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Cells require energy for growth and maintenance and have
evolved to have multiple pathways to produce energy in response
to varying conditions. A basic question in this context is how cells
organize energy metabolism, which is, however, challenging to
elucidate due to its complexity, i.e., the energy-producing path-
ways overlap with each other and even intertwine with biomass
formation pathways. Here, we propose a modeling concept that
decomposes energy metabolism into biomass formation and ATP-
producing pathways. The latter can be further decomposed into a
high-yield and a low-yield pathway. This enables independent
estimation of protein efficiency for each pathway. With this
concept, we modeled energy metabolism for Escherichia coli and
Saccharomyces cerevisiae and found that the high-yield pathway
shows lower protein efficiency than the low-yield pathway. Taken
together with a fixed protein constraint, we predict overflow me-
tabolism in E. coli and the Crabtree effect in S. cerevisiae, meaning
that energy metabolism is sufficient to explain the metabolic
switches. The static protein constraint is supported by the findings
that protein mass of energy metabolism is conserved across con-
ditions based on absolute proteomics data. This also suggests that
enzymes may have decreased saturation or activity at low glucose
uptake rates. Finally, our analyses point out three ways to improve
growth, i.e., increasing protein allocation to energy metabolism,
decreasing ATP demand, or increasing activity for key enzymes.
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ATP is the energy currency in living cells and the key to drive
energy-consuming processes such as growth, motility, and

stress-related functions. The energy utilized for growth, e.g.,
macromolecular synthesis and growth-associated maintenance,
can be defined as growth-associated energy costs (GAEC), while
the energetic cost of other processes is referred to as non–growth-
associated maintenance (NGAM). Accordingly, at steady state the
total energy generated in cells should be allocated between GAEC
and NGAM. Cells seem to have an upper bound of ATP pro-
duction capacity as higher level of stress usually results in slower
growth (1, 2), indicating a competition between GAEC and
NGAM for the limited energy that can be provided by metabo-
lism. Therefore, an interesting question is how to increase the
maximal ATP production capacity. This is expected to improve
fitness of cells, and thereby important in industrial processes and
biotechnological applications.
ATP is mostly produced by a few pathways in the central

carbon metabolism (CCM), which, in heterotrophs, e.g., Escherichia
coli and Saccharomyces cerevisiae, includes glycolysis, by-product
formation pathways, the tricarboxylic acid (TCA) cycle, and oxi-
dative phosphorylation. These pathways together are defined as
energy metabolism in this study, which is typically divided into 2
different strategies. One is glycolysis followed by the TCA cycle
and oxidative phosphorylation, namely respiration, and the other
is glycolysis followed by by-product formation pathways, namely
fermentation. Moreover, the CCM acts as not only energy pro-
ducer to extract ATP from substrate but also biomass producer to
break down the substrate into biomass precursors, meaning that

ATP-producing and biomass formation pathways are heavily
overlapping and intertwined within the CCM. Another 2 questions
accordingly arise, why cells select a particular ATP-producing
mode for a given condition and how cells allocate resource be-
tween energy generation and biomass formation?
It has been proposed that there is a tradeoff between yield and

rate of ATP production by the different metabolic modes (3).
For example, cells prefer to use respiration when a high ATP
yield is favorable, while they activate fermentation when a high
rate is favorable. This hypothesis is, however, not sufficient to
explain the concurrent use of both respiration and fermentation
observed in glucose-limited chemostats (4–10). This may be
explained by another tradeoff, which is between ATP yield and
protein required for carrying the fluxes (11). The hypothesis that
a higher yield pathway requires more protein than a lower yield
pathway for the same glucose uptake rate has been predicted by
computational analysis based on thermodynamics (12) or enzyme
kinetics data (13), and experimentally confirmed by proteomics
measurement (14). Furthermore, genome-scale metabolic models
(GEMs) with the integration of protein constraints have shown
improved predictions of metabolic switches (15–18).
Here, inspired by these efforts, we propose a modeling con-

