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Abstract: Retinoblastoma (Rb) is a pediatric intraocular malignancy that is proposed to originate from
maturing cone cell precursors in the developing retina. The molecular mechanisms underlying the
biological and clinical behaviors are important to understand in order to improve the management of
advanced-stage tumors. While the genetic causes of Rb are known, an integrated understanding of
the gene expression and metabolic processes in tumors of human eyes is deficient. By integrating
transcriptomic profiling from tumor tissues and metabolomics from tumorous eye vitreous humor
samples (with healthy, age-matched pediatric retinae and vitreous samples as controls), we uncover
unique functional associations between genes and metabolites. We found distinct gene expression
patterns between clinically advanced and non-advanced Rb. Global metabolomic analysis of the
vitreous humor of the same Rb eyes revealed distinctly altered metabolites, indicating how tumor
metabolism has diverged from healthy pediatric retina. Several key enzymes that are related to
cellular energy production, such as hexokinase 1, were found to be reduced in a manner corre-
sponding to altered metabolites; notably, a reduction in pyruvate levels. Similarly, E2F2 was the
most significantly elevated E2F family member in our cohort that is part of the cell cycle regulatory
circuit. Ectopic expression of the wild-type RB1 gene in the Rb-null Y79 and WERI-Rb1 cells rescued
hexokinase 1 expression, while E2F2 levels were repressed. In an additional set of Rb tumor samples
and pediatric healthy controls, we further validated differences in the expression of HK1 and E2F2.
Through an integrated omics analysis of the transcriptomics and metabolomics of Rb, we uncovered
a significantly altered tumor-specific metabolic circuit that reduces its dependence on glycolytic
pathways and is governed by Rb1 and HK1.
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1. Introduction

Retinoblastoma (Rb) is the most common pediatric intraocular tumor, characterized
by the presence of retinal lesions with vascularization, vitreous seeding, retinal detachment,
and calcification [1]. The major clinical goal in treating children with Rb involves preserving
life and vision. It is caused by the loss of the functional retinoblastoma protein (pRb),
affecting approximately 8000 children annually [2]. Since pRb is a tumor suppressor
protein, bi-allelic mutations in RB1 and the amplification of oncogenes such as MYCN
relieve cell-cycle checkpoints, thereby driving neoplastic transformation in precursor retinal
cells [3]. RB1 loss causes various alterations to cellular functions through transcriptional and
epigenetic mechanisms [4], a greater understanding of which can provide novel treatment
strategies. Although significant advances have been made to understand the genetics [5]
and pathogenesis of retinoblastoma [6], it is still the most aggressive and fatal pediatric
cancer in developing countries [7,8]. Rb is curable with global salvation strategies [9],
and is universally fatal if left untreated. Most Rb tumors are diagnosed at advanced
stages, which exhibit resistance to conventional therapy and possess a metastatic risk [10].
Therefore, understanding the molecular mechanism of the Rb tumor subtypes, particularly
the molecular milieu in advanced tumors to develop targeted therapies, remains the most
important prerequisite for better treatment outcomes [11].

Although there have been numerous reports on specific molecular aspects of retinoblas-
toma [12], concerted efforts to identify molecular pathways and factors that are conserved
across the genetic, transcriptomic, and metabolomic profiles in the same tumor tissues are
lacking. Such a unified investigation strategy is well suited to reveal better correlations
between genetic, gene expression, and metabolic profiles that can be mechanistically linked
to disease progression [13]. In this study, we analyzed the transcriptomic and metabolomic
profiles of Rb tumors and vitreous humor to identify markers that are associated with the
different stages of the cancer. Our goal was to identify, in human tumor samples, specific
markers and enriched pathways that are specific to the cancer stage, which can be used to
better understand the disease and to tailor treatment modalities more accurately, an unmet
clinical need.

