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Abstract

Miz1 is a zinc finger transcription factor with an N-terminal POZ domain. Complexes with Myc, Bcl-6 or Gfi-1 repress
expression of genes like Cdkn2b (p15Ink4) or Cdkn1a (p21Cip1). The role of Miz1 in normal mammary gland development has
not been addressed so far. Conditional knockout of the Miz1 POZ domain in luminal cells during pregnancy caused a
lactation defect with a transient reduction of glandular tissue, reduced proliferation and attenuated differentiation. This was
recapitulated in vitro using mouse mammary gland derived HC11 cells. Further analysis revealed decreased Stat5 activity in
Miz1DPOZ mammary glands and an attenuated expression of Stat5 targets. Gene expression of the Prolactin receptor (PrlR)
and ErbB4, both critical for Stat5 phosphorylation (pStat5) or pStat5 nuclear translocation, was decreased in Miz1DPOZ
females. Microarray, ChIP-Seq and gene set enrichment analysis revealed a down-regulation of Miz1 target genes being
involved in vesicular transport processes. Our data suggest that deranged intracellular transport and localization of PrlR and
ErbB4 disrupt the Stat5 signalling pathway in mutant glands and cause the observed lactation phenotype.
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Introduction

Mammary gland development occurs predominantly after birth

when the mammary gland anlage starts to invade the fat pad as a

tree of growing and branching ducts [1]. At this stage the end of

the ducts exhibit teardrop shaped structures called terminal end

buds (TEBs), which disappear when the adult virgin gland has

been fully developed. The duct epithelium consists of luminal and

myoepithelial basal cells. TEBs contain as an outermost layer the

cap cells and as 6–10 innermost layers the so called body cells.

High proliferation and balanced apoptosis in the TEB compart-

ment drive the development of the mammary gland ductal tree

from puberty to the adult virgin state. During pregnancy,

hormones like estrogen, progesterone or prolactin induce a further

expansion of the duct tissue as well as the formation of alveoli

which almost completely displace the adipose tissue of the fat pad.

In late pregnancy the synthesis of milk proteins is initiated. After

weaning, the glandular tissue involutes by apoptosis and autoph-

agy, leading to a virgin-like structure of the mammary gland.

The transcription factor Myc is important for the growth of

tissues and organisms, either by controlling cell number or cell size

[2,3] and plays a pivotal role in a variety of cancers including

breast cancer [4]. During pregnancy the mammary gland

undergoes dramatic changes including an increase of size [5]. A

conditional knockout of Myc in mammary gland epithelial cells

during pregnancy delays the alveolar development by attenuation

of cell proliferation and reduced milk production [6]. In contrast,

overexpression of Myc between D12.5 to D15.5 induces a

precocious lobuloalveolar development and lactation, leading to

a premature mammary gland involution. This accelerated

mammary gland development during pregnancy is strongly

correlated with an activation of Signal Transducer and Activator

of Transcription 5 (Stat5) induced by down-regulation of the Stat5

inhibitor caveolin-1 [7]. Stat5, originally described as mammary

gland factor (MGF) [8], is a central regulator in mammary gland

development, being mainly activated by Janus Kinase 2 (Jak2).

Jak2 in turn integrates signals from different receptors like the

growth hormone receptor, the estrogen receptor or the prolactin

receptor, the latter being the most important one during

pregnancy and lactation [5,9]. Stat5 is expressed in the two

homologous variants Stat5a and Stat5b, with Stat5a providing

70% of total Stat5 in the mammary gland [10]. Recently, it was

suggested that the particular functions during mammary gland

development depend on the Stat5 concentration [11]. Deletion of

the largely redundant Stat5a/b variants during different stages of

mouse mammary gland development prevents proper prolifera-

tion, differentiation and lobuloalveolar development during

pregnancy and lactation [12]. In contrast, ectopic expression of

Stat5 in mammary gland epithelial cells induces alveolar fate

commitment and lactogenesis [13,14].

The transcription factor Miz1 (Myc-interacting zinc finger

protein 1; Zbtb17) contains 13 zinc finger motifs and a so called

POZ domain (poxvirus zinc finger protein) at the N-terminus [15].

Miz1 was originally identified as a Myc binding protein, forming a
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repressive Myc/Miz1 complex [16,17]. This has been shown for

genes like Cdkn2b (encoding p15Ink4b), Cdkn1a (encoding

p21Cip1), Cdkn1c (encoding p57Kip2), Mxd4 (encoding Mad4) or

Itgb1 (encoding integrin ß1) [18–21]. A constitutive knockout of

Miz1 is lethal at day 7.5 of embryonic development [22]. A

conditional knockout of the Miz1 POZ domain in keratinocytes

leads to a complex hair follicle phenotype [23] and to attenuated

tumorigenesis in a skin tumor model due to p21cip1 deregulation

[24]. In the hematopoetic system, deletion of the Miz1 POZ

domain disrupts B- and T-cell development by down-regulating

the IL-7 signalling pathway, most likely due to an increased

expression of Socs1, an inhibitor of the Jak2/Stat5 pathway [25–

27]. In these studies the function of Miz1 seems to be Myc-

independent.

Here, we provide the first study of Miz1 function in the

mammary gland epithelium. We used whey acidic protein-(Wap)-

Cre recombinase to knock out the Miz1 POZ domain in luminal

cells of the mammary gland during pregnancy. We observed a

reduction of glandular tissue during early lactation with a

corresponding lactation defect, based on reduced proliferation

and attenuated differentiation. In vitro acinar reconstitution and

differentiation assays revealed impaired proliferation, differentia-

tion and morphogenetic capabilities in HC11 cells after Miz1

down-regulation. We provide evidence that deletion of Miz1 has

pleiotropic effects on vesicular transport processes. Our results

suggest that Miz1 deficiency leads to a defective prolactin receptor

and ErbB4 trafficking and consequently to a perturbed activation

of Stat5. In turn, this may largely account for the defects observed

in Miz1DPOZ mammary glands.

Materials and Methods

Mice, Genotyping and Pup Weights
Wap-Cre animals [28] were crossed with Miz1lox/lox mice [23] in

order to conditionally knockout the POZ domain of Miz1 in

luminal mammary epithelial cells during late pregnancy and

lactation (Fig. S2). Prior to mating, both lines were backcrossed six

generations to a 129S2/SvHsd background. In the present study,

Wap-Cre+ Miz1+/+ animals are referred to as control (Ctr) and

Wap-Cre+Mizlox/lox asMiz1DPOZ. Experiments with mice followed

the German Animal Protection Law (Tierschutzgesetz) and were

approved by the experimental animal local authorities (Regier-

ungspraesidium Giessen). Project reference number: V54-19c20/

15cMR20/10 Nr. A 1/2010. Genotyping of the animals was

performed as described before [23,24] using the REDExtract-N-

AmpTM Tissue PCR Kit (XNATR; Sigma). Primer sequences are

available in Table S1. Pup weights represented in Fig. 2 were

measured every 3 days. The number of progeny was standardized

to 6 pups after birth and for each genotype pups from 6 mothers

were monitored. Wap-Cre females were mated at 65 dpp for 1st

pregnancy/lactation analysis and 2 weeks after completion of the

1st lactation for the study of the 2nd pregnancy/lactation. For

pregnancy samples, mating plugs were checked every day and

mammary dissection was performed at the indicated time points.

