., 2009 )). INLA is a convenient approximate Bayesian 

stimation method that computes approximations of posterior 

arginal distributions for latent Gaussian models. We apply it in 

 4.0.0 ( RCoreTeam, 2020 ), through the package R-INLA. 

For the symptoms data, the model structure is defined by 

 (Y i j = 1) = expit (α0 + α1 single i j + α2 agecat 1 i j + α3 agecat 2 i j 

+ α4 agecat 3 i j + α5 male i j + α6 agecat 1 i j ∗ male i j 

+ α7 agecat 2 i j ∗ male i j + α8 agecat 3 i j ∗ male i j + z 1 i ) 

(1) 

here single denotes a binary variable taking the value 1 when 

 participant is the only member of a household and 0 other- 

ise; agecat 1 , agecat 2 , and agecat 3 are dummy variables that indi- 

ate whether participants belong to the age groups 25–44, 45–64, 

nd +65 , respectively, the interval widths of which we have cho- 

en to categorise the data into groups expected to showcase dif- 

erent social behaviour, while maintaining balanced sample sizes 

mong these categories; male = 1 for males, 0 for females; z 1 i is 

 term that corrects for spatially correlated heterogeneity (CH) 

nd/or uncorrelated heterogeneity (UH) at the municipality level. 

e apply and compare three approaches; (i) the convolution model 

 Besag et al., 1991 ), where z 1 i = v 1 i + u 1 i , with v 1 i defined as a nor-

ally distributed random effects term to capture UH, 

 1 i ∼ N(0 , σ 2 
v 1 ) . (2) 

CH is accommodated by u 1 i , an intrinsic conditional autoregres- 

ive (CAR) random effects term, 

 1 i | u 1 k,i � = k ∼ N 

(
μ̄1 i , σ

2 
1 i 

)
, (3) 

¯ 1 i = 

1 ∑ N 
k =1 w ik 

N 1 ∑ 

k =1 

w ik u 1 k , (4) 

2 
1 i = 

σ 2 
u 1 ∑ N w ik 

. (5) 

k =1 

https://epistat.wiv-isp.be/covid/
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Fig. 1. SIR of COVID-19 cases per municipality, based on all confirmed cases between April 7 and April 9, 2020. 

Fig. 2. The proportion of the population per municipality taking the survey on March 31, 2020. 

3 



T. Neyens, C. Faes, M. Vranckx et al. Spatial and Spatio-temporal Epidemiology 35 (2020) 100379 

Fig. 3. Leroux model: predicted probabilities for a citizen to experience at least 1 of 4 typical COVID-19 symptoms per municipality. 
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Here, w ik = 1 if areas i and k are adjacent and 0 otherwise; as

n alternative, we fit (ii) the Leroux model ( Leroux et al., 1999 ),

here 

 1 ∼ MV N(0 , �1 ) , (6) 

1 = σ1 [(1 − λ1 ) I N + λ1 �1 ] 
−1 . (7) 

Here, �1 is the precision matrix of an intrinsic CAR process, 

uch as introduced in (3) –(5) . The parameter λ1 controls how 

trong the spatial dependence attributes to the extra-variability; 

hen λ1 = 0 , there is no spatial heterogeneity, when λ1 = 1 , all

eterogeneity can be linked to spatial dynamics. The Leroux latent 

odel is not provided as a standard option in INLA, but it can be

mplemented by specifying the variance-covariance matrix as sug- 

ested by Ugarte et al. (2014) and applied by Adin et al. (2019) ;

iii) we compare both spatial models with a non-spatial log-normal 

odel, where z 1 i = v 1 i , with v 1 i parametrised similarly as in (2) . 

We perform model selection using the Deviance Information 

riterion (DIC, Spiegelhalter et al., 2002 ) and the Watanabe-Akaike 

nformation Criterion (WAIC, Watanabe, 2010 ) goodness-of-fit cri- 

eria. We then estimate ̂ P (Y i. = 1) , the predicted probability of a 

unicipality’s inhabitant to experience at least 1 typical COVID-19 

ymptom, which is corrected for the age, gender, and single house- 

olds dynamics of the municipality. 

For the covid data, we fit a spatial Poisson model with a full 

odel structure that is defined as, 

 i ∼ Poisson (E i R i ) , 

R i = exp [ β0 + β1 ̂
 P (Y i = 1) s + z 2 i ] , 

here R i denotes the relative risk for municipality i . We again use 

he convolution, Leroux , and log-normal modelling approaches to 

efine z . In the convolution and log-normal models, v and u are 
2 i 2 i 2 i 

4 
efined similarly as v 1 i and u 1 i in (2) –(5) , respectively, but with 

ifferent separate heterogeneity terms denoted by σ 2 
v 2 , μ̄2 i , σ

2 
2 i 

, 

nd σ 2 
u 2 

instead of σ 2 
v 1 , μ̄1 i , σ

2 
1 i 

, and σ 2 
u 1 

, respectively. For the Ler- 

ux model , we use similar parametrisations as in (6) –(7) , but with

2 , σ 2 , λ2 , and �2 instead of resp. �1 , σ 1 , λ1 , and �1 . We include
 

 (Y i. = 1) , as predicted by (1) , as a risk factor in the model, but in

ts standardised form, which we denote as ̂ P (Y i = 1) s . We compare 

esults with those coming from convolution, Leroux , and log-normal 

odels without the symptoms’ incidence covariates. Model selec- 

ion is based on the joint investigation of DIC and WAIC statistics 

nd the effect of ̂ P (Y i = 1) s . 