2. Materials and Methods
2.1. Clinical Samples

The study was conducted by the Declaration of Helsinki principles under a proto-
col approved by the institutional ethics committee of Narayana Nethralaya (EC Ref. no:
C/2013/03/02). Informed written consent was received from all parents before inclusion
in the study. Histology confirmed Rb tumors (n = 9) comprising Group E and Group D
of the age range 0.2–4 years, and pediatric controls (n = 2) of the age range 0.2–0.3 years,
were used for the microarray and metabolomics study. The details of clinical samples,
including age, gender, laterality, tumor viability, and clinical and histopathology details, are
mentioned in Table 1. For the immunohistochemistry validations, we have used additional
Rb subjects (n = 25) comprising Group E and Group D of the age range 0.2–4 years. Clinical
and histopathology details are mentioned in Supplementary Table S1.

2.2. Tumor mRNA Profiling

Total RNA was isolated from 9 Rb tumors and 2 control pediatric retinal samples, using
the Agilent Absolutely RNA miRNA kit (cat#400814, Agilent Technologies, Santa Clara,
CA, USA) according to the manufacturer’s instructions. For the cell culture microarray,
total RNA was isolated from RB1-null Y79 and RB1-overexpressed Y79 cells, using the
Agilent Absolutely RNA miRNA kit. Twenty-five nanograms of RNA was taken from
each Rb tumor and each control pediatric retina, and the cells were labeled with Cy3 dye
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using an Agilent Low Input Quick Amp Labeling Kit (p/n 5190-2305, Agilent Technologies,
Santa Clara, CA, USA). Gene expression microarray analysis was performed using the
Agilent SurePrint G3 Human GE 8× 60 K V2 Microarray (Agilent Technologies, Santa Clara,
CA, USA) and an Agilent SureScan Microarray scanner. The gene expression data were
extracted using Agilent Feature Extraction Software (11.5.1.1) and analyzed using Agilent
GeneSpring GX 13.1. The analysis was carried out using a t-test unpaired statistical method
with the Benjamini–Hochberg FDR method.

Table 1. Clinical and histopathological details of samples.

ID Sex Laterality Age at Presentation Clinical Risk IIRC Group AJCC Staging

P1 M Bilateral 15 months Advanced Group E cT3b
P2 F Unilateral 20 months Advanced Group E cT3b
P3 M Unilateral 24 months Advanced Group E cT3a
P4 F Bilateral 4 months Advanced Group E cT3b
P5 M Bilateral 30 months Advanced Group E cT3b
P6 F Bilateral 21 months Non-advanced Group D cT2b
P7 F Unilateral 28 months Non-advanced Group D cT2b
P8 M Unilateral 20 months Non-advanced Group D cT2b
P9 M Unilateral 21 months Non-advanced Group D cT2a

Control 1 F NA 3 months Cardiac Arrest (no ocular complications)
Control 2 F NA 2 months Multiple organ dysfunction (no ocular complications)

2.3. Metabolomics

The samples from 9 patients and 2 controls were extracted using methanol:ethanol
(1:1 v/v). The extracted samples were subjected to LC/QTOF-MS analysis, using an Agilent
1290 Infinity LC System coupled to an Agilent 6550 Accurate mass QTOF LC-MS system
(Agilent Technologies, Santa Clara, CA, USA). The data was acquired using electrospray
ionization in positive and negative ion modes using a modified polar reverse-phase C18
column and an HILIC column. Molecular features were detected using Agilent MassHunter
Profinder (v. B.06.00), and were searched and confirmed by matching them against the
Agilent METLIN MS/MS library. Agilent Mass Profiler Professional software (MPP) was
used for the statistical comparison of the LC/MS data from the Rb and control samples.

2.4. Multi-Omic Data Analysis

The metabolomics and gene microarray results were combined and analyzed using a
pathway-centric approach. Transcriptomics and metabolomics data were co-visualized in a
pathway context using the Multi-Omics Analysis tool of GeneSpring GX 13.1. This enabled
the identification of the differential pathways and entities across both gene expression
and metabolomics. Information related to Agilent Technologies products described in this
manuscript is for research use only, and not for use in diagnostic procedures.