Histology, Whole-mounts, Fat Quantification and Lipid
Staining
9th inguinal mammary glands [29] were dissected and fixed

overnight at 4uC using freshly prepared 3.7% paraformaldehyde

(PFA) in PBS. Samples were stored in 70% Ethanol at 4uC until

paraffin embedding. H&E and immunostainings were performed

in 3–4 mm sections using standard protocols. For whole-mount

staining, 4th inguinal mammary glands were spread on a glass

slide, fixed in Carnoy’s solution for 4 hours at room temperature,

hydrated, stained in carmine alum overnight, dehydrated and

cleared in xylene [29]. The percentage of fat was calculated by

estimating the area occupied by fat divided by the total mammary

area on 10x H&E stained sections using ImageJ 1.43u software. 10

pictures per animal were quantified. Sudan III lipid staining was

performed on lactation day 6 cryosections (1st pregnancy)

following standard protocols. Briefly, sections were fixed in 4%

PFA for 30 minutes at 4uC, washed with 50% Ethanol and

incubated with a 0.3% Sudan III-solution in 70% ethanol for 25

minutes. Then, sections were washed again with 50% Ethanol,

counterstained with H&E and mounted in Mowiol.

Immunohistochemistry and Immunofluorescence
3.7% PFA-fixed, paraffin-embedded tissue sections were

mounted on polylysine slides, de-waxed and stained using standard

procedures. Sections were incubated overnight at 4uC with the

following primary antibodies against: Miz1 [30], Ki67 (VP-K452,

Vector Laboratories; 1:100 for in vivo and 1:50 for acini stainings),

PSTAT5 (71-6900; Tyr694; Invitrogen; 1:25), Myc (ab32072;

Abcam; 1:100), Cre (kindly provided by Dr. Christoph Kellen-

donk; 1:1500), prolactin receptor (M170; Santa Cruz; 1:150),

ErbB4 (C-18; Santa Cruz; 1: 200), Cleaved Caspase-3 (9664; Cell

Signalling; 1:200 for in vivo and 1:100 for acini stainings) and

rabbit anti-milk serum (kindly provided by Prof. Nancy E. Hynes;

1:5000). Antigen retrieval was performed with either 10 mM Tris/

1 mM EDTA (pH 9) or 10 mM citrate buffer (pH 6) for 15–30

minutes on a steamer (except for the fluorescent milk proteins and

the prolactin receptor stainings where no antigen retrieval is

required). 3-amino-9-ethylcarbazole (AEC) Substrate Kit (00-

2007; Invitrogen) was used for all immunoperoxidase stainings.

For Miz1 staining, the Mouse on Mouse Immunodetection Kit

(BMK-2202; Vector Laboratories) was utilized following manu-

facturer’s instructions. For immunofluorescence, Alexa Fluor

secondary antibodies (A11008, A21235, A11010; Molecular

Probes) were used. Nuclei were visualized with 0.7 mg/ml Hoechst

33342 (14533; Sigma) and 10 mg/ml Phalloidin-TRITC (P1951;

Sigma) were used for actin filaments staining in acini. Light

microscopy pictures were taken with a Leitz Diaplan microscope

equipped with a MicroPublisher 3.3 RTV camera (Q-Imaging)

and immunofluorescence pictures were captured with a BX61

Olympus microscope assembled with a F-View digital camera

(Soft Imaging System).

Quantification of Ki67 Staining and TUNEL Assay
The percentage of Ki67 positive cells on lactation day 6 (1st

pregnancy) was calculated counting Ki67 positive cells among all

epithelial cells in representative 25x pictures (more than 1000 cells

per animal were scored). The TUNEL assay was performed

according to manufacturer’s instructions (DeadEnd Fluorometric

TUNEL System, Promega). TUNEL positive cells, rare in both Ctr

and Miz1DPOZ animals, were quantified in 10 pictures per animal

(20x magnification) on lactation day 1 and 6 samples (1st

pregnancy). ImageJ 1.43 u software was used for both quantifi-

cations.

Ultrastructural Analysis
For transmission electron microscopy tissue was fixed in a

mixture of 2.5% glutaraldehyde, 2.5% paraformaldehyde and

0.05% picric acid in 67 mM cacodylate buffer (pH 7.4) according

to Ito und Karnovsky [31]. Postfixation was performed in 1%

osmium tetroxide followed by an overnight incubation with 0.3%

uranyl acetate dissolved in 50 mM maleate buffer (pH 5.0).

Samples were embedded in Epon according to standard proce-
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dures. Thin sections were contrasted with lead citrate and

examined with a Zeiss EM 109S electron microscope.

Western Blotting
Snap frozen thoracic mammary glands were homogenized using

the Ultra Turrax T25 Homogenizer (Ika, Staufen, Germany) and

lysed in ice cold RIPA buffer (150 mM sodium chloride, 1%

Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS and 50 mM

Tris pH 8) containing protease (P8340; Sigma) and phosphatase

(P5726; Sigma) inhibitor cocktails and benzonase nuclease (70664-

3; Novagen). After overnight incubation of the samples at 4uC,
lysates were centrifuged for 15 minutes/12000 rpm/4uC to

remove cellular debris and supernatants were subsequently stored

at 220uC. Protein concentrations were measured by the BCA

protein assay (B9643; Sigma) and 20–60 mg of samples were

resolved by SDS-PAGE (8–15% gels). The primary antibodies

used were the following: Miz1 (10E2; 1:400), Actin (A2103, Sigma;

1:1000), rabbit anti-milk serum (1:5000), b-Casein (S-15, Santa

Cruz; 1:200), a-Tubulin (62204, Thermo Scientific; 1:5000),

Stat5a/b (C-17, Santa Cruz; 1:250), pStat5a/b (#05–495,

Tyr694/699, Millipore; 1:500) and Cytokeratin 18 (C-04, Abcam;

1:1000). All primary antibody incubations were performed at 4uC
overnight except for the rabbit anti-milk serum, which was done at

room temperature for 1 hour [32]. The latter conditions were also

applied for all HRP-conjugated secondary antibody (Biorad)

incubations and the bound antibodies were visualized using the

SuperSignal West Dura Substrate (#34075; Thermo Scientific).

Bands were scanned from the films and intensities were measured

with ImageJ [33]. Values corrected for loading were expressed as

fold change of a control condition arbitrarily set to 1.

RNA Isolation, Semi-quantitative and Quantitative PCR
Thoracic mammary glands were dissected, cut in small pieces

(maximum 0.5 cm in all dimensions) and stored in RNAlater

(R0901; Sigma) till homogenization in TRI Reagent (T9424;

Sigma). RNA was extracted, DNase treated (740963; Macherey-

Nagel) and cleaned-up using a NucleoSpin RNA column-based kit

(740948; Macherey-Nagel) according to manufacturer’s instruc-

tions. 1 mg of total RNA was reverse transcribed with the

RevertAid First Strand cDNA Synthesis Kit (#K1622; Thermo

Scientific) using random hexamer primers. Semi-quantitative PCR

was performed with a Personal Cycler (Biometra, Göttingen,

Germany) following standard procedures. For quantitative PCR,

SYBR Green-based real-time polymerase chain reactions

(AB1167; Thermo Scientific) were run in triplicate using a

Mx3005P qPCR System (Stratagene, Heidelberg, Germany).