We use vague priors: N (0, 10 0 0) for all covariate effects, 

ogit( λ) ~ beta(1, 1) for the control parameters in the Leroux mod- 

ls, and penalised complexity (PC) priors ( Simpson et al., 2017 ) 

or the precision parameters of the random effects. PC priors for a 

recision parameter, τ = 1 / σ 2 , are defined by two parameters, σ 0 

nd ξ , such that P (σ > σ0 ) = ξ . We set σ0 = 5 and ξ = 0 . 01 , for

u 1 = 1 / σ 2 
u 1 

, τv 1 = 1 / σ 2 
v 1 , τu 2 = 1 / σ 2 

u 2 
, and τv 2 = 1 / σ 2 

v 2 . A sensitiv-

ty analysis for the choice of the prior distribution, where we use 

amma(1, 0.0 0 05), here parametrised with a shape and rate pa- 

ameter, as a prior for the precision parameters, and logit( λ) ~ N (0, 

0), has been documented in the Appendix ( Section A.1 ). Note that 

recision, control, and covariate estimates, along with the maps 

isplaying predictions and exceedance probabilities, remain almost 

nchanged in the sensitivity analysis. We denote covariate effects 

s significant , when their associated 95% credible interval does not 

nclude 0. 

Note that the online survey collected residential information at 

he postal code area level, a subdivision of the municipality level. 

ince this yielded at least one data record for 1083 out of these 

133 Belgian postal code areas, the symptoms data can be inves- 

igated on this finer scale as well. We provide this analysis as an 

ppendix ( Section A.2 ). We have chosen to report the data on a 
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Table 1 

symptoms data analysis: estimation results and goodness-of-fit statistics.. 

Effect Parameter Convolution model Leroux model Log-normal model 

Estimate 95% credible interval estimate 95% credible interval Estimate 95% credible interval 

Intercept α0 −1.6084 [ −1.6418, −1.5752] −1.6106 [ −1.7080, −1.5102] −1.6304 [ −1.6604, −1.6004] 

single α1 −0.0553 [ −0.0827, −0.0280] −0.0551 [ −0.0825, −0.0278] −0.0555 [ −0.0830, −0.0282] 

agecat 1 α2 0.1770 [0.1454,0.2087] 0.1771 [0.1455,0.2088] 0.1783 [0.1466,0.2100] 

agecat 2 α3 −0.0941 [ −0.1284, −0.0598] −0.0941 [ −0.1284, −0.0598] −0.0945 [ −0.1288, −0.0602] 

agecat 3 α4 −0.6692 [ −0.7334, −0.6055] −0.6691 [ −0.7334, −0.6055] −0.6707 [ −0.7349, −0.6071] 

male α5 −0.1009 [ −0.1573, −0.0448] −0.1009 [ −0.1573, −0.0447] −0.1016 [ −0.1580, −0.0454] 

agecat 1 
∗male α6 0.0731 [0.0116,0.1348] 0.0731 [0.0116,0.1348] 0.0734 [0.0119,0.1351] 

agecat 2 
∗male α7 0.0934 [0.0288,0.1581] 0.0934 [0.0288,0.1582] 0.0948 [0.0302,0.1595] 

agecat 3 
∗male α8 0.0113 [ −0.0890,0.1114] 0.0113 [ −0.0890,0.1114] 0.0136 [ −0.0867,0.1137] 

st. dev. UH σ v 1 0.0138 [0.0029,0.0297] – – 0.0763 [0.0627,0.0905] 

st. dev. CH σ u 1 0.0943 [0.0733,0.1200] – – – –

st. dev. σ 1 – – 0.1006 [0.0785,0.1257] – –

control par. λ1 – – 0.9655 [0.8780,0.9973] – –

DIC – 22863.96 – 22864.11 – 22935.75 –

WAIC – 22866.28 – 22866.67 – 22944.69 –

Fig. 4. Leroux model: exceedance probabilities per municipality for the predicted probability for a citizen to experience at least 1 of 4 typical COVID-19 symptoms, with 

threshold = 0 . 148 . 
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oarser spatial scale in the main manuscript due to two main rea- 

ons: (i) the gain of working at the postal code area level is limited

n the context of predictions, since demographic information at the 

ostal code area level is currently not at our disposal. This means 

hat predicting spatial symptom probabilities necessitates the use 

f covariate information at the municipality level, which is not op- 

imal; (ii) predictions at the postal code area level need to be ag- 

regated within the municipality level to be used as a covariate in 

he analysis of the covid data. Hence, working at the municipal- 

ty level in the symptoms data analysis allows us to provide these 

redictions in a more direct way. 

