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Embryonic losses constitute a major burden for reproductive efficiency of farm animals.

Pregnancy losses in ungulate species, which include cattle, pigs, sheep and goats,

majorly occur during the second week of gestation, when the embryo experiences a

series of cell differentiation, proliferation, and migration processes encompassed under

the term conceptus elongation. Conceptus elongation takes place following blastocyst

hatching and involves a massive proliferation of the extraembryonic membranes

trophoblast and hypoblast, and the formation of flat embryonic disc derived from the

epiblast, which ultimately gastrulates generating the three germ layers. This process

occurs prior to implantation and it is exclusive from ungulates, as embryos from other

mammalian species such as rodents or humans implant right after hatching. The

critical differences in embryo development between ungulates and mice, the most

studied mammalian model, have precluded the identification of the genes governing

lineage differentiation in livestock species. Furthermore, conceptus elongation has not

been recapitulated in vitro, hindering the study of these cellular events. Luckily, recent

advances on transcriptomics, genome modification and post-hatching in vitro culture

are shedding light into this largely unknown developmental window, uncovering possible

molecular markers to determine embryo quality. In this review, we summarize the events

occurring during ungulate pre-implantation development, highlighting recent findings

which reveal that several dogmas in Developmental Biology established by knock-out

murine models do not hold true for other mammals, including humans and farm animals.

The developmental failures associated to in vitro produced embryos in farm animals

are also discussed together with Developmental Biology tools to assess embryo quality,

including molecular markers to assess proper lineage commitment and a post-hatching

in vitro culture system able to directly determine developmental potential circumventing

the need of experimental animals.

Keywords: embryo quality, embryo transfer, developmental biology, lineage markers, viability, conceptus

elongation, assisted reproductive technologies, post-hatching embryo culture

INTRODUCTION

Optimal reproductive performance in farm animals relies on the proper accomplishment of the
different biological processes leading to delivery. Starting from the ovulation of a competent
oocyte, conception requires a successful fertilization to produce a zygote, which marks the onset
of preimplantation development. During preimplantation development, complex cell proliferation,
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differentiation and migration processes must be finely controlled
to ensure embryo viability and subsequent embryo implantation.
Following embryo implantation, a fetus will be developed,
ultimately resulting in a newborn. When global reproductive
failures in farm ungulates are dissected into these steps,
preimplantation development (i.e., the period compromised
between fertilization and implantation) clearly stands out as the
most problematic. For instance, in the case of cattle, embryonic
losses prior to day 16 (D16) post-insemination can rise up to
50% in high yielding dairy cows (1), whereas in pigs it has been
estimated that one into five embryos dies before implantation (2).

Preimplantation development in ungulates can be divided
into two periods. The first period spans from fertilization to
blastocyst hatching, i.e., the release of the embryo from a
glycoprotein protective shell termed zona pellucida. This pre-
hatching period is common to all mammals and constitutes
the whole preimplantation period in rodents and humans,
where blastocysts implant right after hatching. In contrast,
ungulates exhibit a second preimplantation period termed
conceptus elongation. During conceptus elongation the ungulate
blastocyst must undergo dramatic morphological changes that,
in the case of cattle, convert a ∼150µm D7 blastocyst
into a ∼30 cm long D21 conceptus around implantation (3,
4). Reproductive failures occurring during preimplantation
development can be originated in any of these periods, but
developmental collapse during conceptus elongation is the
main responsible for global reproductive failures in ungulates
(5). To illustrate the magnitude of this problem in cattle
farms, it has been estimated that one third of the viable
D6 blastocysts fail to elongate and maintain pregnancy
by D28 (6), and embryo mortality during early conceptus
elongation (D7–D14) oscillates between 26 and 34% (4). In this
perspective, the study of the cell differentiation, proliferation,
and migration processes occurring during preimplantation
development is crucial to understand conceptus collapse and,
thereby, finding suitable markers to assess proper lineages
development is key to improve reproductive efficiency in
livestock ungulates.

The molecular basis of the developmental processes occurring
during the first weeks of pregnancy in ungulates is only
partially understood, mainly due to two technical limitations:
the lack of an in vitro system able to recapitulate conceptus
elongation, and the difficulties for performing loss-of-function
studies in these species. Luckily, recent advances in in vitro
culture of post-hatching blastocysts in cattle (7) and sheep (own
unpublished data), together with the development of CRISPR-
Cas9 technology to perform loss of function studies in livestock
species are set to boost our knowledge on molecular markers for
assessing proper embryo development.