2.5. Pathway Enrichment Analysis and Regulatory Network Analysis

The KEGG functional enrichment of the tumor microarray, metabolomics, and the cell
culture microarray was carried out using the GeneSpring GX 13.1, NetworkAnalyst 3.0,
and MetaboAnalyst 5.0 packages; and the pathways with p < 0.05 and fold-change > 2.0
were significantly enriched. KEGG pathway enrichment analysis using GeneSpring GX
13.1 was also conducted on the up- and downregulated genes and metabolites that were
involved in relationship pairs. Based on the interaction information, the construction of
gene interactions was performed using NetworkAnalyst and Cytoscape 3.2. The entire
metabolome mapping and gene-metabolite interactions network was constructed using
MetaboAnalyst 5.0.
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2.6. Gene Expression Analysis

Total RNA that was extracted for microarray from the clinical subjects was also used
for RT-PCR validation. RT-PCR was performed with Agilent Brilliant III Ultra-Fast RT-PCR
reagent (cat#600884, Agilent Technologies, Santa Clara, CA, USA), using Agilent AriaMX
real-time PCR instruments. The relative mRNA expression levels were quantified using
the C(t) method. For in vitro assays, total RNA was isolated from cells using the Trizol
reagent (Invitrogen, Waltham, MA, USA) according to the manufacturer’s protocol. A
total of 1 µg of RNA was reverse transcribed using the Bio-Rad iScript cDNA synthesis kit
(cat#1708890, Bio-Rad, Hercules, CA, USA), and quantitative real-time PCR was performed
using the Kappa Sybr Fast qPCR kit (cat#KK4601, Kapa Biosystems Pty (Ltd.), Cape Town,
South Africa) using the Bio-Rad CFX96 system. Relative mRNA expression levels were
quantified using the C(t) method. The results were normalized to housekeeping human
β-actin. The details of the primers used are described in Table S3.

2.7. Cell Lines

WERI-Rb1 and Y79 cells were obtained from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). Cells were cultured in RPMI 1640 medium (Gibco,
Grand Island, NY, USA, cat#11875093) supplemented with 10% FBS and 1% Pen Strep
(Penicillin–Streptomycin), and maintained at 37 ◦C in a humidified atmosphere of 5% CO2,
with intermittent shaking in an upright T25 flask.

2.8. Histopathology & Light Microscopy

Paraffin-embedded specimens of Rb tumor (n = 9) and control retina (n = 2) were used.
A total of 4 µm paraffin sections were dewaxed at 60 ◦C and rehydrated in decreasing
concentrations of ethanol. Slides were stained with hematoxylin and eosin according
to standard procedures. Brightfield images were captured using an Olympus CKX53
microscope and Carl Zeiss Axioplan 2 microscope (Carl Zeiss, Oberkochen, Germany).

2.9. Immunohistochemistry

For IHC, 4 µm sections of Rb tumor (n = 25) and pediatric retina (n = 2) were deparaf-
finized and rehydrated, and were subjected to heat-induced epitope retrieval using citrate
buffer for 20 min at 100 ◦C. After an endogenous peroxidase block, tissues were incubated
overnight at 4 ◦C with antibodies for Ki67 (1:1000; cat#ab16667, Abcam, Cambridge, UK),
Rb (1:500; cat#9309, Cell Signaling Technology, Danvers, MA, USA), phospho-Rb (1:500;
cat#8516, Cell Signaling Technology, Danvers, MA, USA), E2F1(1:1000; cat#sc251, Santa
Cruz Biotechnologies, Dallas, TX, USA), E2F2 (1:500, cat#209662, Abcam, Cambridge, UK),
and HK1 (1:500, cat#ab55144, Abcam, Cambridge, UK). The signals were developed using
the DAB substrate (Dako Envision System, Agilent Technologies, Santa Clara, CA, USA).
Images were analyzed and captured at Brightfield using an Olympus CKX53 microscope.
Following the assessment of the staining using manual scoring, the scores were tabulated
as ranks over a range of 0–3, with 0 indicating less than 10% positive cells and 3 indicating
more than 80% positive cells.