. Results 

In the analysis of the symptoms data, the convolution and Leroux 

odels provide very similar parameter estimates and goodness-of- 
5 
t statistics, while they outperform the log-normal model ( Table 1 ). 

his is in line with the observation that most extra-variability 

an be attributed to unobserved spatial phenomena; in the Ler- 

ux model, ˆ λ1 lies close to 1; furthermore, we see that the largest 

art of the uncorrelated extra-variability in the log-normal model 

s attributed to spatial dynamics when extending the model to the 

onvolution model. One can argue to fit a CAR model without an 

H term as an alternative, but we decide against that approach, 

ince we would then assume that there is no small-scale extra- 

ariability. Note that the unexplained variability in all three models 

s arguably small, with its estimated standard deviation fluctuating 

round 0.1. We proceed with the Leroux model, since the convolu- 

ion model can suffer from identifiability problems in its random 

ffects structure ( Leroux et al., 1999 ), while noting that the final 

esults remain largely unaffected by this choice. 
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Table 2 

covid data analysis: estimation results and goodness-of-fit statistics. 

Effect Parameter Convolution model Leroux model Log-normal model 

Estimate 95% credible interval Estimate 95% credible interval Estimate 95% credible interval 

covariate 

Intercept β0 -0.2874 [ −0.3567, −0.2198] −0.2917 [ −0.3878, −0.1982] −0.2865 [ −0.3589, −0.2160] ̂ P (Y i = 1) s β1 0.2022 [0.0949,0.3041] 0.1966 [0.1085,0.2818] 0.2204 [0.1521,0.2890] 

st. dev. UH σ v 2 0.6270 [0.5575,0.7013] – – 0.6792 [0.6231,0.7393] 

st. dev. CH σ u 2 0.4254 [0.2193,0.7156] – – – –

st. dev. σ 2 – – 0.9001 [0.7550,1.0616] – –

control par. λ2 – – 0.1973 [0.0764,0.3830] – –

DIC – 2832.51 – 2832.58 – 2837.58 –

WAIC – 2762.97 - 2763.59 – 2768.42 –

no covariate 

Intercept β0 −0.2912 [ −0.3582, −0.2261] −0.2983 [ −0.4202, −0.1784] −0.2992 [ −0.3741, −0.2263] 

st. dev. UH σ v 2 0.5836 [0.5063,0.6768] – – 0.7144 [0.6561,0.7769] 

st. dev. CH σ u 2 0.6503 [0.4403,0.8935] – – – –

st. dev. σ 2 – – 1.0729 [0.9045,1.2470] – –

control par. λ2 – – 0.3623 [0.1818,0.5606] – –

DIC – 2832.94 – 2835.58 – 2848.66 –

WAIC – 2763.84 – 2769.19 – 2779.38 –

t
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Table 3 

Estimation results for β1 , the effect of ̂  P (Y i = 1) s , when investigating different time 

periods of confirmed cases. An asterisk ( ∗) denotes a significant effect on a 5% sig- 

nificance level. 

Period Estimate 95% credible interval No. cases 

March 31 – April 2 0.1454 [0.0490,0.2394] ∗ 4565 

April 1 – April 3 0.1477 [0.0533,0.2378] ∗ 4567 

April 2 – April 4 0.1973 [0.1091,0.2825] ∗ 3989 

April 3 – April 5 0.1988 [0.1087,0.2860] ∗ 3205 

April 4 – April 6 0.1703 [0.0907,0.2474] ∗ 3415 

April 5 – April 7 0.1839 [0.1015,0.2618] ∗ 3977 

April 6 – April 8 0.1548 [0.0661,0.2381] ∗ 4881 

April 7 – April 9 0.1966 [0.1085,0.2818] ∗ 5183 

April 8 – April 10 0.1873 [0.0870,0.2842] ∗ 5990 

April 9 – April 11 0.1985 [0.0782,0.3161] ∗ 5446 

April 10 – April 12 0.1602 [0.0216,0.2953] ∗ 3768 

April 11 – April 13 0.1614 [0.0141,0.3067] ∗ 2020 

April 12 – April 14 0.1347 [-0.0065,0.2691] 2473 

April 13 – April 15 0.1980 [0.0666,0.3245] ∗ 3543 

April 14 – April 16 0.1971 [0.0714,0.3205] ∗ 4643 

April 15 – April 17 0.1754 [0.0513,0.2977] ∗ 4532 

April 16 – April 18 0.1558 [0.0298,0.2786] ∗ 3652 

April 17 – April 19 0.2151 [0.0723,0.3481] ∗ 2468 

April 18 – April 20 0.2236 [0.0895,0.3542] ∗ 2345 

April 19 – April 21 0.1772 [0.0593,0.2941] ∗ 2867 

April 20 – April 22 0.1410 [0.0277,0.2511] ∗ 3179 

March 31 – April 22 0.1465 [0.0685,0.2198] ∗ 29405 
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Being single is significantly associated with a lower probability 