cept to investigate energy metabolism for E. coli and S. cerevisiae,
the best-studied prokaryal and eukaryal microorganisms, respec-
tively. We firstly decomposed energy metabolism into biomass
formation and ATP-producing pathways, allowing for inde-
pendent estimation of ATP yield and protein efficiency for each
pathway. With the models we accurately predicted metabolic
switches observed in experiments by fixing the protein constraint,
which is in good agreement with the finding that protein
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allocation to energy metabolism is conserved. On the other hand,
model simulations showed that increasing protein mass of energy
metabolism or fraction of flux through low-yield ATP-producing
pathway can improve ATP production rate. The former seems to
be common in reality as we found in cells growing at unlimited
conditions a strong correlation between protein mass of energy
metabolism and the ATP production rate. Besides, we found that
improved growth rate of evolved strains is caused by increased
protein allocation and/or decreased ATP demand. Finally, we
predicted that increasing the activity of some key enzymes in en-
ergy metabolism is an effective strategy for improving the specific
growth rate.

Results
A Modeling Concept to Investigate Energy Metabolism. We propose
a modeling concept (Fig. 1) that includes 2 parts, i.e., decom-
posing an entire metabolic network into independent pathways
and integrating protein cost as an additional constraint. Firstly,
the entire network of energy metabolism is extracted from a
GEM, which consists of uptake of glucose, glycolysis, by-product
formation, the TCA cycle, and oxidative phosphorylation. Sub-
sequently, the network is decomposed into three pathways (Ma-
terials and Methods). Two of them are ATP-producing pathways
and the other one relates to biomass formation. The ATP-
producing pathways are divided into a high-yield (HY) and a
low-yield (LY) pathway depending on the ATP yield per glucose.
On the other hand, protein required for carrying 1 unit of flux is
estimated for each enzymatic reaction, which is defined as “pro-
tein cost” in this study and equal to the molecular weight of the
enzyme over its turnover rate. Accordingly, an additional con-
straint can be imposed using constraint-based simulations, i.e., the
total protein content of energy metabolism. We applied the con-
cept to model the energy metabolism of E. coli and S. cerevisiae,

resulting in 2 models for describing aerobic growth on minimal
media with glucose as the sole carbon source.

Modeling Energy Metabolism for E. coli and S. cerevisiae. The energy
metabolism in E. coli consists of the Embden–Meyerhof–Parnas
(EMP) pathway, acetate fermentation, the TCA cycle, and oxi-
dative phosphorylation (SI Appendix, Fig. S1), extracted from the
latest E. coliGEM iML1515 (19). The EMP pathway followed by
the TCA cycle and oxidative phosphorylation is defined as the
HY pathway since it yields 23.5 ATP per glucose, higher than the
LY pathway (11 ATP per glucose) that consists of the EMP
pathway, acetate fermentation, and oxidative phosphorylation
(Fig. 2A and SI Appendix, Fig. S1). Based on the protein cost in-
formation (SI Appendix, Fig. S1 and Datasets S1 and S2) and flux
distribution (SI Appendix, Fig. S1), the total protein cost per flux of
glucose can be calculated for both ATP-producing pathways. As a
result, the HY pathway needs more protein mass than the LY
pathway for consuming glucose at the same rate (Fig. 2A). Using
ATP yield and total protein cost, we can calculate protein effi-
ciency for producing ATP. The result shows that the LY pathway
is more proteome-efficient than the HY pathway (Fig. 2A).
In S. cerevisiae, the energy metabolism consists of the EMP

pathway, ethanol fermentation, the TCA cycle, and oxidative
phosphorylation (SI Appendix, Fig. S1), extracted from iMM904
(20) and the consensus model Yeast7.6 (21). The HY pathway
including the EMP pathway, TCA cycle, and oxidative phos-
phorylation yields 22 ATP per glucose, while the LY pathway
including the EMP pathway and ethanol fermentation only yields
2 ATP per glucose (Fig. 2A and SI Appendix, Fig. S1). Likewise,
the LY pathway shows higher protein efficiency than the HY
pathway (Fig. 2A).
Subsequently, we used the models to investigate how to in-