In this review, we discuss the differences between ungulate
embryo development and that of rodents and humans,
highlighting the molecular markers involved in the first
lineages differentiation events occurring in ungulates. We also
revise different studies that have reported impaired lineages
development in in vitro-produced embryos, and provide insights
into the potential of lineages markers and post-hatching embryo
culture systems to assess embryo quality in farm animals.

MOLECULAR CONTROL OF THE FIRST
CELL LINEAGE DIFFERENTIATIONS

Segregation of the first cell lineages in the embryo is critical
for proper pregnancy establishment and fetus development.
Unfortunately, comprehensive understanding of this process
is only available in mice, which became a classical model in
Developmental Biology due to its low maintenance cost, fast life
cycle and, particularly, due to the well-developed techniques for
genome modification in this species. Although the first stages of
early embryo development are broadly conserved in mammals,
increasing amount of research using novel technologies such as
single cell transcriptomics or generation of knock-out embryos
by CRISPR-Cas9 are revealing important differences in gene
regulatory networks between rodent and non-rodent species.

The First Decision: Inner Cell Mass vs.
Trophectoderm
During the first cell divisions, the embryo relies on maternal
transcripts and proteins until the embryonic genome is
activated between the 2- (rodents) and 4/8-cell stages
(lagomorphs, ungulates, and primates) (8). At these early
stages of development, blastomeres are morphologically
indistinguishable, but from the 8-cell stage in the mouse, cells
located in the outside of the embryo undergo a process of
polarization that will influence their fate, biasing outer polar
cells toward trophectoderm (TE) and inner apolar cells toward
inner cell mass (ICM) (9–11) (Figure 1). The formation of
an apical domain in the outer cells triggers a transcriptional
network involving Hippo/YAP signaling and the activation of
Tead4 in the mouse, which leads to the downregulation of the
pluripotency factor Sox2 and the upregulation of Cdx2 from
the morula stage (12–15). Activation of CDX2 downregulates
Oct4 (14, 16) and activates the expression of other TE markers
such as Gata3, Eomes or Elf5 (17), allowing the emergence of
the first cell lineages during the formation of the blastocyst: TE,
which will mediate implantation, and ICM that will form the
embryo proper.

These transcription factors exhibit different temporal
expression profiles and roles in cell differentiation events in
non-rodent mammals (Table 1). TE-specific genes CDX2,
GATA3, or TEAD4 are also expressed in the TE of bovine
(18–20), porcine (21, 22), and human (20, 23, 24) blastocysts, but
remarkable differences in timing of expression and function have
been observed between ungulates and rodents. For instance,
CDX2 protein expression before the blastocyst stage is restricted
to some scattered cells in pig and cattle, contrasting to the
ubiquitous expression in mice (14, 25–27), and both CDX2
and OCT4 are expressed in the TE until late blastocyst stages
in humans, pigs and cattle (25, 26, 28, 29), in contrast to the
mutually exclusive expression observed in mouse blastocysts
(14). In the same line, whereas CDX2 represses Oct4 expression
in the TE of murine blastocysts (16), CDX2 downregulation
does not affect OCT4 expression in bovine embryos (25, 30),
and bovine OCT4 promoter lacks an essential region -CR4-
necessary for repression of OCT4 in mouse TE (25). Recent KO
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FIGURE 1 | Comparative developmental timeline between mice, humans, and farm ungulates. Different cell lineages are indicated. Embryo development in humans

and farm ungulates is delayed compared to mice. Implantation takes place after blastocyst hatching in mice and humans, while in farm ungulates it occurs following

conceptus elongation. Mouse epiblast develops in a cup shape after the blastocyst stage, while in humans and farm ungulates it forms a flat embryonic disc. E,

embryonic day; ICM, inner cell mass; EPI, epiblast; HYPO, hypoblast; TE, trophectoderm.

experiments have also highlighted a different function of OCT4
in rodents vs. ungulates and humans. Oct4 KO mouse embryos
develop to blastocyst, although hypoblast formation—explained
in the next section—is impaired, but the absence of OCT4
protein in OCT4 KO morulae has been observed to impair
blastocyst formation and reduce CDX2 expression in both cattle
(31) and humans (32, 33).