Gene expression was normalized to GAPDH and analysed by

the comparative cycle threshold method (DDCt). For each assay,

gene expression in one of the Ctr animals was arbitrarily set to 1

and the relative fold change expression was calculated for the rest.

‘No template’ controls (NTC) were included in each run and

product specificity was verified by dissociation curve analysis. All

primer sequences are available in Table S1.

Transfection and Retroviral Infection
Phoenix packaging cells (Orbigen, San Diego, CA) were

transfected with 30 mg of shscr or shMiz1 expression vectors [34]

by the calcium phosphate method using standard protocols. HC11

cells were infected with retroviral supernatants in the presence of

4 mg/ml of polybrene and then cells were selected with 2 mg/ml of

puromycin. Histone H2B-GFP infected HC11 cells were used to

estimate the efficiency of infection and to determine the end of the

antibiotic selection.

HC11 Cell Differentiation and Acini Formation
HC11 mammary epithelial cells [35] were routinely cultured in

complete growth medium: RPMI 1640, 10% FBS, 60 mg/ml

gentamicin, 2 mM glutamine (all from PAA), 20 mg/ml insulin

from bovine pancreas (I6634; Sigma) and 10 ng/ml of EGF

(E4127; Sigma). To induce competence to differentiate, 2-day

confluent HC11 cells were incubated for 48 hours in medium

without EGF and with low serum (2%). To induce differentiation,

competent cells were incubated with DIP medium based on RPMI

1640 and supplemented with 2% FBS, 60 mg/ml gentamicin,

2 mM glutamine, 10 mg/ml insulin, 1 mM dexamethasone

(D4902; Sigma) and 5 mg/ml of prolactin from sheep pituitary

gland (L6520; Sigma).

Three-dimensional acini forming culture of HC11 cells was

performed as described elsewhere [36–38]. Briefly, 24-well plates

(662160; Greiner Bio-One) coated with 40 ml Cultrex basement

membrane extract (BME) Growth Factor Reduced (15.76 mg/ml

batch; Trevigen) per well on sterilized 13 mm coverslips were

used. Coated coverslips were allowed to solidify for at least 30

minutes at 37uC. HC11 cells were seeded at a concentration of

25.000 cells/ml in 3D medium: RPMI 1640 supplemented with

2% FBS, 60 mg/ml gentamicin, 2 mM glutamine, 10 mg/ml

insulin, 5 ng/ml of EGF and 2 mg/ml of puromycin (P8833;

Sigma) for selection containing 2% Cultrex. 3D medium was

replaced every 4 days using a total volume of 1 ml per well. Images

were captured using a confocal microscope TCS SP2 AOBS

(Leica, Wetzlar, Germany) and analysed with LAS AF lite

freeware (Leica Microsystems).

Microarray Analysis
RNA integrity (RQI.9 in all samples) and concentration were

assessed with the Experion automated electrophoresis station (Bio-

Rad). A mouse genome Agilent-028005 array was used for the

analysis of gene expression of 1st pregnancy lactation day 6 in vivo

samples (n = 4 per genotype). The resulting intensity values for the

red and green channels were normalized using the lowest method

within the limma package in R/BioConductor [39,40]. Regulated

probes were selected on the basis that the logarithmic (base 2)

average intensity value (A-Value) was$5. Array data are available

in ArrayExpress under the accession code E-MTAB-1718.

ChIP-Seq and Gene Set Enrichment Analysis (GSEA)
10 mg of Miz1 antibody (Santa Cruz, C-19) were incubated with

100 ml Protein G Dynabeads (Invitrogen) in a volume of 1 ml PBS

+5 mg/ml BSA at 4uC on a rotating wheel. The beads were

collected on a magnetic device and resuspended in 100 ml PBS +
5 mg/ml BSA per ml chromatin. The coupled antibody was

incubated with the chromatin from 56107 MDA-MB-231 cells at

4uC on a rotating wheel o/n. The beads were successively washed

with 1 ml Sonication buffer: 50 mM Hepes pH 7.9, 140 mM

NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate,

0.1% SDS, 0.25 mM PMSF, protease inhibitor cocktail (Sigma);

with 1 ml high salt buffer (sonication buffer with 500 mM NaCl)

and with 1 ml LiCl wash buffer: 20 mM Tris, pH 8.0, 1 mM

EDTA, 250 mM LiCl, 0.5% NP-40, 0.5% Nadeoxycholate,

0.25 mM PMSF and protease inhibitor cocktail (Sigma). Finally,

the chromatin was eluted with 50 mM Tris, pH 8.0, 1 mM

EDTA, 1% SDS, 50 mM NaHCO3 at 65uC for 30 minutes. The

eluted chromatin was decrosslinked, Proteinase K digested and

EtOH precipitated according to standard procedures. The

precipitated DNA was resuspended in 30 ml H2O and used for

Illumina library preparation.

After end repairing, an A-nucleotide was added to the 39end of

the input and precipitated DNA. Subsequently, Illumina adaptors
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were ligated and the DNA-mixture was purified from a 1%

agarose gel (175–225 bp size fraction). After DNA extraction (gel

extraction Kit, Qiagen), the library was enriched by 18 PCR cycles

and controlled and quantified with the Experion-system (BioRad).

36 bases input and Miz1-ChIP libraries were sequenced on an

Illumina GAIIx sequencer. Only reads passing the internal

Illumina raw data-filter were aligned to the precompiled human

reference genome with BOWTIE [41]. Peaks were called by

MACS [42] using data from the input sample as control and

determining a p-value of 21010.

We generated a gene set consisting of the 100 direct target

promoters with the highest tag counts in their respective peak.

This gene set was used for the GSEA analysis which was

performed using default settings.

Statistics
All comparisons between Ctr and Miz1DPOZ animals were

analysed by two-tailed Student9s t-tests. A two-way ANOVA

followed by Bonferroni’s post-hoc test for multiple pairwise

comparisons was employed for pup weight analysis. All statistical

tests were performed with Prism 5.0 software (GraphPad). P-values:

NS (p.0.05); * (p = 0.01–0.05); ** (p = 0.00120.01); *** (p,0.001).

Data are shown as mean 6 s.d.

Results

Miz1 Expression in Mammary Gland Epithelial Cells
Immunohistochemical stainings of Miz1 in the virgin mammary

gland, during pregnancy and involution, detected nuclear Miz1 in

the cells of the mammary gland ducts and alveoli, while during

lactation also the cytoplasm was stained (Fig. 1A). When analysed

by Western blots, Miz1 was hardly detected in virgin tissue and in

glands from day 18.5 of pregnancy. In contrast, there was a strong

increase of Miz1 expression related to the transition from

pregnancy to lactation and Miz1 levels stayed elevated through

the lactation period (Fig. 1B and unpublished data for lactation

day 1 and 10). In turn, the transition from lactation to involution

was correlated with a decrease of Miz1 back to levels observed

during pregnancy or in the virgin gland (Fig. 1B).

In contrast, Myc expression has been shown to be high in early

pregnancy until day 12.5 of gestation and decreasing to baseline

levels until day 18.5 [7]. Our own immunohistochemical analysis

confirms this notion (Fig. S1). Taken together, our data show that

lactation is associated with a high expression of Miz1 and that the

expression of Myc is regulated in an opposing trend.