o report at least 1 typical COVID-19 symptom. However, its ef- 

ect is small. Age and gender have significant interaction effects; 

e see the largest probability among non-single females between 

5 and 44 years old, while the lowest probability is seen in sin- 

le elderly males. Figs. 3 and 4 show, respectively, ̂ P (Y i. = 1) , af-

er correcting for demographic variation in age, gender, and house- 

old, i.e., singles vs. non-singles, and the exceedance probabilities, 

 { ̂  P (Y i. = 1) > median [ ̂  P (Y i. = 1)] } = P [ ̂  P (Y i. = 1) > 0 . 148] . 

Table 2 presents parameter estimates and goodness-of-fit statis- 

ics for the covid data analyses. Again, the convolution and Ler- 

ux models outperform the log-normal model in terms of DIC and 

AIC. These statistics are almost identical for both spatial models 

hat include the symptoms’ incidence covariate and for the con- 

olution model without the covariate. Estimates of β0 and β1 are 

imilar across the three models. 

With regards to the symptoms’ incidence’s usefulness as a pre- 

ictor for the relative incidence risk of the confirmed cases, we 

ist a number of observations: (i) goodness-of-fit statistics point 

owards improved model fits when the symptoms’ predicted in- 

idence is used as a covariate, except for the convolution model ; 

ii) parameter estimates in the upper panel of Table 2 indicate a 

elatively small, but significantly positive association between the 

ymptoms’ incidence and the relative incidence risk based on the 

onfirmed cases; (iii) however, in all models, the extra-variability’s 

arameter estimates do not increase substantially when the co- 

ariate is left out of the linear predictor; (iv) when we predict 

elative risks from a spatial model, e.g., the Leroux model, with- 

ut the covariate, the Kendall correlation of those relative risks 

nd 

̂ P (Y i. = 1) is significantly different from 0, but its point esti- 

ate is small ( ̂  ρ = 0 . 2380 ; p value < 2 . 2 ∗ 10 −16 ); (v) unlike in the

ymptoms data analysis, the majority of the extra-variability is at- 

ributed to small-scale spatial variation (e.g., for the Leroux model, 
ˆ 

2 = 0 . 1921 ). This is partly due to the fact that the symptoms’ in-

idence, which predominantly shows spatial and little non-spatial 

ynamics, captures mostly spatial variation in the confirmed cases’ 

ncidence risk. The results from the Leroux model without the co- 

ariate confirm this, as ˆ λ2 increases to 0.3627. 

From the observations listed above, we learn that (i) ̂ P (Y i. = 1) 

xplains a small, yet arguably significant, proportion of variability 

n the confirmed cases’ relative incidence risk. We will denote this 

s moderately predictive ; (ii) ̂  P (Y i. = 1) mostly explains spatially cor- 

elated variation in the confirmed cases’ and is best at pinpointing 

arge disease clusters. This is also seen in Figs. 5 and 6 , which de-

ict, respectively, ̂ R and the exceedance probabilities, P ( ̂  R > 1 . 5) , 
i i fi

6 
ased on the Leroux model with 

̂ P (Y i. = 1) as a covariate. The re- 

ion with elevated predicted incidence of typical COVID-19 symp- 

oms in the central-east of Belgium, situated around the city of 

int-Truiden, in Fig. 4 , overlaps well with the cluster of munici- 

alities in Fig. 6 that has a high probability, i.e., larger than 95%, to 

ave at least a 150% increase in relative incidence risk ( Fig. 7 ). This

egion is known, as it had the largest local COVID-19 outbreak in 

elgium. Other smaller outbreaks could however not be predicted 

y ̂ P (Y i. = 1) . Increased risk in these locations is likely accounted 

or in the model by the spatially uncorrelated heterogeneity term. 

Based on these considerations, we decide to leave the covariate 

n the model, but note that its explanatory power is limited. We 

roceed with the Leroux model that includes the covariate, again 

ue to possible identifiability issues in the convolution model. Note 

hat the symptoms that were self-reported to be experienced dur- 

ng the period of March 24–30, have similar, moderately predictive , 

ffects on the incidence risk of confirmed cases within a period 

hat spans more days than the period of April 7–9 ( Table 3 ). We

nd significant results for the effect of ̂ P (Y = 1) s on the incidence 
i 
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Fig. 5. Leroux model: predicted COVID-19 relative risk per municipality, based on data of confirmed cases between April 7 and April 9, 2020. 