Other transcription factors involved in TE vs. ICM

differentiation in mouse also seem to play different roles in

ungulate development. TEAD4, the upstream regulator of TE

genes such as CDX2 and EOMES, does not appear to be essential
for TE specification in ungulates, as its downregulation does not
impair blastocyst formation in cattle (34, 35), whereas Tead4
ablation in mice completely abolishes blastocoel formation
(36, 37). Furthermore, transcription factors downstream TEAD4
such as EOMES and ELF5 are still not expressed at the blastocyst
stage in cattle (18, 30, 38), pigs (21) and humans (24). Although
gene ablation experiments in ungulates are required to faithfully
elucidate the role of these genes, these evidences strongly suggest
that the transcriptional network required for TE specification
in ungulates is considerably different to that of mice. In this
perspective, early TE specification could have emerged as an
evolutionary mechanism in rodents to allow implantation
at an earlier stage than in other species. Fortunately, recent
improvements in genome edition techniques in ungulates
(39, 40) currently allow the exploration of the molecular
machinery involved in ICM/TE specification in farm animals.
Genome editing constitutes also an unvaluable tool to study
other reproductive processes (41). For instance, the generation of
aromatase-null porcine conceptuses has uncovered that intrinsic
estrogen conceptus production is not required for early maternal
recognition of pregnancy or implantation in pig, in striking
contrast to previous beliefs (42).

The Second Decision: Epiblast vs.
Hypoblast
After the differentiation of the TE, the second cell fate decision
takes place in the ICM and determines the emergence of
the pluripotent epiblast and the extraembryonic hypoblast
(Figure 1). In mice, hypoblast markers are sequentially
expressed, starting with GATA6 at the 8-cell, PDGFRα at the
16-cell, SOX17 at the 32-cell, and GATA4 at the 64-cell stages
(43, 44). Later on, the cells forming the early ICM (E3.5) co-
express both epiblast (OCT4, SOX2, and NANOG) and hypoblast
(GATA6, SOX17, and PDGFRA) proteins, but by E4.5 these
cells will show mutually exclusive expression for both markers
(43, 45). Although the detailed temporal expression pattern
of these markers is not available for most domestic mammals,
there are broad similarities in the gene regulatory network
controlling the second lineage specification within mammals
(46). For example, PDGFRα and SOX17 are also co-expressed
with epiblast markers in the bipotent ICM cells and become
restricted to hypoblast cells in late blastocysts in human, pig
and cattle embryos (18, 21, 24). However, important differences
have been also reported between rodent and non-rodent species
(Table 1). GATA6, together with the epiblast marker NANOG,
are expressed in all cells of the mouse morula and their mutual
repression in the late ICM is essential for epiblast vs. hypoblast
specification (43, 47). However, this might not be a strict
requirement in all mammals, since GATA6 is expressed in all
cell lineages of the blastocyst in primates, pigs and cattle, only
becoming restricted to the hypoblast at later developmental
stages (18, 21, 24, 48–50), and NANOG is not expressed in the
human, pig and cattle morula (21, 26, 51, 52). Once specified,
hypoblast cells reorganize to form an epithelium lying in contact
with the blastocoel cavity (43) and migrate to cover the inner
embryo surface in primates and ungulates (7) (Figure 1).
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POST-HATCHING DEVELOPMENT IN
UNGULATES: CONCEPTUS ELONGATION

A characteristic aspect of ungulate development is TE fate. After
blastocyst hatching, the TE can be classified into mural TE,
which covers the blastocoel cavity, and polar TE, covering the
ICM. While in rodents and primates, the polar TE forms the
extraembryonic ectoderm (ExE), contributing to implantation
and becoming part of the placenta, in lagomorphs (53) and
ungulates (3) this function is accomplished by the mural TE. The
polar TE, also known as Rauber’s layer (RL), is removed through
an apoptotic mechanism (54) around D9–D11 in pigs (55),
D10–D12 in horses (56), D11–D12 in sheep (own unpublished
observations) and by day 14 in cattle (54), directly exposing
the epiblast to the uterine histotroph (Figure 1). Shortly after
the disappearance of the RL, the extraembryonic membranes
(EEMs, composed bymural TE and hypoblast) undergo extensive
proliferation. As a consequence of this proliferation, the embryo
is termed conceptus (EEMs + embryo proper) and it progresses
from spherical through ovoid, tubular and filamentous stages
reaching a length of ∼30 cm in cattle (3) and ∼100 cm in pigs
(57) by the time of implantation, which starts about D14 in pigs
(58), D15 in the sheep (59), and D19 in cattle (60). In other
non-ungulate domestic species, such as rabbits and horses, the
blastocyst also experiences a massive growth of EEMs before
implantation, reaching up to 20mm in horses and 5mm in
rabbits, but it remains spherical (8).