Generation of Mice Carrying a Deficient Allele of the Miz1
Gene
In order to generate a Miz1 loss-of-function mutant in luminal

mammary gland cells, we used a conditional knockout mouse

model, in which exons 3 and 4 of Zbtb17, encoding the Miz1 POZ

domain, are flanked by loxP sites (Fig. S2A) [23,25]. These mice

were crossed to a transgenic mouse strain expressing the Cre

recombinase under the promoter of the whey acidic protein (Wap)

[28]. Wap-Cre is expressed in the mammary gland epithelium after

day 14.5 of pregnancy [6]. In line with this notion, a PCR

detecting the recombined Miz1 gene revealed a weak first signal at

day 14.5 which increased during further pregnancy and lactation

(Fig. S2B). Moreover, we observed Cre expression at day 18.5 of

pregnancy and day 1 of lactation by an immunohistochemical

approach (Fig. S2C and D). At this time point Cre recombinase

was visible in almost all nuclei of the luminal cells of the glandular

tissue.

Miz1 Mutant Mothers Feature a Lactation Defect
To test whether female mice with a homozygous deletion of the

Miz1 POZ domain (hereafter referred to asMiz1DPOZ) in luminal

mammary gland epithelial cells have a lactation defect, we

monitored the weight of newborn pups [43]. The number of

pups per mother was set to six at birth and the offspring from six

mothers per genotype were analysed (n= 6). On day three

postpartum (3 pp) no significant difference in the body weight of

the pups was observed (p.0.05), but at day 6 pp the weight of the

pups fostered by Miz1DPOZ mothers was significantly reduced

(p,0.01) and this difference increased until day 24 pp (p,0.001;

Fig. 2A and B). Histology of mammary glands from day 6 of

lactation revealed a higher proportion of adipose tissue in

Miz1DPOZ mothers compared to control animals (Fig. 2C and

Fig. S3). This was also observed during a second pregnancy and

was further confirmed by whole mount preparations, which

exhibited a less dense package of alveoli in Miz1DPOZ animals

(Fig. 2C and D). Using a morphometric approach we measured

two to four percent of adipose tissue in wildtype mothers on

lactation day 6 versus about 15% in Miz1 mutant mothers (1st

pregnancy: p= 0.021/n=4; 2nd pregnancy: p= 0.041/n=3)

(Fig. 2E). In contrast, histology of lactation day 10 control

mammary glands did not differ from Miz1DPOZ at this time point

(Fig. S3), indicating that deletion of the Miz1 POZ domain caused

a delay in mammary gland development during late pregnancy

and early lactation.

Next, we analysed the proliferation of mammary gland

epithelial cells by immunostaining for Ki67 on lactation day 6.

There was a reduction in the number of Ki67 positive cells in

Miz1DPOZ animals (Fig. 3A). At this time point the Ki67 labeling

index was almost three times lower in MizDPOZ mice compared

with control animals (Fig. 3B/up). The Ki67 mRNA level was also

reduced in Miz1DPOZ animals, but the decrease was not

statistically significant (p = 0.0575; Fig. 3B/down). The expression

of Cdkn1a and Myc was not significantly changed (Fig. 3C). This

suggests that the delay in mammary gland development during

early lactation is caused by a reduced proliferation of the epithelial

cells largely independent of Myc and p21cip1. To further elucidate

whether the transient reduction of the mammary gland tissue

depends on a higher rate of apoptosis we performed TUNEL

assays on day 1 and 6 of lactation. At both time points, TUNEL

positive cells were rare and their frequency was not different

between wildtype and Miz1DPOZ animals (Fig. 3D). These data

were confirmed by immunohistochemical staining of cleaved

caspase-3 (data not shown).

To confirm the role of Miz1 on the proliferation of mammary

gland epithelial cells and to test for its impact on alveologenesis in

a cell-autonomous manner, we used the mouse mammary gland

derived cell line HC11 [44]. We generated stably transfected

HC11 cells with expression vectors encoding either a scrambled

short hairpin RNA (shscr) or a Miz1 specific short hairpin RNA

(shMiz1) to knockdown Miz1 (Fig. 3F). We used these cells in an

in vitro acini morphogenesis assay [36–38]. While apoptosis,

measured as cleaved caspase-3 positive cells, was not affected by

Miz1 depletion (Fig. 3G), Ki67 positive cells were reduced

significantly on day 6 after seeding (Fig. 3H), the number of

nuclei per acinus was decreased on days 8 and 10 (Fig. 3I) and the

establishment of a lumen was delayed (data not shown). Taken

together, our data provide evidence that mammary gland

epithelial cells did not orderly proliferate without functional

Miz1, while apoptosis was unaffected.

Miz1 in the Mammary Gland
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Miz1DPOZ Animals Show Altered Differentiation of
Mammary Epithelial Cells
Although a reduction in mammary gland tissue of Miz1DPOZ

mothers is no longer visible on lactation day 10, the reduced pup

weight is not rescued but the difference between wildtype and

Miz1 mutant animals is even increasing. In order to identify genes

potentially regulated by Miz1 which could explain the observed

phenotype and to assess the relative expression of milk protein

genes, a genome-wide cDNA microarray was performed using

samples from control and Miz1DPOZ animals obtained at day 6 of

lactation (n = 4 for each genotype; Fig. S4A and B). Here, 35% of

all regulated genes were up-regulated inMiz1DPOZ animals, while

in approximately 65% the gene expression was down-regulated,

indicating that Miz1 is predominantly transactivating genes or

enhancing gene activity indirectly. Different casein genes (Csn1s1,

Csn1s2a, Csn1s2b, Csn2, Csn3) and the whey acidic protein gene

(Wap) were up to 2.5fold down-regulated in Miz1DPOZ animals

(Fig. S4B). This could be confirmed by quantitative RT-PCR

which revealed a twofold down-regulation of the genes encoding

a-casein (p,0.001), ß-casein (p,0.001) and whey acidic protein

(p,0.01) (Fig. 4A). Western blots using an antibody against ß-

casein exhibited a reduced content of this milk protein in

mammary gland tissue from Miz1DPOZ animals (Fig. 4B). In

addition, less milk protein was present in the alveoli from the

mutant animals compared with control animals (Fig. 4C) on

sections of lactation day 6 mammary glands, stained with an

antibody against mouse milk proteins [45]. Furthermore, fat

droplets in the lumina of the alveoli from Miz1DPOZ mothers

coalesced to larger aggregates which were not observed in control

animals to this extent (Fig. 4D). A similar phenotype has been

reported previously [46] where the lipid droplet defect was

attributed to an impaired calcium transport caused by a

deregulation of calcium transporter genes including Camk2b and

Ano4 (down-regulated), and Clca1 and Clca2 (upregulated). Of note,

gene expression of these four proteins was deregulated in the same

manner in our cDNA microarray analysis (Clca1: 4.6-fold up;

Figure 1. Miz1 expression in the mammary gland epithelium at different developmental stages. (A) Immunocytochemistry revealed a
nuclear expression of Miz1 in the virgin gland as well as during pregnancy and involution. During lactation also a cytoplasmic staining was observed
in addition to the nuclear stain. (B) Western blot analysis of Miz1 expression exhibited a strong Miz1 expression during lactation while the protein
could only occasionally be detected in virgin gland. Scale bar in A: 50 mm.
doi:10.1371/journal.pone.0089187.g001
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Clca2: 5.4-fold up; Camk2b: 3.8-fold down; Ano4: 1.6-fold down)

and this was further confirmed by quantitative RT-PCR (Fig.