crease the ATP production rate. We changed the glucose uptake
rate and protein allocation constraint, and then maximized the
ATP production rate. The simulations show several similar
trends in E. coli (Fig. 2B) and S. cerevisiae (Fig. 2C). For a given
protein allocation constraint, the ATP production rate increases
with glucose uptake rate but eventually reaches a maximum due
to the limitation of protein allocation (Fig. 2 B and C). By in-
creasing the protein allocation constraint, we can see an increase
in not only ATP production rate for a given glucose uptake rate
but also the maximal ATP production rate (Fig. 2 B and C).
Interestingly, the 3D plots both have 2 distinct regions (Fig. 2 B
and C), indicating 2 different metabolic modes. Next, we selected
the simulations of protein allocation constraint at 0.1 gram per
gram of cell dry weight (gCDW) to estimate ATP distribution
and protein allocation. The 2D plots also both show a similar
trend (Fig. 2 B and C), i.e., ATP is exclusively produced by the
HY pathway at low glucose uptake rates while the LY pathway is
activated when the glucose uptake rate exceeds a critical value.
The switch of ATP production is consistent with the switch of the
estimated protein allocation, i.e., above the critical glucose up-
take rate the protein mass is limited. Besides, higher fraction of
flux through the LY pathway leads to higher ATP production rate
when the protein mass is limited (Fig. 2 B and C). Accordingly,
there are 2 model-guided solutions to improve the ATP production
rate: 1) increasing protein allocation to energy metabolism, and 2)
increasing the fraction of flux through the LY pathway, which is
accompanied by an increase in the glucose uptake rate.

Predictions of Metabolic Switches. Given that the model is able to
predict the switch of ATP production, it is expected to capture
overflow metabolism (14) in E. coli and the Crabtree effect (10)
in S. cerevisiae, which refer to the activation of the LY pathway in
the presence of oxygen for fast-growing cells.
It seems that the protein allocation constraint determines the

critical glucose uptake rate where the metabolic switch occurs
(Fig. 2 B and C); we should therefore determine a reasonable
protein allocation constraint. In order to obtain it, we minimized
protein allocation for cells grown at unlimited conditions with
constraining the models using experimentally measured exchange
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Fig. 1. Overview of modeling energy metabolism. The modeling process
includes 2 parts. One is to decompose energy metabolism into 3 indepen-
dent pathways, i.e., HY ATP producer, LY ATP producer, and biomass pro-
ducer. The ATP producers generate ATP, which is used for biomass formation
and maintenance. The other is to estimate protein cost per flux for each
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turnover rate of the enzyme that catalyzes the reaction. By doing so,
constraint-based simulations can be performed, which can take into account
the constraints of not only mass balance and bounds, but also total protein
allocation to energy metabolism.
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rates. The calculated protein allocation can be used as the
constraint as it appears to be a protein-limited state when the LY
pathway becomes active (Fig. 2 B and C). With the identified
protein allocation constraint, we next minimized the glucose up-
take rate for a range of growth rates, and found that the models
predicted acetate production of E. coli (Fig. 3A) and ethanol of S.
cerevisiae (Fig. 3B) as observed in glucose-limited chemostat and
glucose batch cultures.
Despite capturing the overall changes in metabolites the

simulations do not fit perfectly experiments (Fig. 3 A and B), e.g.,
the simulated critical points are not the same as experimental
observations, neither are the slopes of product flux versus glu-
cose flux. This could be explained by the fact that the in vivo
turnover rates are not completely identical to those used in the
models, which were mostly measured in vitro under various
conditions. This is one of the shortcomings of turnover-rate–
based modeling methods (15, 16, 18), which could be overcome
by using an enzyme saturation factor (13, 18). Here we used
overall enzyme saturation factors to adjust the protein efficiencies
for the HY and LY pathways, respectively, rather than for indi-
vidual enzymes, in the enzymatic reaction rate equation:

vi = kcat,i ·
X

Ei · ρi, [1]

where kcat,i is the average turnover rate for each of the 2 path-
ways,

P
Ei the protein allocation, and ρi the overall saturation

factor, which is not greater than 1. By changing ρi, we can adjust
the protein efficiency for each pathway. We found that this alters