2.10. Lentiviral Plasmid and Vector

We constructed a lentiviral plasmid expressing the RB1 gene in the pCL20 backbone.
The cloning strategy was designed using ApE software (Version 8.5.2.0). The pCL20c vector
was digested with the 5′ SmaI site and the 3′ KpnI site to incorporate the RB1 gene. Forward
and reverse primers with compatible restriction sites were designed to separate the RB1
gene via PCR amplification from pSG5L HA-RB (Addgene, Cambridge, MA, USA). The
details of the cloning primers used are:

RB1 Forward: 5′-CCTACGACGTGCCCGACTACG-3′.
RB1 Reverse: 3′-AGTGACCGGTTCATTTCTCTTCCTTGTTTGAG-5′.
Post-ligation, the product was transformed using DH5α and the colonies were screened

using restriction mapping and confirmed using sequencing.
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2.11. Western Blotting

For Western blot analysis, cells were lysed in RIPA buffer (20 mM Tris pH 8.0, 0.1%
SDS, 150 mM NaCl, 0.08% sodium deoxycholate, and 1% NP40 supplemented with 1 tablet
of protease inhibitor (Complete ultra mini-tablet, Roche, Indianapolis, IN, USA) and
phosphatase inhibitor (PhosStop tablet, Roche, Indianapolis, IN, USA)). A total of 20 µg
of total protein was loaded per lane, and protein was separated using SDS-PAGE. The
separated proteins on the gel were transferred onto a PVDF membrane and were probed for
specific antibodies against Rb (cat#9390; Cell signaling, Danvers, MA, USA), phospho-Rb
(cat#8516, Cell signaling, Danvers, MA, USA), E2F2 (ab209662; Abcam, Cambridge, UK),
HK1(cat#2024; Cell signaling, Danvers, MA, USA), and GAPDH (cat#5174; Cell signaling,
Danvers, MA, USA) at 1:1000 dilution in 5% BSA in 1× TBST, overnight at 4 ◦C. After
4 washes with 1× TBST for 10 min, membranes were incubated with HRP-conjugated anti-
mouse (cat#7076; Cell signaling, Danvers, MA, USA) or anti-rabbit antibodies (cat#7074;
Cell signaling, Danvers, MA, USA) at 1:2000 dilution for 2 h. Images were visualized using
the Image Quant LAS 500 system (GE Healthcare Life Sciences, Piscataway, NJ, USA).

2.12. Statistical Analysis

A statistical analysis was performed using GraphPad Prism 8. Data are presented
as the mean ± S.D. unless indicated otherwise, and p < 0.05 was considered as being
statistically significant. For all representative images, results were reproduced at least three
times in independent experiments. For all quantitative data, the statistical test used is
indicated in the legends. A statistical ‘decision tree’ is shown in Supplementary Figure S4.
Heatmaps of the Z-transformed gene expression level of the mRNA microarray were
created using Python 3.7 Seaborne 0.9.0.