Fig. 6. Leroux model: exceedance probabilities for the relative risk per municipality, based on data of confirmed cases between April 7 and April 9, 2020, with relative risk 

threshold = 1 . 5 . 

7 
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Fig. 7. Map depicting locations where P[ ̂  P (Y i. = 1) > 0 . 148] ≥ 0 . 95 and/or P( ̂  R i > 1 . 5) ≥ 0 . 95 . 
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isk of confirmed cases for almost all three-day periods through- 

ut March 31 and April 22, as well as a significant effect when 

nalysing all cases that were confirmed between March 31 and 

pril 22 together. Based on the effect size and the credible inter- 

als’ widths, the optimal predictive performance is suggested for 

he period between April 7 and April 9. Although it is uncommon 

o consider traditional issues related to multiple testing in the con- 

ext of a Bayesian analysis, we note that for a number of three- 

ay periods, lower limits of 95% credible intervals often lie close 

o zero, which might reflect spurious correlations. 

. Discussion and conclusion 

Our study shows that, when using geographical crowd-sourced 

nformation on COVID-19 that is obtained by self-reporting in the 

ig Corona Study, a large-scale online survey study, model-based 

ymptom incidence predictions are capable of explaining a (border- 

ine) significant, yet limited, proportion of the heterogeneity that is 

een in the number of confirmed COVID-19 cases, as reported by 

he government, within 1 to 28 days after these symptoms were 

xperienced. Exceedance probabilities, based on the analysis of the 

ymptoms data, pinpoint an important cluster of elevated COVID- 

9 risk around the city of Sint-Truiden in central eastern Belgium, 

hich aligns well with a region that has since then received in- 

reased attention, due to a number of local outbreaks. However, 

he symptoms analysis’ exceedance probabilities do not detect dis- 

ase clusters that occur very localised and that manifest them- 

elves in the data as small-scale spatial variation, i.e., spatially un- 

orrelated overdispersion. 

Note that we have conducted the same analyses, using symp- 

oms data from rounds 2 and 4 of the online survey, which we 

ocument as an appendix ( Section A.3 ). Similarly as in the analysis 

ased on survey 3, the predictive means of the symptoms’ inci- 
8 
ence (borderline) significantly explain variation in the number of 

onfirmed cases. Note however that for survey round 2, these ef- 

ects are seen for a more restricted set of three-day periods within 

 21-day time span after the day of the respective surveys. As ex- 

lained in Section 2.1 , These weaker predictive performances are 

ikely due to a combination of the overlapping influenza season 

uring round 2 and a lower amount of participants from Wallo- 

ia, which may obstruct the detection of all spatial dynamics of 

OVID-19 symptoms in Belgium. Note that the symptoms data re- 

ect symptoms that were experienced during the week preced- 

ng the respective rounds of the survey. This period does not nec- 

ssarily reflect the moment of the symptoms’ onsets, which may 

ave taken place earlier. Future studies will investigate how data 

f COVID-19 symptoms’ onsets can be optimally linked to data of 

onfirmed cases. 

One limitation of the current modelling framework, is that not 

ll high-risk areas in Fig. 6 could be detected by the symptoms data 

nalysis ( Fig. 4 ). We believe that this is at least partly due to a

onsiderably large amount of small-scale variation in virus trans- 

ission, such that our model is currently best at pinpointing clus- 

ers that are occurring on a moderately large scale. This might be 

xplained by the quarantine measures that obstruct typical trans- 

ission routes, such that infection mostly occurs very localised 

 Ganyani et al., 2020 ). However, the definition of small-scale spatial 

ariation is study-specific and depends on the spatial resolution 

f data; in order to develop COVID-19 monitoring tools, analysts 

ill need spatial information on finer scales than the municipality 

or postal code area) level. Another reason for the limited predic- 

ive capabilities of the symptoms data is that there might still be 

onsiderable overlap with other common illnesses that have simi- 

ar symptoms and occur in the same season, such as influenza or 

ollen allergy. Because of this, we might currently only detect sig- 

als in regions that are severely hit by COVID-19. Considering the 
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Table 4 

Sensitivity analysis: estimation results. 