the critical point and the slope. More specifically, as ρLY=ρHY
increases, i.e., the ratio of protein efficiencies between the LY
and HY pathways increases, both the critical glucose uptake rate
and slope of product flux versus glucose flux decrease (SI Ap-
pendix, Fig. S2). Only by increasing ρLY=ρHY can we obtain best-
fitted simulations (Fig. 3 C and D), meaning that the enzyme
saturation should be higher for the LY pathway than for the HY
pathway. As a result, we estimated the protein efficiency ratio
between the LY and HY pathways in S. cerevisiae being 1.66 and
in E. coli being 2.31, which is consistent with a reported value for
E. coli of 1.92 (14). The slightly higher estimated value by our
model may be due to 2 factors. One is a different phosphate/
oxygen ratio used in our model, and the other is the fact that
absolute protein mass was used in this study while the fraction of
total protein in the previous one (14). Our analysis is an effort to
estimate the ratio in S. cerevisiae, enabling comparison between
these 2 model microorganisms.

Protein Allocation to Energy Metabolism Is Conserved. The protein
allocation constraint plays a key role in predicting the metabolic
switches, which is implemented as a fixed upper bound in the
model. Given that not only the total protein content (31, 32) but
also individual proteins within the CCM (7, 33–35) can vary
greatly in diverse conditions, it is essential to investigate how the
protein mass of energy metabolism responds to different envi-
ronmental conditions. We collected absolute proteomics data of
E. coli (7) and S. cerevisiae (36), and found that protein alloca-
tion to energy metabolism is almost conserved across a wide
range of glucose uptake rates (Fig. 4 A and B) even though there
are a great deal of individual proteins having considerably varying
levels (SI Appendix, Fig. S3 and Dataset S3). This supports the
workability of utilizing a fixed protein allocation for energy me-
tabolism as a constraint in the model.
As protein cost data are integrated, our models are capable of

estimating the minimal protein allocation required for energy
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metabolism for a certain phenotype. The results show that the
minimal protein allocation increases and then hits the upper
constraint with increasing glucose uptake rates (SI Appendix, Fig.
S4), and the switch point is at the critical point where the met-
abolic switch occurs. When the glucose uptake rate is lower than
the critical value, there is clearly no need for the amount of
protein actually allocated for energy metabolism. This discrepancy
can be explained by a decrease in the apparent catalytic rate at low
glucose uptake rates due to, for example, incomplete saturation
with substrates (37) and/or decreased enzyme activity caused by
posttranslational modification (38). Using the measured proteome
levels assigned to energy metabolism (around 0.1 g/gCDW), we
estimated the apparent saturation levels for different glucose up-
take rates (see SI Appendix for details). The results show that the
apparent saturation increases and then approaches an upper value
with increasing glucose uptake rates (Fig. 4 C and D). This is
equivalently consistent with the finding that the average in vivo
catalytic rate tends to increase with growth rate (39).

Maximal Growth Rate Is Controlled by ATP Demand and Protein
Allocation. To investigate how energy metabolism controls the
maximal growth rate, we applied the models to various E. coli
and S. cerevisiae strains. The E. coli strains include 1 wild-type
strain K-12 MG1655 (25), 2 knock-in mutant strains (rpoBE546V
and rpoBE672K) (40), and 9 strains with increased growth rates
through adaptive laboratory evolution (ALE) (25). The physio-
logical data were obtained under exponential growth with excess
glucose, where cells grow at the maximal rates. The S. cerevisiae
strains include 1 wild-type strain CEN.PK113-7D (41) and 5 ALE
strains with increased growth rates at 40 °C (2, 41). The physio-
logical data were obtained under exponential growth with excess
glucose at 40 °C, and the data of the wild-type strain at 30 °C were
also included.
Generally, higher growth rate relies on higher ATP production

rate, and as mentioned earlier there are 2 ways to increase the
ATP production rate, with 1 being to increase the fraction of flux
through the LY pathway. However, we found that all of the strains
exhibit a mixed ATP-producing strategy at maximal growth, and
there is no clear trend between the fraction of flux through LY
pathway and growth rate (SI Appendix, Fig. S5). Accordingly,
changing the fraction of flux through the LY pathway appears not
to be a strategy for increasing growth rate. This is consistent with
the previous finding that down-regulation of the HY pathway in E.
coli resulted in only a small improvement of growth rate on glu-
cose (42). The alternative is to increase protein allocation to en-
ergy metabolism. With the models, we estimated the protein
content for each strain by assuming that all of the turnover rates in