Besides the massive proliferation of EEMs, major
developmental events take place in the epiblast before
implantation: an anterioposterior axis is established that
will outline the body plan, and the three germ layers become
specified, together with the germline (61–63). Before the RL
disintegrates, the epiblast forms a small cavity that will be opened
once the RL disappears, unfolding the epiblast (64, 65). This
contrasts with murine and human development, where the
epiblast cavitates to form the amniotic cavity (66–68) (Figure 1).
Roughly concomitant to RL disintegration, the ungulate epiblast
develops into a clearly identifiable circular light structure:
the embryonic disc (ED), where epiblast cells develop tight
junctions and form a basal lamina toward the hypoblast (63).
When the ED is fully formed, expression of core pluripotency
markers SOX2, OCT4, and NANOG is restricted to the epiblast
(21, 25, 69). During the next days, the ED will acquire an oval
shape and a higher density at the posterior edge, associated with
the ingression of the first cells into the primitive streak and the
beginning of gastrulation. Some cells at the posterior part of the
epiblast start to express the mesoderm marker BRACHYURY
(T) and to downregulate SOX2 before the primitive streak is
morphologically visible (59, 69–72). These T-positive cells will
be the first cells to egress into the space between the epiblast
and the hypoblast and will form the mesoderm, which quickly
migrates to cover the whole embryonic disc. At the same time,
more epiblast cells continue to egress through the primitive
streak to form the endoderm, which lies on the dorsal hypoblast,
while the mesoderm forms a mesenchyme between the epiblast
and the endoderm. Epiblast cells that do not pass through the
streak will form the ectoderm (73, 74). The primitive streak will
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be extended in an anterior direction, being the anterioposterior
axis of the embryo proper aligned with the proliferation of
the extra-embryonic membranes (i.e., conceptus elongation
axis) (75).

Our knowledge of the genes and signaling pathways
controlling gastrulation in mammals is mainly derived from
the mouse embryo, in which gastrulation occurs following
implantation. Key genes involved in gastrulation such as
BRACHYURY, EOMES, BMP4, NODAL, CER1, or FOXA2 seem
to play conserved roles in ungulates, although with some
differences in their location and temporal expression (3, 59, 63,
65, 71, 76, 77).

EPIBLAST DEVELOPMENT CONSTITUTES
THE MAJOR OBSTACLE FOR EMBRYO
SURVIVAL

The developmental defects ultimately leading to embryo
mortality during conceptus elongation have been difficult to
explore, given the challenges for obtaining elongating embryos
in vivo. However, several in vitro evidences and in vivo
observations point to the development of the epiblast as the
most vulnerable process. In vitro evidences show that the
requirements for trophectoderm and hypoblast development
are less restrictive than those required for epiblast survival.
Primary bovine trophectoderm cell cultures can be established
using relatively simple media supplemented with 10 % serum
(78, 79), whereas conditions required for truly pluripotent
epiblast cell culture in farm animals remain to be captured
(80). In the same line, early in vitro culture systems designed
for the development of post-hatching ungulate embryos were
successful in achieving trophectoderm proliferation and some
degree of hypoblast migration, but the epiblast degenerated (81–
83). To attain epiblast survival in vitro, we required a way more
complex medium (termed N2B27) containing aminoacids, lipids,
vitamins, hormones, and growth factors not present in previous
systems (7). Yet, under our system epiblast survival is observed
in 55–60% of the in vitro produced embryos, whereas trophoblast
and hypoblast proliferation is found in all surviving structures.