Effect Parameter Estimate 95% credible interval 

Symptoms data 

Intercept α0 −1.6094 [ −1.7971, −1.4197] 

single α1 −0.0550 [ −0.0825, −0.0277] 

agecat 1 α2 0.1771 [0.1455,0.2088] 

agecat 2 α3 −0.0942 [ −0.1284, −0.0599] 

agecat 3 α4 −0.6692 [ −0.7334, −0.6056] 

male α5 −0.1009 [ −0.1573, −0.0448] 

agecat 1 
∗male α6 0.0731 [0.0117,0.1348] 

agecat 2 
∗male α7 0.0934 [0.0289,0.1582] 

agecat 3 
∗male α8 0.0113 [ −0.0890,0.1114] 

st. dev. σ 1 0.0943 [0.0730,0.1188] 

control par. λ1 0.9844 [0.9301,0.9996] 

DIC – 22863.23 –

WAIC – 22865.60 –

Covid data 

Intercept β0 −0.2901 [ −0.3816, −0.2013] ̂ P (Y i = 1) s β1 0.2005 [0.1156,0.2827] 

st. dev. σ 2 0.8673 [0.7289,1.0195] 

control par. λ2 0.1678 [0.0594,0.3423] 

DIC – 2832.79 –

WAIC – 2763.75 –
bjective to use online surveys in large-scale COVID-19 monitor- 

ng, this prompts the need for more research into symptoms def- 

nitions, particularly when information on their incidence is col- 

ected through self-reporting. Furthermore, similarly to the previ- 

us conclusions with respect to rounds 2 of the survey, the rela- 

ively small sample sizes in the southern part of Belgium for the 

ymptoms data likely hamper the detection of high-incidence areas 

n the analysis of round 3 as well. This highlights the need for in-

estments in monitoring tools, and promotional campaigns to en- 

age the general public throughout the whole region to participate 

n these online surveys, in combination with such other measures 

s, for example, tracing strategies. 

With respect to demographic heterogeneity in typical COVID- 

9 symptoms, the analysis results report the lowest symptoms’ in- 

idence for elderly, while symptoms occur mostly among persons 

etween 25 and 44 years old, especially females with at least one 

dditional household member. These differences might be a result 

f variation in the social distancing behaviour between age groups. 

reliminary analyses of contact behaviour, based on the online sur- 

ey data (not shown), suggest that Belgian elderly started to en- 

age in social distancing significantly sooner than younger indi- 

iduals during the COVID-19 outbreak; among individuals who are 

ounger than 65 years, those younger than 25 are suggested to be 

he slowest to adapt to social distancing measures. A plausible rea- 

on why the latter is not reflected in the symptoms data analysis 

esults, is that among COVID-19 patients, children and adolescents 

n general are less likely to experience typical COVID-19 symptoms 

 Dong et al., 2020 ). 

This study can be improved by investigating the outcomes 

patio-temporally. However, the correct extraction of the specific 

ay of the symptoms’ onset from the online survey data should be 

ndertaken with care and will be investigated in the future. We 

ave therefore analysed symptoms data that were aggregated in 

ime. Moreover, we plan to develop a joint modelling framework in 

hich we simultaneously model symptoms and confirmed cases, 

.g., by extending correlated random-effects models proposed by 

eyens et al. (2016) . This will allow us to exploit spatial depen- 

ence that is likely to occur between symptoms’ incidence and the 

onfirmed cases’ disease risk. This can improve the current two- 

tep approach where we use model-based symptom predictions 

s a plug-in covariate to model the spatial dynamics of the con- 

rmed cases’ disease risk. Furthermore, this modelling framework 

ill allow us to optimally model uncertainty in the symptoms’ in- 

idence predictions, which is now left unaccounted for when using 

hese as a covariate in the covid data analysis. Ultimately, our goal 

s to develop a model that forecasts spatio-temporal dynamics in 

OVID-19 incidence, based on self-reporting of symptoms in addi- 

ion to other data sources, such as absenteeism, mobility of indi- 

iduals, etc., to act as an early warning system for surges in disease 

isk. 
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ppendix A 

1. Sensitivity analysis 

In the sensitivity analysis ( Figure 8, 9, 10 and 11 ; Table 4 ), we

efit the Leroux models, using a Gamma(1, 0.0 0 05) prior instead 

f a PC prior for the precision parameters of the random effects 

erm, and logit( λ) ~ N (0, 10) instead of logit( λ) ~ beta(1, 1) for the

ontrol parameter. 

2. Postal code area analysis 

In the postal code area analysis, we analyse the symptoms data 

ith a Leroux model, but at the postal code area level. The postal 

ode area is a subdivision of a municipality, such that each mu- 

icipality i = 1 , . . . , N, with N = 589 , consists of N i postal code ar-

as. We define Y as a binary variable that takes a value 1 when

https://doi.org/10.13039/501100011878
https://doi.org/10.13039/501100007601
https://epistat.wiv-isp.be/covid/
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Fig. 8. Sensitivity analysis - Leroux model: predicted probabilities for a citizen to experience at least 1 of 4 typical COVID-19 symptoms per municipality. 

Fig. 9. Sensitivity analysis - Leroux model: exceedance probabilities per municipality for the predicted probability for a citizen to experience at least 1 of 4 typical COVID-19 

symptoms, with threshold = 0 . 148 . 

10 
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Fig. 10. Sensitivity analysis - Leroux model: predicted COVID-19 relative risk per municipality, based on data of confirmed cases between April 7 and April 9, 2020. 