S4C). In addition, a group of genes, usually expressed during an

immune response, was up-regulated (Fig. S4D). Similar results

were recently obtained in the lung, showing Miz1 as a suppressor

of inflammation [47–49].

To test whether the altered milk protein expression can also be

observed on a cellular basis, we again used the mouse mammary

Figure 2. Female mice with a Miz1DPOZ mammary gland exhibit a lactation defect. (A) Time course of the body weight of the offspring
from control (black, n = 6) and Miz1DPOZmothers (blue, n = 6). The number of pups per mother was set to 6 at birth. (B) Size differences in 24-day-old
pups did not depend on their gender. (C) Mammary glands from mothers of lactation day 6 were investigated by histology with H & E sections and
glands from mothers of lactation day 1 were analysed in whole mounts (D). Morphometric analysis of the adipose tissue content from H & E sections
(Lactation day 6) are shown in (E). Note that the difference in the ratio of glandular to adipose tissue is similar during the first and second
pregnancies. Scale bar in C: 500 mm.
doi:10.1371/journal.pone.0089187.g002
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Figure 3. Miz1 function on proliferation and apoptosis of mammary gland epithelial cells in vitro and in vivo. (A) Ki67 immunostaining
in control and Miz1DPOZ lactation day 6 mammary glands. (B) Ki67 labeling index (up) and quantitative RT-PCR (down) obtained from lactation day 6
samples. (C) The expression of potential proliferation regulators like Cdkn1a and Myc was measured by qRT-PCR. (D) The TUNEL assay was performed
on tissue from lactation day 1 and lactation day 6, respectively. Quantifications obtained from 20x pictures are shown (at least n = 3 per genotype and
time-point). (E) Representative confocal microscopy pictures of acinar structures formed 6, 8 and 10 days after seeding shscr and shMiz1 transfected
HC11 cells onto Cultrex-coated coverslips. Nuclei were stained with Hoechst (blue), actin filaments with Phalloidin-TRITC (red) and apoptotic cells by
cleaved Caspase-3 immunostaining (green). (F) Western Blot showing the knock-down of Miz1 in shMiz1 HC11 cells. Numbers indicated are fold
changes of band intensities obtained by densitometry (see Materials and Methods). Acinar cell apoptosis and proliferation were quantified by analysis
of cleaved caspase-3 (G) and Ki67 (H) positivity in double immunofluorescence confocal microscopy pictures. (I) Quantification of the number of
nuclei per acinus in shscr and shMiz1 transfected HC11 cells. Data from two independent experiments were merged and the total number of acini
analysed is indicated. See Materials and Methods for experimental details. Scale Bar in A: 50 mm; E: 25 mm.
doi:10.1371/journal.pone.0089187.g003

Miz1 in the Mammary Gland

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e89187



Figure 4. Differentiation of mammary gland epithelial cells in control (Ctr) and Miz1DPOZ tissue and in HC11 cells with reduced
levels of Miz1. (A) Gene expression of the milk proteins a-casein, ß-casein and whey acidic protein (Wap), measured by quantitative RT-PCR, in
control and Miz1DPOZ mammary gland tissue (DPOZ). (B) Immunoblot analysis for ß-casein from mice with the indicated phenotype. Each lane
represents an individual animal. (C) Immunostaining with an antibody against milk proteins in the acini from control and Miz1DPOZ mammary
glands. (D) Sudan III staining was performed on cryosections from lactating mammary glands of Ctr and MizDPOZ mice (n = 4 per genotype). Data
from A to D was obtained from lactation day 6 samples. (E) Time course of growth and differentiation as performed in the experiments with HC11
cells. EGF: epidermal growth factor; DIP: differentiation media containing dexamethasone, insulin and prolactin. Time points indicated correlate to the
time points in (G) and (H). (F) HC11 cells were stably transfected with scrambled short hairpin (sh) RNA (shscr), a Miz1 shRNA and a vector expressing
Miz1 as a positive control. The film was exposed 1 and 5 minutes, respectively. (G) PCR and (H) Western blots revealed a down-regulation of ß-casein
when Miz1 concentration is decreased. Numbers indicated in (B) and (H) are fold changes of band intensities obtained by densitometry (see Materials
and Methods). Scale Bar in C: 50 mm; D: 100 mm.
doi:10.1371/journal.pone.0089187.g004
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gland derived cell line HC11, which can undergo a limited

functional differentiation under appropriate hormonal stimulation

[35] (Fig. 4E). Experiments were performed with cells stably

transfected with a shscr or an shMiz1 expression vector [34] to

knock down Miz1 (Fig. 4F). shscr cells expressed Csn2 (encoding ß-

casein) mRNA in a time dependent manner after stimulating the

cells with prolactin (Fig. 4G). In contrast, Csn2 expression was

greatly reduced in shMiz1 cells (Fig. 4G) and the lower expression

of Csn2 mRNA resulted in a lower amount of ß-casein protein

(Fig. 4H). Taken together, a reduction in the levels of a functional

Miz1 protein led to a lower expression and synthesis of milk

proteins in luminal mammary gland cells and thus to a decreased

differentiation of mammary gland tissue.

Deficient STAT5 Function in the Mammary Gland of Miz1
Mutant Mice
Signal Transducer and Activator of Transcription (Stat) 5a and

5b have shown to be the key signalling molecules in proliferation,

differentiation and survival of mammary gland epithelial cells

[9,11,50]. We measured the expression of Stat5a/b by quantitative

RT–PCR and observed a slight but statistically not significant

decrease of the Stat5a/b mRNA in Miz1DPOZ mice (Fig. 5A).

However, in Western blots the Stat5 protein was less expressed in

Miz1DPOZ mammary glands compared to wildtype animals

(Fig. 5B). Stat5 is activated by phosphorylation either by Jak2,

associated with cytokine or hormone receptors like the prolactin

receptor, or directly by ErbB4 [9]. On lactation day 6,

phosphorylated Stat5 (pStat5) was decreased, both in regard to

the number of nuclei stained, as well as to the staining intensity,

using immunohistochemical stainings of mammary gland sections

from control and Miz1DPOZ animals (Fig. 5C). To test again

whether this can be confirmed in a cell-autonomous model, we

knocked-down Miz1 in HC11 cells and analysed Stat5 expression

and phosphorylation at different time points after addition of

prolactin. Although the amount of Stat5 was not as obviously

reduced as in vivo, phosphorylation was clearly decreased (Fig. 5D).

Taken together, these data show that the Stat5 amount and

phosphorylation were diminished in vivo and in vitro when func-

tional Miz1 was absent.