Failure in epiblast development has been also observed in vivo.
Embryo transfer of in vitro produced (IVP) embryos often results
in lower pregnancy rates compared to their in vivo counterparts,
as it will be discussed below, and failures in epiblast development
seem to be the main responsible for such developmental arrest.
IVP-derived bovine conceptuses have been reported to exhibit
smaller EDs than their in vivo counterparts (84), and multiple
studies have reported a remarkably high percentage (23–65%)
of IVP-derived conceptuses lacking EDs (4, 85–90), as reviewed
by Ealy et al. (91). Impaired ED development has also been
observed in ovine and bovine embryos produced by somatic cell
nuclear transfer (SCNT), a technology that induces pleiotropic
effects over different lineages (92, 93). Interestingly, embryos
lacking an ED were also observed after SCNT at a very high
rate, ranging from 20 to 58% (Table 2) (89, 94, 96–99), and
failures in a mechanism that populates inner cells based on
asymmetric divisions of outer cells have been proposed to be

TABLE 2 | Embryonic disc development in embryos produced by assisted

reproductive technologies.

Species ART Embryo

transfer

Embryo

recovery

ED rate (%) References

Sheep AI D6 D11 5/6 (83) (94)

AI+IVC D6 (vit) D11 6/6 (100)

SCNT D6 (vit) D11 7/13 (54)

AI D6 D13 9/9 (100)

AI+IVC D6 (vit) D13 6/6 (100)

SCNT D6 (vit) D13 9/13 (69)

Cow AI D7 D16 7/19 (37) (84)

IVF D7 D16 6/17 (35)

Cow AI D6–D7 D14 18/20 (90) (96)

IVF D6 D14 13/18 (72)

SCNT D6 D14 24/33 (73)

Cow IVF D7 (vit+fresh) D14 11/20 (55) (89)

SCNT D7 (vit+fresh) D14 8/19 (42)

Cow IVF D7 D12 –/227 (68) (4)

IVF D7 D13 –/69 (78)

IVF D7 D14 –/182 (83)

Cow IVF D7 D17 5/6 (83) (97)

SCNT D7 D17 12/19 (63)

Cow IVF D7 D14–D15 19/20 (95) (99)

SCNT D7 D14–D15 34/46 (74)

Cow IVF D7 D15 6/7 (83) (85)

Cow AI – D18 10/10 (100) (98)

IVF D7 D18 10/10 (100)

SCNT D7 D18 24/30 (80)

Cow IVF D7 D13–D14 15/20 (75) (100)

SCNT

(transgenic cells)

D7 D13–D14 9/12 (75)

Cow IVF D7 D14 20/26 (79) (90)

AI, Artificial Insemination; IVC, In vitro culture; SCNT, Somatic Cell Nuclear Transfer;
“vit”, vitrified/frozen.

responsible for developmental arrest in SCNT rabbit embryos
(95). Moreover, transcriptional alterations in embryonic lineages
of SCNT embryos were 10–20-fold more abundant in the epiblast
than in extraembryonic lineages, both in cattle and mice (89,
98, 101, 102). Accordingly, some authors have observed that
normal elongation in SCNT cattle embryos was more frequent
(46/50 embryos) than normal ED formation and gastrulation
(38/50) (98).

LINEAGES SPECIFICATION MARKERS TO
ASSESS EMBRYO QUALITY IN FARM
ANIMALS

In vitro embryo production enables a myriad of applications
in livestock species, ranging from boosting the number of
embryos obtained from females of high genetic merit to
overcoming infertility problems associated to heat stress (103–
105). According to the International Embryo Transfer Society
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(IETS), while the number of in vivo derived embryos transferred
seems to have stabilized in cattle, the use of in vitro-produced
(IVP) embryos is currently increasing (742,908 embryos
transferred worldwide in 2018) (106). However, despite all
efforts performed to optimize assisted reproductive technologies
(ARTs), embryo production systems are still not fully efficient and
important differences have been reported between in vitro and
in vivo embryos (107). Many studies have shown that pregnancy
rates after transfer of an in vitro embryo are between 10 and 40%
lower than with embryos generated by artificial insemination or
by Multiple Ovulation Embryo Transfer (MOET) (6, 108–111).
As previously mentioned, IVP embryos often show compromised
development of embryonic lineages—particularly the epiblast—
following embryo transfer, and it has been estimated that 80%
of pregnancy failures following embryo transfer of IVP embryos
occur before day 40 of pregnancy (91). Unfortunately, these rates
have not improved in the last decades.