3. Results
3.1. Transcriptomic Profiling of Retinoblastoma Tumors Identifies Distinct Expression Profiles in
Rb Subtypes

To unravel the molecular networks in Rb tumors, we performed total mRNA profiling
using gene expression microarrays in enucleated tumor tissues from nine retinoblastoma pa-
tients and two age-matched pediatric retinae as the control (Table 1), as the discovery cohort.
We identified distinct dysregulated gene clusters, implicating gross differences between Rb
tumors and the controls (Figure 1A). The top upregulated genes identified in the microarray
comprised RB1 pathway-related transcription factors [14] such as E2F1 (p < 0.05, FC = 29.2),
E2F2 (p < 0.05, FC = 540.2), and key cell cycle checkpoint genes [15] such as CCNB2 (p < 0.05,
FC = 319.4), CCNE2 (p < 0.05, FC = 46.81), CDK1 (p < 0.05, FC = 39.81), CDKN2A (p < 0.05,
FC = 29.28), and CHEK2 (p < 0.05, FC = 26.9). We also identified the significant upreg-
ulation of immune system-related genes such as CD86 (p < 0.05, FC = 493.5) and CD19
(p < 0.05, FC = 13.27) [16], and epigenetic regulators such as SYK [17] (p < 0.05, FC = 14.9)
and PRDM1 [18] (p < 0.05, FC = 15.89) in Rb tumors. Strikingly, we also identified the
mitochondrial TCA-related FAHD1 gene [19] (p < 0.05, FC = 2.38) to be significantly upregu-
lated in Rb subjects. The top downregulated genes comprised photoreceptor-related genes
such as RHO [20] (p < 0.05, FC = −1058.9), NRL [21] (p < 0.05, FC = −104.00), PDE6D [22]
(p < 0.05, FC = −7.178), CRABP1 [23] (p < 0.05, FC = −140.60), and glycolytic factors such
as HK1 [24] (p < 0.05, FC = −17.46), SLC2A1 [25] (p < 0.05, FC = −8.16), and FOXO3 [26]
(p < 0.05, FC = −5.08). The methyltransferase MGMT [27] (p < 0.05, FC = −4.8) and RB1
(p < 0.05, FC = −4.36) were significantly downregulated in Rb tumors. We applied a stan-
dard QC procedure to the dataset considering the sample quality, hybridization quality,
signal comparability, and array correlation. The boxplot of raw intensities (Figure S1A)
and the density histogram of the log intensity distribution (Figure 1B) of each array before
normalization provide an overview of the dataset quality. Normalization was able to
sufficiently remove smaller discrepancies, leading to comparable distributions between
all arrays (Figures 1C and S1B). The findings prompted us to elucidate the microarray
analysis in the Rb subtypes. We segregated the Rb cohort into advanced Rb (defined as
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AJCC Stage [28] cT3 or IIRC [29]) and non-advanced Rb (defined as AJCC Stage cT2 or IIRC
Group D), based on their clinical and histopathological information (advanced Rb, n = 5;
non-advanced Rb, n = 4). Using the clustering analysis functionality of GeneSpring GX
13.1 (Agilent Technologies, Santa Clara, CA, USA), we found that the advanced Rb subjects
(P1–P5) strongly correlated with each other, compared to the non-advanced (P6–P9) and the
controls (Figure S1C). However, advanced Rb subjects exhibited a weak correlation with
the controls in the microarray (Figure 1D, rs = 0.42), which is suggestive of their greater
de-differentiation state, while non-advanced Rb subjects showed a better correlation with
the controls (Figure 1E, rs = 0.9). We identified distinct clusters of gene expression profiles
between the advanced Rb, non-advanced Rb, and the controls (Figure 1F). In the advanced
Rb tumors, we identified 6089 genes using microarray, of which 1027 gene sets were
unique to the clinical pathology-defined high-risk tumor (p < 0.05, FC > 2). We identified
2633 genes that were unique to the non-advanced Rb subtype out of 7695 genes detected in
the microarray (p < 0.05, FC > 2), compared to age-matched healthy retinae (Figure 1G).