Fig. 11. Sensitivity analysis - Leroux model: exceedance probabilities for the relative risk per municipality, based on data of confirmed cases between April 7 and April 9, 

2020, with relative risk threshold = 1 . 5 . 

11 
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Fig. 12. Postal code area analysis - Leroux model: predicted probabilities for a citizen to experience at least 1 of 4 typical COVID-19 symptoms per postal code area. 

Fig. 13. Postal code area analysis - Leroux model: exceedance probabilities per postal code area for the predicted probability for a citizen to experience at least 1 of 4 typical 

COVID-19 symptoms, with threshold = 0 . 149 . 

12 
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Fig. 14. Postal code area analysis - Leroux model: predicted COVID-19 relative risk per municipality, based on data of confirmed cases between April 7 and April 9, 2020. 

The model includes symptoms’ incidence predictions, based on the postal code area analysis of the symptoms data, which were aggregated within the municipality level. 

Fig. 15. Postal code area analysis - Leroux model: exceedance probabilities for the relative risk per municipality, based on data of confirmed cases between April 7 and April 

9, 2020, with relative risk threshold = 1 . 5 . The model includes symptoms’ incidence predictions, based on the postal code area analysis of the symptoms data, which were 

aggregated within the municipality level. 

13 
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Table 5 

Estimation results. 

Effect Parameter Estimate 95% credible interval 

Symptoms data 

Intercept α0 −1.6038 [ −1.6892, −1.5152] 

single α1 −0.0552 [ −0.0826, −0.0279] 

agecat 1 α2 0.1787 [0.1472,0.2104] 

agecat 2 α3 −0.0919 [ −0.1261, −0.0577] 

agecat 3 α4 −0.6647 [ −0.7288, −0.6013] 

male α5 −0.0980 [ −0.1544, −0.0420] 

agecat 1 
∗male α6 0.0686 [0.0072,0.1302] 

agecat 2 
∗male α7 0.0882 [0.0237,0.1528] 

agecat 3 
∗male α8 0.0039 [ −0.0961,0.1039] 

st. dev. σ 1 0.0956 [0.0749,0.1189] 

control par. λ1 0.9784 [0.9219,0.9983] 

DIC – 30331.12 –

WAIC – 30333.03 –

Covid data 

Intercept β0 −0.2918 [ −0.3905, −0.1959] ̂ P (Y i = 1) s β1 0.1552 [0.0631,0.2418] 

st. dev. σ 2 0.9239 [0.7722,1.0966] 

control par. λ2 0.2161 [0.0830,0.4177] 

DIC – 2835.97 –

WAIC – 2767.52 –
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Table 6 

Estimation results for β1 , the effect of ̂ P (Y i = 1) s , obtained from the analysis via 

a Leroux model of 341,320 respondents in the second round of the online survey, 

when investigating different time periods of confirmed cases. An asterisk ( ∗) de- 

notes a significant effect on a 5% significance level. 

period estimate 95% credible interval no. cases 

March 24 - March 26 0.1182 [0.0356,0.2003] ∗ 3705 

March 25 - March 27 0.0701 [-0.0173,0.1563] 4016 

March 26 - March 28 0.0806 [-0.0142,0.1752] 3663 

March 27 - March 29 0.0906 [-0.0083,0.1891] 2987 

March 28 - March 30 0.1225 [0.0308,0.2130] ∗ 3206 

March 29 - March 31 0.1390 [0.0432,0.2334] ∗ 4039 

March 30 - April 1 0.1026 [0.0029,0.2011] ∗ 4848 

March 31 - April 2 0.1300 [0.0301,0.2285] ∗ 4565 

April 1 - April 3 0.1073 [0.0078,0.2036] ∗ 4567 

April 2 - April 4 0.1453 [0.0488,0.2384] ∗ 3989 

April 3 - April 5 0.1740 [0.0790,0.2652] ∗ 3205 

April 4 - April 6 0.1284 [0.0414,0.2122] ∗ 3415 

April 5 - April 7 0.1444 [0.0543,0.2313] ∗ 3977 

April 6 - April 8 0.1010 [0.0046,0.1926] ∗ 4881 

April 7 - April 9 0.1561 [0.0626,0.2470] ∗ 5183 

April 8 - April 10 0.1409 [0.0347,0.2448] ∗ 5990 

April 9 - April 11 0.1667 [0.0396,0.2933] ∗ 5446 

April 10 - April 12 0.0933 [-0.0547,0.2380] 3768 

April 11 - April 13 0.0534 [-0.1089,0.2091] 2020 

April 12 - April 14 0.1339 [-0.0149,0.2732] 2473 

April 13 - April 15 0.2118 [0.0773,0.3393] ∗ 3543 

Table 7 

Estimation results for β1 , the effect of ̂  P (Y i = 1) s , obtained from the analysis via a 