As shown in Fig. 5D, prolactin is a strong stimulator of Stat5

phophorylation in HC11 cells and this has also been described for

the mammary gland in the literature [50]. First, we tested whether

the expression of the prolactin receptor is altered in Miz1DPOZ
animals and found that its expression is about 2-fold reduced

compared to control mice (Fig. 5E and Fig. S4B). Next, we

analysed the expression of Socs1 (encoding Suppressor of cytokine

signalling 1/Socs1) and Cav1 (encoding caveolin-1), which have

been shown to down-regulate the Jak2 kinase activity [50]. The

expression of both genes was not significantly altered and this was

also true for Socs3 (Fig. 5F and Fig. S4B). Interestingly, the

expression of Socs2, a direct target gene of Stat5 [51], was 2–3fold

down-regulated (Fig. 5F and Fig. S4B), confirming further an

alleviated Stat5 signalling pathway. In addition to the prolactin

receptor/Jak2 mediated activation of Stat5, ErbB4 has been

identified as an obligate direct mediator of Stat5 phosphorylation

and nuclear translocation in the mammary gland [52,53]. As

shown in Fig. 5G, the expression of the ErbB4 gene was

significantly reduced in mammary glands from Miz1DPOZ
animals (see also Fig. S4B).

ChIP-Seq Reveals Miz1 as a Regulator of Vesicular
Transport Gene Expression
In order to gain insight into the mechanism underlying the

observed phenotype, we performed Miz1 ChIP-Seq experiments

using the mammary epithelial cells MDA-MB231 [54]. We

identified 830 promoters bound by Miz1. To analyse how Miz1

regulates these target genes during lactation, we created a gene set

with the 100 most strongly Miz1 bound genes and correlated this

list with the gene expression data from our cDNA microarray

experiments performed on day 6 of lactation. This gene set

enrichment analysis (GSEA) showed that a majority of Miz1 target

genes are down-regulated in Miz1DPOZ animals (Fig. 6A and B).

Table 1 summarizes all down-regulated genes which had at least

200 binding tags in the ChIP-Seq experiment. 12 out of 23

identified genes encode for proteins related to vesicular transport

processes and evaluation by quantitative RT-PCR confirmed the

expression data from the microarray analysis (Fig. 6C). Interest-

ingly, ultrastructural analysis of the secretory vacuoles (Fig. 6D)

revealed a higher percentage of casein micelle containing vacuoles

(p,0.0011) on lactation day 10 in Miz1DPOZ animals (Fig. 6E),

combined with a higher, but statistically not significant, mean

number of micelles per vacuole (3.1460.56 in control and

4.4260.40 in Miz1DPOZ animals; p = 0.1127), pointing to a

derangement of the development, maturing or transport of the

secretory vesicles. Further, in the ChIP-Seq experiment Miz1 did

neither bind Prlr nor Erbb4, showing that both genes are not direct

target genes of Miz1. With an immunohistochemical approach,

prolactin receptor was hardly detectable in the plasma membrane

of the epithelial cells from Miz1DPOZ lactating mammary glands

(Fig. 7A), allowing the hypothesis that not only a reduced

expression but also an impaired intracellular vesicular transport

attenuated the prolactin receptor signalling. In line with this

observation was a reduction of ErbB4 in the nuclei of the epithelial

cells (Fig. 7B), since this receptor has to be transported to the

plasma membrane before the cleaved cytosolic domain can target

the nucleus. Taken together our data are compatible with the

notion that a deletion of the Miz1 POZ domain has a pleiotropic

effect on the intracellular vesicular transport machinery. Subse-

quently, signalling processes like Stat5 phosphorylation, which

depend on correctly transported and targeted plasma membrane

proteins, like the prolactin receptor or ErbB4, are impaired.

Discussion

Deletion of the Miz1 POZ domain in mammary gland epithelial

cells rendered a functionally mutated Miz1 protein which caused a

lactogenic defect in the first and second pregnancies. This lactation

defect was characterized by a diminished proliferation and

differentiation of the glandular cells which caused a delayed

development of the mammary gland during lactation and resulted

in malnutrition of the pups. In the normal mammary gland, Miz1

levels were low at late pregnancy (P18.5) but increased dramat-

ically at the transition from pregnancy to lactation (L1), where it

remained high until involution (I2). In line with this notion,

phenotypical differences of the mammary gland between control

and Miz1DPOZ animals, like a transient reduction of the glandular

tissue, a decrease of milk protein expression and an extracellular

coalescence of lipid droplets, became visible not before lactation,

although the Cre recombinase under the control of the Wap

promoter was expressed already at day 14.5 of pregnancy [6]. The

sudden increase and decrease of Miz1 protein levels at the

beginning and the end of lactation, respectively, supports the data

provided, which show that Miz1 has an important function in
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initiating and maintaining the lactation state of the mammary

gland.

Miz1 was originally found as a Myc binding protein [15] and it

was shown that the binding of Myc/Max complexes to Miz1 at the

initiation region of a promoter represses gene expression [21,30].

This has been well documented for Cdkn1a and Cdkn2b, encoding

the cyclin dependent kinase inhibitors p21cip1 and p15ink4b,

respectively. In skin, it was shown that a functional mutation of

Miz1 in keratinocytes of the basal epidermal cell layer reveals an

increase of p21cip1 as a result of a missing Miz1/Myc repressing

complex. This leads to a reduced proliferation, a maintained or

even increased differentiation and an alleviated development and

growth of induced skin papilloma, all of which can be rescued on a

p21cip1 null background [24]. However, in our ChIP-Seq analysis

in the mammary gland epithelial cell line MDA-MB231 neither

Cdkn1a nor Cdkn2b were present under the 830 genes bound by

Miz1, indicating that it does not regulate these genes in this cell

type. This is in agreement with the observation that the expression

of Cdkn1a was slightly but statistically not significantly increased in

the mammary gland from Miz1DPOZ animals, making it unlikely

that the reduced proliferation observed is primarily caused by

upregulated p21cip1. In contrast to Miz1 expression, the Myc

Figure 5. Stat5 phosphorylation is reduced in Miz1DPOZ mammary glands and in shMiz1 HC11 cells. (A) Analysis of Stat5a/b mRNA
expression in Miz1DPOZ (DPOZ) and control mammary gland tissue (Ctr). (B) Immunoblot analysis of Stat5 in wildtype and Miz1DPOZ mammary
glands. (C) Immunohistochemical staining of pStat5 in the mammary gland tissue from wildtype and Miz1DPOZ animals. (D) Western blots from HC11
cells stably transfected with a scrambled short hairpin (sh) RNA (shscr) or a Miz1 shRNA (see also Fig. 4E and F). Numbers indicated are fold changes
of band intensities obtained by densitometry (see Materials and Methods). Quantitative RT-PCR for the prolactin receptor (E; Prlr), the Supressors of
cytokine signalling (Socs) 1, 2 and 3 and caveolin-1 (F; Cav1), and for ErbB4 (G). Lactation day 6 samples were used in all in vivo experiments. Scale bar
in C: 50 mm.
doi:10.1371/journal.pone.0089187.g005
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protein level is high in early pregnancy, peaking at day 6,