the models are conserved across strains as few mutations was
detected involved in energy metabolism in the evolved strains
(2, 25). We found that the correlation between the protein allocation
to energy metabolism and growth rate is quite poor (SI Appendix,
Fig. S5). We therefore questioned the correlation between the
ATP production rate and growth rate, and found that it is also
weak (SI Appendix, Fig. S5), which is against our original expec-
tation. However, when plotting estimated protein allocation and
the ATP production rate, we obtained strong correlations between
them in both E. coli and S. cerevisiae (Fig. 5 A and B). This is
consistent with our previous finding that protein allocation in-
creases the maximal ATP production rate (Fig. 2 B and C).
When we compared protein allocation with the ATP demand

for producing biomass (Fig. 5 C and D), which is calculated as
the ATP use per gram of CDW, i.e., a yield rather than a flux, we
obtained 2 distinct ways by which cells can achieve higher growth
rate, i.e., increasing protein allocation to energy metabolism and/or
decreasing ATP demand for biomass production. In the E. coli
cases, the strains with increased growth rates can be divided into
3 groups (Fig. 5C). One group (orange circle in Fig. 5C) shows
increased protein allocation to energy metabolism and also in-
creased ATP demand, suggesting that the increase in protein
allocation cannot only compensate increased ATP demand
caused by other negative mutations but also support higher ATP
supply for increased growth. Another group (blue circle in Fig.
5C) shows a similar protein content of energy metabolism with the
wild type but much lower ATP demand. In this group, there are 2
knock-in mutant strains, i.e., rpoBE546V and rpoBE672K, and
the mutations in rpoB have been reported to decrease energy
demand (40). The last group (gray circle in Fig. 5C) shows a
combined strategy. For the S. cerevisiae cases, we see that in-
creased temperature increases ATP demand (Fig. 5D), which is
due to higher maintenance (43). Therefore, the decreased growth
of the wild type at 40 °C compared to 30 °C can be explained by
the fact that the ATP production rate is limited by the constant
protein allocation to energy metabolism, and the increased ATP
allocation to maintenance thereby decreases growth. For the ALE
strains, we found that they all show increased protein allocation
and decreased ATP demand (Fig. 5D), with the latter possibly
contributed by the change in sterol composition (2).

Improving Enzyme Activity Is Predicted to Elevate Growth Rate. Be-
sides the ALE approach, directed modification of enzymes by
protein engineering is promising to obtain enhanced strains.
While overexpression of glycolytic enzymes has been shown to
result in no flux increase and even cause growth defects (44),
improving protein efficiency for individual enzymes could be an
effective strategy. To evaluate this we therefore doubled the
turnover rate for each enzyme in the models, which corresponds
to increasing the catalytic efficiency of the enzyme, and then
normalized the predicted maximal growth rate to the reference
which was obtained without changing any turnover rates. Hereby
we identified several targets for improving the growth rate (Fig. 6).
Several of these have been supported by the evidence that higher
enzyme activity, rather than expression level, of an individual
enzyme leads to higher growth or glycolytic rate (45–48). All of the
predicted targets show very high protein cost for carrying fluxes
according to the protein cost analysis (SI Appendix, Fig. S1). Ac-
cordingly, the models present an angle to aid rational design of
strains for enhancing growth and metabolic fluxes.