3.2. Rb Tumor Clinical Subtypes Demonstrate Altered Molecular Pathways Unique to Their Stage

We compared the transcriptomic profiles of two Rb subtypes and identified a set of
significant genes belonging to the top enriched pathways in the Rb subtypes (p < 0.005).
Among the previously identified genes in Rb [2], several were found to be differentially
expressed in advanced and non-advanced Rb (E2F’s, CDK’s, MYCN, and SYK). We further
arranged differentially expressed significant genes in advanced and non-advanced Rb into
four gene groups showing their interaction networks (Figure 2A). Gene group 1 genes
were significantly upregulated in advanced Rb tumors, compared to non-advanced Rb
and controls (CDK1, CDKN2A, CCNB2, CCNE2, PTTG1, and DDB1). We performed KEGG
enrichment analysis on gene group 1 using the gene sets from the gene ontology biological
processes (GOBP) and the MSigDB hallmarks (HALLMARK), and revealed the gene inter-
action network of group 1 genes (Figure 2B) and their functional overlapping pathways
(p < 0.005). Group 1 genes were associated with pathways such as cell cycle regulation,
mitotic spindle checkpoint, DNA damage and response, and cytokinesis (Figure 2C). Gene
group 2 displayed a significant upregulation of E2F transcription activators (E2F1, E2F2,
E2F3, and E2F6) [30] and tumor-specific transcription factors (MYCN [31], RUNX1 [32],
and GABPB1 [33]) in advanced Rb. Strikingly, we found a significant downregulation
of transcription factors such as FOXO3 and repressor E2Fs (E2F7 and E2F8) [30] in the
advanced Rb cohort compared to non-advanced tumors and controls. The epigenetic
regulators show a high degree of expression for SYK, PRDM1, and TK1 in advanced Rb,
while relatively lower expression of these factors was detected in non-advanced Rb. No-
tably, advanced Rb displayed a low degree of expression of BRD4, DNMT3A, and MGMT,
while non-advanced Rb displayed a high degree of expression of these epigenetic factors.
Immune-related genes such as CD86, CD19, and CD36 were significantly upregulated in
advanced Rb while displaying a low degree of expression of CD81 and CD163. KEGG
enrichment analysis revealed gene interaction networks of group 2 genes (Figure 2D) and
their overlapping pathways (p < 0.005). Gene group 2 shows an association with pathways
including cellular senescence, B-cell receptor signaling, pathways in cancer, transcrip-
tional misregulation, JAK/STAT signaling, E2F targets, and MYC targets (Figure 2E). Gene
group 3 shows differential expression of metabolic genes related to glycolysis, Krebs cycle,
and fatty acid metabolism. Notably, glycolytic genes displayed a significantly low degree
of expression in advanced and non-advanced subjects compared to the controls (HK1,
HK2, HK3, GCKR, SLC2A1, G6PC, ALDOC1, and ENO1). However, Krebs cycle-related
genes were significantly altered across all Rb subjects compared to the controls. Advanced
Rb subjects showed a significantly high degree of expression for fatty acid metabolism
genes such as MYCLD and ACSL1, compared to non-advanced Rb tumors. Notably, the
PPAR pathway-related genes (PPARGC1A, PPARA, and PPARD) displayed a low degree of
expression in advanced and non-advanced Rb tumors compared to the controls. KEGG
enrichment analysis revealed gene interaction networks of group 2 genes (Figure 2F) and
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their overlapping pathways (p < 0.005). Group 3 genes were associated with pathways such
as the integration of energy metabolism, glutamine biosynthesis, the regulation of lipid
metabolism, pyrimidine salvage, ETC, and glycolysis (Figure 2G). Gene group 4 shows the
enrichment of phototransduction specific genes that were significantly low in advanced
and non-advanced Rb tumors. Network analysis shows the interaction of RHO with
CRX and NRL, and the functional pathways regulated by the Group 4 genes (Figure S1D).
Thus, the analysis revealed several previously unreported gene expression clusters and the
associations that are unique to the Rb tumor stage.
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Figure 1. Identification of distinct transcriptional signatures in advanced and non-advanced Rb
tumors from primary enucleated eyes. (A) Volcano plot of differentially expressed genes. Density
curve plot showing the overall signal distribution of all probe sets on the microarray. (B) Before nor-
malization. (C) After normalization. Spearman’s correlation analysis of genes detected in microarray
platform across: (D) Control vs. Advanced Rb (r = 0.42, p < 0.001); (E) Control vs. Non-advanced Rb
(r = 0.90, p < 0.001. (F) Principal component analysis on the microarray results shows distinct clusters,
implicating gross differences between the advanced Rb, non-advanced Rb, and the controls. (G) Venn
diagram showing differential genes identified in Group E (advanced) and Group D (non-advanced)
Rb tumor microarrays compared to pediatric retina.
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Figure 2. Distinct genes and biological processes are altered in advanced and non-advanced
retinoblastoma. (A) Heatmap showing significantly differentially expressed genes identified four
main gene groups in advanced (n = 5) and non-advanced Rb (n = 4), compared to pediatric retina con-
trols (n = 2). Genes were grouped based on the pathways reported in GOBP. Results are represented
as a network of enriched genes sets (nodes) connected to their overlapping pathways (edges). The
node size is proportional to the total number of genes in the gene set of interest. (B) Gene group 1
represents an enriched cluster of genes in the cell cycle, and the DNA damage and response pathway.
(C) List of functional pathways regulated by the gene sets in Group 1. (D) Gene group 2 represents
an enriched group of genes belonging to transcriptional regulation, immune system regulation, and
epigenetic factors. (E) List of functional pathways regulated by the gene sets in group 2. (F) Gene
group 3 represents an enriched set of genes belonging to cellular metabolic processes such as glycoly-
sis, Krebs cycle, and fatty acid metabolism. (G) List of functional pathways regulated by the gene
sets in group 3.
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3.3. Quantitative Validation of Microarray-Identified Targets Confirm Distinct Transcriptomic
Profiles in Rb Subtypes