Leroux model of 217,877 respondents in the fourth round of the online survey, when 

investigating different time periods of confirmed cases. An asterisk ( ∗) denotes a 

significant effect on a 5% significance level.. 

period estimate 95% credible interval no. cases 

April 7 - April 9 0.2191 [0.1331,0.3035] ∗ 5183 

April 8 - April 10 0.2309 [0.1342,0.3260] ∗ 5990 

April 9 - April 11 0.2267 [0.1040,0.3470] ∗ 5446 

April 10 - April 12 0.1942 [0.0502,0.3328] ∗ 3768 

April 11 - April 13 0.1812 [0.0281,0.3299] ∗ 2020 

April 12 - April 14 0.1726 [0.0288,0.3087] ∗ 2473 

April 13 - April 15 0.1691 [0.0274,0.3027] ∗ 3543 

April 14 - April 16 0.1668 [0.0322,0.2982] ∗ 4643 

April 15 - April 17 0.1862 [0.0589,0.3128] ∗ 4532 

April 16 - April 18 0.2051 [0.0801,0.3290] ∗ 3652 

April 17 - April 19 0.2992 [0.1682,0.4243] ∗ 2468 

April 18 - April 20 0.2871 [0.1581,0.4162] ∗ 2345 

April 19 - April 21 0.1886 [0.0694,0.3093] ∗ 2867 

April 20 - April 22 0.1784 [0.0666,0.2911] ∗ 3179 

April 21 - April 23 0.1717 [0.0509,0.2922] ∗ 2893 

April 22 - April 24 0.2316 [0.1023,0.3637] ∗ 2452 

April 23 - April 25 0.2716 [0.1315,0.4170] ∗ 2078 

April 24 - April 26 0.2620 [0.1166,0.4166] ∗ 1340 

April 25 - April 27 0.1553 [0.0196,0.3038] ∗ 1288 

April 26 - April 28 0.0233 [-0.0847,0.1406] 1448 

April 27 - April 29 0.0284 [-0.0810,0.1466] 1743 

A

d

4

R

A

A

A

B  
erson m = 1 , . . . , n l in postal code area l = 1 , . . . , N PC , with N PC =
133 , experienced at least one of the most typical symptoms. From 

he analysis of these data we calculate symptoms’ incidences at the 

ostal code area level, which we subsequently aggregate within the 

unicipality level. These are used as a covariate in a Leroux model 

or the analysis of the covid data, which are available on the mu- 

icipality level. The methodology remains similar to the one intro- 

uced in the main text: 

For the symptoms data, the model structure is then defined by 

 (Y lm 

= 1) = expit (α0 + α1 single lm 

+ α2 agecat 1 lm 

+ α3 agecat 2 lm 

+ α4 agecat 3 lm 

+ α5 male lm 

+ α6 agecat 1 lm 

∗ male lm 

+ α7 agecat 2 lm 

∗ male lm 

+ α8 agecat 3 lm 

∗ male lm 

+ z 1 l

ith the same parameter interpretations as presented in the main 

ext. We fit the Leroux model, such that 

z 1 ∼ MV N(0 , �1 ) , 

1 = σ1 [(1 − λ1 ) I N PC 
+ λ1 �1 ) 

−1 ] , 

gain with the same parameter interpretations as given in the 

ain text. The probability of a municipality’s inhabitant to expe- 

ience at least 1 typical COVID-19 symptom is calculated as, 

 

 (Y i = 1) = 

∑ N i 
l=1 ̂

 P (Y l. = 1) 

N i 

, 

ith 

̂ P (Y l. = 1) the predictive mean of the symptoms’ incidence for 

ostal code area l . We include ̂ P (Y i = 1) again in the linear predic-

or in its standardised form, ̂ P (Y i = 1) s . 

For the covid data, we fit a Leroux Poisson model with the same 

arametrisation as presented in the main text, 

 i ∼ Poisson (E i R i ) , 

R i = exp [ β0 + β1 ̂
 P (Y i = 1) s + z 2 i ] , 

ith the Leroux residual term �2 , σ 2 , λ2 , and �2 instead of resp. 

1 , σ 1 , λ1 , and �1 . 

We use N (0, 10 0 0) as a prior for all covariate effects,

ogit( λ) ~ beta(1, 1) for the control parameters, and penalised com- 

lexity (PC) priors ( Simpson et al., 2017 ) for the precision pa- 

ameters of the random effects, where we again set σ0 = 5 and 

= 0 . 01 . Table 5 and Figure 12, 13, 14 and 15 present the analysis

esults, which lie very close to the ones obtained in the analysis in 

he main text. 
14 
3. Analyses of rounds 2 and 4 

Table 6 and 7 depict estimation results with regards to the pre- 

ictive ability of the symptoms’ incidences, based on rounds 2 and 

 of the online survey. 
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