Discussion
In this study we propose a modeling method to decompose en-
ergy metabolism. This enables independent analysis of each
pathway, e.g., estimation of protein efficiency, and comparison
between pathways. With the concept, we modeled energy me-
tabolism for E. coli and S. cerevisiae, allowing for the comparison
between the 2 widely used model microorganisms. We found that
the protein efficiencies of the LY and HY pathways in E. coli are
much higher than those in S. cerevisiae (Fig. 2A), although most
individual enzymes in E. coli show lower protein efficiencies than
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those in S. cerevisiae (SI Appendix, Fig. S6). For the LY pathway,
higher protein efficiency in E. coli compared to S. cerevisiae is
caused by higher ATP yield (5.5-fold) due to the utilization of
oxidative phosphorylation even though accompanied by higher
protein costs (around 2-fold) (Fig. 2A). For the HY pathway, we
found that lower capacity of ATP synthase in S. cerevisiae com-
pared to E. coli is a dominant factor to lower protein efficiency of
the HY pathway (SI Appendix, Fig. S6), which is consistent with
the previous finding that the ATP synthase has flux control over
respiration (13). Therefore, considering the finding that E. coli
and S. cerevisiae allocate considerable protein contents to energy
metabolism (Fig. 4 A and B), higher protein efficiencies of the
LY and HY pathways in E. coli could explain its faster growth
compared to S. cerevisiae. Another interesting parameter is the
ratio of protein efficiencies between the LY and HY pathways.
We found that the ratio is higher in E. coli (2.31) than that in S.
cerevisiae (1.66), meaning that E. coli shows a larger difference in
the protein efficiencies between the LY and HY pathways. This
enables E. coli to switch easier from the HY to LY mode, i.e., the
ATP production rate at the critical point over the maximal ATP
production rate is lower in E. coli than that in S. cerevisiae (SI
Appendix, Fig. S7).
By imposing protein constraint, our models successfully pre-

dicted overflow metabolism in E. coli and the Crabtree effect in
S. cerevisiae (Fig. 3 C and D). This is as expected since some
other models using protein allocation constraints can also cap-
ture metabolic switches (13, 16–18). Differing from these previous
modeling efforts, our models, however, only focus on energy
metabolism, which is smaller in terms of the scope. This suggests
that energy metabolism is sufficient to explain the metabolic
switches in both E. coli and S. cerevisiae, which is consistent with
the finding in E. coli based on a coarse-graining approach (14).
Furthermore, we used a fixed upper bound for protein constraint
in the model, which is consistent with the experimental finding
that protein allocation to energy metabolism is conserved (Fig. 4 A
and B). This static constraint can be adopted in our model but

would not work for large-scale models as the total mass allocation
to the proteins involved in those models may change greatly across
conditions (18). The conserved protein content of energy metab-
olism suggests that cells tend to reallocate protein resource within
energy metabolism rather than exchanging with other processes.
On the other hand, it suggests that below the critical point cells
still keep the constant mass of protein in energy metabolism but
operate with decreased saturation or activity as described by the
apparent saturation (Fig. 4 C and D). However, there is still a
limitation of our method, i.e., the lack of regulation beyond
translation, which is also a common problem in other turnover-
rate–based models (16, 18). A potential solution is to integrate
already-known regulation into the model by adjusting the satu-
ration factor ρi in Eq. 1 for specific enzymes. For example, given
that the activity of phosphotransferase system (PTS) in E. coli
changes proportionally with growth rate (16), one could set a
linear growth-rate–dependent ρi for PTS to implement this
regulation. This is expected to expand the applicability of the
model in future studies.
With the models, we investigated the maximal growth rate and

found that ALE strains having increased growth rate exhibit ei-
ther or both of the following changes, i.e., increase in protein
allocation to energy metabolism and decrease in ATP demand
(Fig. 5 C and D). The link between protein mass of energy me-
tabolism and growth rate is established in this study by the strong
correlation between protein allocation to energy metabolism and
ATP production rate in cells exponentially growing at unlimited
conditions (Fig. 5 A and B). Our models predict that most of the
ALE strains have evolved to allocate greater protein mass to
energy metabolism compared to the wild-type strains (Fig. 5 C
and D). Considering that the maximum growth rate of the wild-
type strain E. coli NCM3722 is higher than that of MG1655 at the
same condition (17), we estimated the protein mass of energy me-
tabolism for each. It has been shown by proteomics data that
NCM3722 allocates around 13% of the total proteome to energy
metabolism (14), while it is around 9% (Dataset S3) in MG1655
according to the PaxDb database (49). Therefore, higher growth
rate of the strain E. coliNCM3722 could be contributed by its higher
protein content in energy metabolism. Besides, it has been shown
that the overexpression of LacZ, which is able to reduce the pro-
teome of energy metabolism (50), decreases growth rate of E. coli
(14, 50). Taken together, it appears to be validated that increased
protein allocation to energy metabolism may improve growth rate.
Overall, by modeling energy metabolism for E. coli and S.