remaining elevated until day 12.5 and declining to basal levels

prior to day 18.5 [7]. This suggests that Myc plays a pivotal role in

mammary gland development during early pregnancy, most likely

Figure 6. Genes related to vesicular transport processes are bound by Miz1 and down-regulated in Miz1DPOZ mammary glands. (A)
GSEA analysis comparing the gene expression of wildtype versus Miz1DPOZ mammary glands. The 100 Miz1 target promoters with the highest tag
number were used as the gene set in this analysis. (B) Browser pictures of Miz1 ChIP-Seq profiles at the Miz1 target genes Exoc2, Vamp4 and Lrp12. (C)
Quantitative RT-PCRs testing the expression of genes indicated in Table 1. (D) Electron microscopy showing vesicles with (arrows) and without
(asterisks) casein micelles in tissue from control and Miz1DPOZ animals. (E) Percentage of the two vacuole types in mammary gland epithelial cells of
control and Miz1DPOZ animals from lactation day 10. Data obtained from 4 animals per genotype. Total number of vacuoles counted: ctr, 309–379;
DPOZ, 339–404. Scale bar in D: 1 mm.
doi:10.1371/journal.pone.0089187.g006
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Figure 7. Protein expression and localization of Prlr and ErbB4. PrlR (A) and ErbB4 (B) immunofluorescence from control and Miz1DPOZ
mammary gland tissue (lactation day 6). (C) Hypothetical model about the function of Miz1 in the mouse lactating mammary gland. Vesicular
transport processes are impaired in Miz1DPOZ mice due to a decreased gene expression of Miz1 target genes which are involved in the vesicular
transport. This causes a reduction of the PrlR and ErbB4 exposure to the plasma membrane, hampering the autoamplifying expression of PrlR.
Reduction of PrlR and ErbB4 expression and their diminished availability at the cell surface leads to a decreased amount of phosphorylated Stat5,
which is the key regulator during lactation. In consequence, reduced levels of phosphorylated Stat5 dimers (represented by smaller symbol size)
cannot adequately activate the transcription of proliferation and differentiation genes in Miz1DPOZ glands [50,53]. Scale bars in A and B: 50 mm.
doi:10.1371/journal.pone.0089187.g007
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by stimulating proliferation to expand the glandular tissue. Myc

expression during lactation could not be detected (Fig. S1E).

Moreover, about two thirds of all regulated genes in Miz1DPOZ
lactating mammary gland tissue were down-regulated in the array

(Fig. S4A). This indicates that Miz1 is acting more as a

transactivator and not as a repressor in conjunction with Myc,

most likely because there are less repressive complexes due to low

Myc expression. However, when the Myc gene was deleted during

mid to late pregnancy in a conditional mouse model using Wap-

Cre, a lactation phenotype was also observed [6]. Phenotypically,

the authors describe a delayed proliferation and differentiation,

impaired translation of milk proteins and a reduction of mammary

gland precursor cells. Whether some of these observations are

linked to the absence of Myc/Miz1 repressive complexes remains

to be elucidated. However, a significant upregulation of p21cip1, as

observed in Miz1DPOZ skin [24] and Myc-deficient mammary

gland [6], was not observed in the Miz1DPOZ mammary gland,

suggesting that a relief of Cdkn1a repression by Myc/Miz1 is not

the main reason for the reduction in proliferation. Moreover,

keratinocyte differentiation was enhanced in Miz1DPOZ skin in a

p21cip1 dependent manner [24] while differentiation ofMiz1DPOZ
luminal mammary gland cells was decreased.

The signal transducer and activator of transcription (Stat) 5,

especially Stat5a, establishes a central signalling node for

proliferation and differentiation of the luminal mammary gland

epithelium, as well as for alveologenesis during pregnancy and

lactation [50]. When Stat5 was conditionally deleted in late

pregnancy using Wap-Cre, a similar reduction in mammary gland

tissue was observed as in our animal model [12]. More

sophisticated experiments revealed that the extent of glandular

tissue that develops in late pregnancy and lactation depends on the

Stat5 concentration in the luminal cells [11]. In parallel to the

morphological phenotype, genes encoding milk proteins or

proteins being involved in the regulation of luminal cell

proliferation and differentiation were gradually down-regulated

with different Stat5 dosages [11]. In line with these observations is

the mammary gland specific knockout of Ski novel protein (SnoN)

[55]. Deletion of SnoN, which stabilizes the Stat5 protein, reduced

Stat5 concentrations in luminal mammary epithelial cells and

induced a lactogenic defect resembling the phenotype seen in

Stat5 knockouts or in the Miz1DPOZ mammary gland. Miz1DPOZ
animals also exhibited a reduced amount of Stat5 compared to

control tissue when analysed by Western blots. Since we used the

mammary gland epithelial cytokeratin-18 as a loading control, the

difference of Stat5 concentrations cannot be attributed to a

Table 1. GSEA analysis.

gene symbol binding [tags]
regulation DPOZ/ctr
[log2FC] process/function

Gphn 1355 20,64397 protein localization,
synaptic structure

Exoc2/Sec5 1173 20.78775 membrane Trafficking, translocation of GLUT4 to the
plasma Membrane

Mrps23 1158 20,41446 structural ribosomal protein

Vamp4 1105 20.98223 SNARE interactions in vesicular transport

Tbc1d14 1029 20.40866 regulation of autophagic vacuole assembly

Lrp12 977 20.74450 endocytosis

Heatr5a 949 20,55225 unknown

Vps28 899 20.87396 endocytosis

Wdr13 893 20,42085 unknown

Dctn6 873 20.93368 dynein dependent vesicular transport

Tpk1 863 20.42197 thiamine metabolism

Ambra1 841 20.48620 regulation of autophagic vacuole assembly

Pdcd5/TFAR19 795 21.00497 apoptosis

Vps13d 736 20.23141 Golgi localisation

Pikfyve 729 20.48238 phosphatidylinositol metabolic process, endocytosis

Snx18/Snag1 724 20.56591 endosomal transport

Tbxas1 702 20.66024 oxidation-reduction process,
iron/heme metabolism

Tcea1 645 20.83292 regulation of DNA-dependent transcription

Tmbim4 645 20,49351 apoptosis

Nrip1 445 20,54765 mammary gland development,
energy metabolism

Spast 428 20.47523 microtubule dependent vesicular transport

Dync2h1 374 20.56335 dynein dependent vesicular transport

Inpp5A 351 20.43089 phosphatidylinositol metabolic process, endocytosis

ChIP-Seq data from MDA-MB231 cells were combined with microarray expression data obtained from control and Miz1DPOZ mammary gland tissue at lactation day 6.
Listed are genes which show a strong Miz1 binding (.200 binding tags) and a down-regulation in Miz1DPOZ animals. Genes which are related to vesicular transport
processes are highlighted in bold.
doi:10.1371/journal.pone.0089187.t001
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different ratio between adipose and glandular tissue. Whether the

subtle decrease of Stat5a/b gene expression is sufficient to explain

the reduced Stat5 protein in mutant glands, or if the deletion of the

Miz1 POZ domain inhibits Stat5 translation or promotes Stat5

degradation, remains to be elucidated. Further, immunohisto-

chemistry revealed a clear decrease in phosphorylated Stat5.

Taken together, we conclude that the reduced proliferation and

differentiation in the mammary gland of Miz1DPOZ animals

during lactation depends on a lower amount of phosphorylated

Stat5, brought on by a reduced Stat5 amount and phosphoryla-

tion.