In order to improve in vitro embryo production techniques, it
is essential to assess embryo quality, i.e., the odds of post-transfer
survival, to determine which modifications of current protocols
are beneficial for subsequent embryo survival. Arguably, the best
embryo quality assessment would be the analysis of embryo
development following embryo transfer, but this test holds
two major drawbacks (1) it is expensive, time-consuming and
requires the use of experimental animals and (2) it is inherently
bound to intrinsic variabilities in uterine receptivity between
females (112, 113). Morphological evaluation (114), widely used
both in humans and farm animals to select embryos before
transfer due to its non-invasive nature, is certainly useful, as
pregnancy rates are higher when better-quality grade embryos
are transferred (115–118). However, embryo grade is a subjective
criterion; it does not always reflect competence to establish
pregnancy (119), and it does not necessarily infer proper
development of embryonic lineages. For instance, early mouse
mutant embryos lacking a specific cell lineage cannot be visually
distinguished from their wildtype counterparts, although they
hardly progress beyond implantation (37, 120–123). In this
perspective, the analysis of the development of specific lineages
provides deeper insights of embryo quality.

Successful development of the first cell lineages is essential
for implantation and further development to term (124). The
most commonly used method to analyse the first lineage
differentiation (i.e., ICM vs. TE) in blastocysts from livestock
species has been differential cell staining, a technique based on
selective permeabilization of the outer blastocyst cells which
will be subsequently stained with propidium iodide (125, 126).
Unfortunately, this technique only provides information on
cell location, but fails to assess if those cells are properly
committed to TE or ICM, as the expression of specific lineage
markers is not determined. Recent studies performing single-cell
transcriptomics in farms animals have enabled the identification
of lineage markers. The first study using this technology in
mouse pre-implantation embryos (127) was soon followed by
other reports in human (24, 48), monkey (49), cow (18, 19,
128) and pig (21), which revealed relevant differences between
rodents and non-rodents mammals. In bovine, two studies based
on single cell qPCR analysis of IVP morulae and expanded

blastocysts observed that while some classical hypoblast markers
in the mouse (GATA6, GSC, and HNF4A) were not specific
to this lineage in bovine, SOX17, GATA4, and PDGFRA were
largely specific (18, 19). Furthermore, the core pluripotency
markers NANOG, SOX2, and OCT4 were detected in epiblast
cells, although NANOG, FGF4, and TDGF1 were deemed as
the most epiblast-specific, and trophectoderm cells exclusively
expressed CDX2, GATA2, GATA3, KRT8, PECAM1, orDAB2 (18,
19). In the pig, scRNAseq of in vivo-derived morulae, early and
late blastocysts, and spherical embryos, revealed that although
NANOG, SOX2, and OCT4 are expressed in epiblast cells, SOX2
is the most specific epiblast marker, followed by NANOG (21).
GATA2 and GATA3 were reliable trophoblast markers, while
CDX2 was barely expressed in early blastocysts, and TEAD4
was expressed in all cell lineages. Finally, hypoblast cells were
characterized by specific expression of SOX17, PDGFRA,GATA4,
or NID2 (21).

Expression of different lineage-specific markers can be
analyzed at the protein level through embryo immunostaining
(Figure 2). Although most commercial antibodies are designed
to react with mouse and human proteins, some of them can
also be used to label pig, sheep and cow embryos (Figure 3
and Table 3). Antibodies against the core pluripotency markers
OCT4, NANOG, and SOX2 have been regularly used to label ICM
and epiblast cells. Particular cautionmust be paid when analyzing
OCT4, as this protein is expressed in all cell lineages in bovine
and porcine blastocysts (25, 26, 130, 133), being its expression
restricted to the epiblast only at later stages [E11 in bovine
(25)]. NANOG protein has been specifically detected in ICM
cells in bovine (26, 51, 131, 134) and porcine blastocysts (21).
However, SOX2 seems to be the most specific epiblast marker
in pig (21, 55, 130, 135), sheep (Figure 2) and bovine embryos
(7, 30, 31, 131, 134). Regarding TE markers, CDX2 remains
the most commonly used marker, being TE-specific in pig (26,
130), sheep (Figure 2) and cow blastocysts (7, 25, 26). In our
experience (unpublished observations, Figure 2) GATA3 is also a
reliable TEmarker in porcine, ovine and bovine embryos. Finally,
regarding to hypoblast, SOX17 specifically labels hypoblast cells
from the blastocyst up to the elongated conceptus in bovine
(7), ovine (Figure 2) and porcine embryos (21, 69). Other
classical hypoblast markers in mice include GATA6, ubiquitously
expressed in early blastocysts and becoming restricted to
hypoblast cells in late bovine (26, 51), ovine (Figure 2) and
porcine blastocysts (130), and GATA4, ubiquitously expressed
in bovine late blastocysts and becoming specifically restricted to
hypoblast cells in post-hatching E10.5 embryos (51, 129), and in
some cells close to the epiblast in late pig blastocysts (132).