cerevisiae, we showed 3 potential strategies to improve growth

P
D

H
E

N
O

G
A

P
D

A
T

P
S

4r
pp

G
LC

pt
sp

p
F

B
A

P
G

K
P

G
I

P
G

M
P

F
K

T
P

I
IC

D
H

yr
M

D
H

P
T

A
r

100%

120%

C
ha

ng
e 

in
 g

ro
w

th

F
B

A
A

T
P

S
3m

G
A

P
D

H
E

X
1

C
Y

O
R

u6
m

G
LC

t1
P

F
K

E
N

O
P

Y
K

N
A

D
H

2u
6c

m
P

Y
R

D
C

100%

140%

C
ha

ng
e 

in
 g

ro
w

th

E. coli

S. cerevisiae

*
**

*

Fig. 6. Predicted change in growth rate after doubling turnover rate of
each reaction in the models. The x axis only presents the reactions that can
affect growth rate. Reaction ID is consistent with that in Datasets S1 and S2.
The asterisk represents experimental evidence for the reaction: PDH (45),
DAPD (46), ATPS4rpp (47), and FBA (48).

50

60

70

80

90

100
A

T
P

 p
ro

du
ct

io
n 

ra
te

 (
m

m
ol

/g
C

D
W

/h
)

R2 = 0.907

0.7 1

Growth rate (/h)

0.08 0.1 0.12 0.14 0.16 0.18
Protein allocation (g/gCDW)

50

60

70

80

90

100

110

A
T

P
 d

em
an

d 
(m

m
ol

/g
C

D
W

)

30

35

40

45

50

55

R2 = 0.999

0.12 0.28

Growth rate (/h)

0.1 0.15 0.2
Protein allocation (g/gCDW)

100

150

200

2500.7 1

Growth rate (/h)

0.12 0.28

Growth rate (/h)

A

C

B

D

WT
(30°C)

WT
(30°C)

WT

WT

WT

WT

MT1

MT2 Decreased ATP demand

Increased protein allocation

Combined

Combined

Fig. 5. Simulations of exponential growth. (A) Correlation between ATP
production rate and protein allocation to energy metabolism in E. coli. (B)
Correlation between ATP production rate and protein allocation to energy
metabolism in S. cerevisiae. (C) Plot of ATP demand for biomass formation
versus protein allocation to energy metabolism for E. coli strains. MT1 and
MT2 are knock-in mutant strains, rpoBE546V and rpoBE672K, respectively
from the study (25). (D) Plot of ATP demand for biomass formation versus
protein allocation to energy metabolism for S. cerevisiae strains.

17596 | www.pnas.org/cgi/doi/10.1073/pnas.1906569116 Chen and Nielsen

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906569116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906569116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906569116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906569116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906569116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906569116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906569116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1906569116


rate: 1) decrease ATP demand for growth, 2) increase the pro-
teome allocation for energy metabolism, or 3) increase activity
for key enzymes. The first 2 strategies can be achieved through
ALE approach, and using our modeling approach we could
clearly calculate which strategy a given strain has chosen. Be-
sides, the model is able to predict the key enzymes that could
limit growth due to low protein efficiency, and modification of
the enzymes would be an effective strategy to improve growth
rate. In conclusion, we therefore believe that our simple model is
very useful for analysis of energy metabolism in engineered or
evolved strains, which will find wide use in both the field of
synthetic biology and basic biology.

Materials and Methods
All of the materials and methods are detailed in SI Appendix: modeling
energy metabolism for E. coli and S. cerevisiae; protein cost analysis; model
simulations; adjustment of protein efficiency; proteomics data analysis; cal-
culating apparent saturation. All of the simulations were performed in MATLAB
with the COBRA toolbox (51). Codes and models are available at https://
github.com/SysBioChalmers/Energy_metabolism_model.
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