Stat5 is phosphorylated by a variety of cytokine receptors

depending on the cell type [9]. Cytokine receptors recruit Jak2

which finally phosphorylates Stat5 [56]. The Jak2-Stat5 pathway is

altered in lymphocytes when functional Miz1 is missing, mainly by

the up-regulation of the Suppressor of cytokine signalling 1 (Socs1)

in response to interleukin-7 stimulation [25]. In the mammary

gland both, Socs1 and Socs2, are target genes of activated Stat5

[50], but we observed only a lower Socs2 expression in Miz1DPOZ
animals, while Socs1 was not altered and, in particular, not up-

regulated like in mutant B-cells [25]. Interestingly, Socs genes do

not occur in the Miz1 binding list from our ChIP-Seq data,

indicating that they are not Miz1 target genes in mammary gland

cells, in contrast to B-cells, where Socs1 expression is directly

regulated by Miz1 [25].

In mammary gland cells the Jak2-Stat5 pathway is activated by

the prolactin receptor [57]. The expression of this receptor was

significantly down-regulated in Miz1DPOZ animals, providing a

possible explanation for the reduced pStat5. In line with this

notion is the observation that heterozygous knockout of the

prolactin receptor in the mouse mammary gland leads to a similar

phenotype as seen in the Miz1DPOZ animals [51]. The knockout

phenotype was rescued on a Socs2 null background indicating that

half dosage of the prolactin receptor is sufficient when the Jak2

inhibitor Socs2 is absent. However, although Socs2 was down-

regulated in the mammary gland of Miz1DPOZ mice, Stat5 was

less phosphorylated suggesting that either the amount of Stat5

itself was low or the concentration of the prolactin receptor was

not in favor of a more efficient Stat5 phosphorylation. In addition,

it has been shown that ErbB4 also phosphorylates Stat5 in a Jak2

independent manner in the mammary gland epithelium [52] and

promotes the nuclear translocation of pStat5 [53]. Of note, the

mRNA of this protein was also decreased in Miz1DPOZ animals

providing an additional explanation for the observed decrease of

pStat5.

Our data from ChIP-Seq experiments suggest that PrlR and

ErbB4 are not directly regulated by Miz1. In contrast, about 50%

of genes which bind Miz1 and are down-regulated in the

mammary gland from Miz1DPOZ animals are related to vesicular

transport processes indicating that Miz1 influences multiple

functions related to secretion or intracellular protein targeting

including the transport of plasma membrane proteins to their final

destination. This hypothesis is compatible with the observation

that in Miz1DPOZ animals 1) the composition of the secretory

vesicles is altered, 2) ErbB4 concentration in the nucleus is reduced

and 3) the PrlR is not properly located in the plasma membrane.

Signalling by the PrlR depends not only on a correct localization

at the plasma membrane [58], but is also modified by

internalization via clathrin dependent or independent endocytosis

[59], another branch of vesicular transport. Interestingly, it has

been shown that transcriptional expression of PrlR is enhanced by

Prl-induced PrlR signalling [60,61], suggesting a link between the

observed reduction of PrlR to an impaired vesicular transport.

In vivo studies during the last years revealed that Miz1 has

pleiotropic functions in different tissues like skin [23,24], B- and T-

cells [25,26] or cerebellum [62]. Interestingly, the absence of

functional Miz1 led to attenuated tumorigenesis in mouse skin [24]

and in a murine lymphoma model [63], either by up regulation of

Cdkn1a expression or by induction of senescence via an autocrine

TGFb signalling loop, respectively. Together with the fact that

Miz1 is a central player in mediating the repressive function of the

protooncogene Myc in cancer [64], relevant roles of Miz1 in

different kinds of tumors, also in the mammary gland, are likely. In

addition, this first report about the physiological function of Miz1

in the mammary gland documents its importance for an adequate

mammary cell proliferation and differentiation during lactation.

In conclusion, we propose a tentative model (Fig. 7C) where the

lack of functional Miz1 causes a down-regulation of a gene set

involved in vesicular transport, limiting a proper localization,

degradation and recycling of plasma membrane proteins. This

disrupts the Stat5 pathway due to impaired signalling via PrlR and

ErbB4, reflected by an alleviated expression of Stat5 target genes

like Csn1s1, Csn1s2a, Csn1s2b, Csn2, Csn3, Wap or Socs2 as well as

PrlR and ErbB4. This deficiency in Stat5 activation leads to a

decrease in differentiation, together with a reduced proliferation,

which cause the lactation phenotype in Miz1DPOZ animals.

Supporting Information

Figure S1 c-Myc immunohistochemistry during murine
mammary gland development. c-Myc expression in inguinal

mammary glands from Ctr animals was assessed by immunohis-

tochemistry. The time-points analysed were: virgin gland at 45

days ppm (A; n = 3), pregnancy day 10.5 (B; n = 2), 14.5 (C; n = 2)

and 18.5 (D; n = 3), lactation day 6 (E; n = 3) and involution day 2

(F; n = 3). Nuclear c-Myc staining was visible in virgin mammary

ducts and in the forming alveoli during early pregnancy as

described elsewhere by gene expression analysis [7,65] and by

immunohistochemistry of pregnancy day 6.5 animals [6]. During

late pregnancy, a clear nuclear c-Myc staining was visible in the

lymph node but not in the surrounding mammary alveoli (see

arrows in D). c-Myc expression was not detectable during lactation

[66] and was hardly discernible at involution day 2. Scale bars:

50 mm and 10 mm in the inset.

(TIF)

Figure S2 Conditional deletion of the Miz1 POZ domain
in luminal mammary epithelial cells. (A) Schematic

representation of the Wap-Cre-mediated recombination strategy

used to delete the exons which code for the Miz1 POZ domain

and the relative position of the primers to detect it [23]. (B) Time

course of the appearance of the recombinant band performed on

genomic DNA isolated from mammary glands at the indicated

time-points. As described elsewhere [6,28], Cre expression under

the Wap promoter is weakly detectable already at pregnancy day

14.5 (B) and strong and sustained during late pregnancy and

lactation as seen also by immunohistochemistry (C, D). Scale bars:

50 mm.

(TIF)

Figure S3 Representative H&E stainings of Ctr and
Miz1DPOZ animals. In accordance with Miz1 expression levels

during mammary development (Fig. 1), first pregnancy day 18.5

samples show similar alveolar density in Ctr and MizDPOZ animals

(A, B; n = 3 per genotype). The reduced alveologenesis phenotype

only becomes apparent at lactation day 1 (C, D; at least n= 3 per

genotype), obvious at lactation day 6 (E, F and Fig. 2; n = 8 per
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genotype) and partially rescued by lactation day 10 (G, H; n = 4

per genotype). Scale bar: 300 mm.

(TIF)

Figure S4 Microarray analysis of lactation day 6
mammary glands. (A) Number of regulated genes in Miz1D-
POZ mammary glands using different Fold Change (FC)

thresholds. Note the increased number of genes down-regulated

in Miz1DPOZ animals. (B to D) Summary of microarray data,

after normalization and filtering, showing the relative expression of

different gene sets in Miz1DPOZ animals concerning (B) Stat5
target genes, Stat5 signalling and mammary epithelial cell

proliferation, (C) calcium transport and (D) immune response.

Fold changes were averaged when different values for the same

gene were available. See Materials and Methods for experimental

details.

(TIF)

Table S1 Summary of all oligonucleotides used for PCR
approaches. Primers are provided in 59R39 direction. Quan-

titative PCR primers were designed using the Universal Probe

Library Assay Design Center on-line tool (Roche Diagnostics,

Mannheim, Germany).

(DOC)
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