Similarly to the conventional quality assessment in blastocysts,
the developmental analysis of elongated conceptuses has
been traditionally based on morphology, generally limited to
conceptus length (136–139). Conceptus length constitutes a good
proxy for the development of extra-embryonic membranes but
such development may not be coupled to the development of
the epiblast, the most sensitive lineage. In other words, the
“bigger is better” concept routinely applied to assess conceptus
development may be wrong, as an structure only composed by
EEMs (i.e., lacking an ED) will not develop any fetus. In this
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FIGURE 2 | Expression of lineage-specific markers in ovine embryos at different developmental stages. Fluorescence images of embryos stained for SOX2 (epiblast);

SOX17/GATA6/FOXA2 (hypoblast/endoderm); CDX2/GATA3 (trophectoderm); T (mesoderm). Nuclei were counterstained with DAPI (merge). (a,b) D9 Hatched

blastocysts; (c,d): D11 Spherical embryos; (e) D13 Tubular embryo; (f) D13 ED without Rauber’s layer; (g) gastrulating ED; (h) section of a gastrulating ED. Scale bars

= 50µm for (a,b,f,h); 100µm for (c,d,g); 500µm for panel (e).

FIGURE 3 | Lineage-specific markers expressed at different developmental stages in farm ungulate embryos. ED, embryonic disc; ICM, inner cell mass;

TE, trophectoderm.

regard, verifying the presence and proper development of the
ED is essential to determine conceptus quality. To this aim,
gastrulation markers have still not received as much attention
as early lineages differentiation markers, since conceptuses at
gastrulation stages are less accessible for experimental studies.
However, BRACHYURY protein has been first observed in
nascent mesoderm cells in the posterior epiblast of ovoid pig

embryos (69, 71), and both BRACHYURY and EOMES are
located in the posterior part of the ED at the same time that
SOX2 expression is restricted to the anterior part in elongating
sheep and cow embryos (Figure 2). Finally, SOX17 and FOXA2
are expressed in the migrated hypoblast and in the definitive
endoderm in pig (71), sheep and cow elongating embryos (own
unpublished observations, Figure 2).
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TABLE 3 | Lineages-specific antibodies that label ungulate embryos.

Lineage Marker Species Antibody Reference

Inner cell mass/epiblast OCT4 Bovine Abcam, ab-19857 Own unpublished observations

Santa Cruz, sc-8628* (31)

Santa Cruz, sc-9081* (25)

Porcine Abcam, ab-27985 (129)

Santa Cruz, sc-5279 (26)

Santa Cruz, sc-8626* (31, 55, 130)

NANOG Bovine Abcam, ab-21603 (26)

eBioscience 14-5768 (131)

Porcine Peprotech 500-P236 (21, 129, 132)

Abnova, PAB6837 (130)

SOX2 Bovine R&D, AF2018 (131)

Millipore, AB5603 (30)

Biogenex, AN833-RTU (31)

Bovine, porcine Santa Cruz, sc-17320* (30, 130)

Bovine, ovine, porcine Invitrogen, 14-9811 (7) and own unpublished observations (Figure 2)

Porcine R&D, MAB2018 (129)

Santa Cruz, sc-17320* (55)

Trophectoderm CDX2 Bovine Abcam, ab-74339 (25)

Bovine Abcam, ab-7848 (31)

Porcine, bovine Chemicon, AB4123 (26)

Bovine, ovine, porcine Biogenex, MU392A-UC (7, 130) and own unpublished observations (Figure 2)

GATA3 Bovine, ovine, porcine Abcam, ab-199428 Own unpublished observations (Figure 2)

Hypoblast/definitive endoderm GATA6 Bovine Santa Cruz, sc-9055* (26)

Bovine, ovine R&D, AF1700 Own unpublished observations (Figure 2)

Porcine Abcam, Ab22600 (130)

GATA4 Porcine Santa Cruz, sc-25310 (129)

Santa Cruz, sc-1237* (132)

SOX17 Bovine, ovine, porcine R&D, AF1924 (7, 21, 69) and own unpublished observations (Figure 2)

FOXA2 Bovine, ovine, porcine Cell Signaling Technology, 8186S (69) and own unpublished observations (Figure 2)

Mesoderm T Bovine, ovine, porcine R&D, AF2085 (69) and own unpublished observations (Figure 2)

EOMES Porcine, ovine R&D, MAB6166 (Own unpublished observations)

*These antibodies have been discontinued.

POST-HATCHING IN VITRO

DEVELOPMENT TO INFER EMBRYO
QUALITY OF IVP EMBRYOS

Direct assessment of the developmental potential of IVP embryos
beyond the blastocyst stage (i.e., during the most vulnerable
period) has been traditionally hampered by the requirement
of time and resource consuming in vivo experiments involving
embryo transfer and posterior recovery (4, 89, 100, 138), as no
in vitro system able to support embryo development beyond
blastocyst hatching was available for any farm animal. In the last
years, an increasing interest has been placed on developing post-
blastocyst in vitro culture systems to better investigate embryo
development and mortality during this developmental window
in different mammalian species. Human embryos have been
cultured in the absence of maternal tissues up to D13 (140, 141)
in a system that also allows mouse post-blastocyst culture up to
egg cylinders (142). This system was further improved to allow

development of human embryos up to gastrulating stages, and
deep embryo characterization by single-cell transcriptome and
methylome mapping (143, 144).

In farm animals, hatched blastocysts attach to the bottom of

the culture dish or grow in rounded form until they collapse
under normal pre-hatching embryo culture conditions. Although

explanted EDs were cultured in vitro in rabbits (145, 146),
a livestock species where gastrulation also occurs in a flat
embryonic disc, limited success was achieved in ungulates
until recently. Pioneer studies established an in vitro post-
hatching development (PHD) system based on agarose gel
tunnels and serum- and glucose-enriched medium that achieved
some expansion of the trophectoderm and certain proliferation
of hypoblast cells in bovine embryos up to D15, but hypoblast
migration was incomplete and epiblast cells were unable to
survive (81–83). In order to promote the development of the
epiblast—the most stringent cell lineage—we have developed a
system based on N2B27 medium, a defined medium composed
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by Neurobasal and DMEM/F12 media, and N2 and B27
supplements which was initially designed to culture neurons
(147), and it was employed later for embryonic stem cells
derivation and culture (148). Under this system, bovine (7)
and ovine (own unpublished data) blastocysts develop beyond
hatching, attaining complete hypoblast migration and epiblast
survival and development into an early ED.

This pioneer system paves the way for future research focused
on improving the conditions of in vitro embryo production or
associated techniques such as embryo freezing or vitrification,
as it allows direct embryo quality assessment without the
need of experimental animals. The potential roles on lineages
development of specificmetabolites, hormones, or growth factors
whose levels are altered in detrimental conditions for embryo
survival, such as negative energy balance in post-partum dairy
cows (90), can also be analyzed in this system.

CONCLUSIONS AND FUTURE
DIRECTIONS

Being the most vulnerable period for embryo survival in
ungulate species, conceptus elongation still constitutes a black
box in Developmental Biology. Luckily, recent findings based
on transcriptome analysis and gene ablation have started
to shed light into the cell differentiation, proliferation and
migration processes governing conceptus elongation, which in
some cases differ greatly from those occurring in mice, the
most studied mammalian model. The molecular markers of
lineage differentiation in ungulates unveiled by these experiments
are extremely useful to assess proper lineage development in
in vitro produced embryos, where epiblast development has been
highlighted as themajor obstacle to attain a successful pregnancy.
Besides, recent advances on in vitro culture have moved forward
the limits of in vitro embryo development, providing a system
to directly evaluate the developmental potential of IVP embryos

during the most sensitive period for developmental failure.
Such system provides a direct embryo quality assessment for
testing diverse modifications in the IVP protocol or in associated
techniques such as vitrification or freezing, aimed to improve
pregnancy rates following embryo transfer.
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