We performed RT-PCR to further evaluate the expression patterns of microarray-
identified targets in advanced and non-advanced Rb groups. We found a significant
degree of upregulation of cell cycle checkpoint genes such as CDK1, CCNB2, CCNE2,
CDKN2A, CDKN3, PTTG1, CHEK2, and RPA4 (p ≤ 0.05) in advanced Rb tumors compared
to non-advanced Rb tumors (Figure 3A). Microarray-identified epigenetic targets includ-
ing PRDM1, SYK, and TK1 were also found to be upregulated in an RT-PCR analysis of
advanced Rb subjects compared to non-advanced tumors (Figure 3B). Key photoreceptor
genes such as RLBP1, RDH12, CRABP1, NRL, SOX8, RHO, PAX6, and SAG were signif-
icantly low in advanced Rb tumors, compared to non-advanced Rb tumors in RT-PCR
analysis (p ≤ 0.05), further confirming the gene expression pattern identified in the tumor
microarray (Figure 3C). RT-PCR analysis further confirmed the microarray expression
patterns of glycolytic genes such as HK1 and G6PC, which shows significant downreg-
ulation in advanced Rb compared to non-advanced Rb (p ≤ 0.05) (Figure 3D). RT-PCR
analysis confirmed the microarray expression of the E2F transcription activator E2F2 to
be significantly high in advanced Rb tumors, compared to non-advanced Rb tumors. The
E2F transcription repressor E2F7 was significantly low in advanced Rb tumors, compared
to non-advanced Rb (p ≤ 0.05), further confirming the microarray-identified expression
pattern (Figure 3E). RT-PCR log2-normalized values of the validated set of genes associated
with the above-mentioned pathways showed a strong correlation with log2-normalized
values of the same set of genes identified using the microarray analysis (r = 0.61, p < 0.001)
(Figure 3F).

3.4. Differentially Accumulated Metabolites Reveal the Enrichment of Key Metabolic Pathways in
Rb Vitreous Humor

The transcriptomic profile of the Rb tumor prompted us to elucidate the differential
metabolites in the vitreous humor samples of the same Rb subjects and controls using
metabolomics analysis. The principal component analysis of the samples shows a marked
difference between Rb subjects and controls (Figure 4A). Metabolomics analysis was con-
ducted using the LC-MS positive and negative (HILIC and C18 columns) method for a
broader coverage of metabolites. A total of 1190 metabolites were detected in LC-MS
analysis and the data were normalized to reduce or eliminate the effects of total sample
amount variation on the quantification of individual metabolites (Figures 4B and S2A). We
performed a pairwise analysis of the samples using the clustering analysis functionality
of GeneSpring. The correlation analysis followed by clustering showed a strong relation-
ship between advanced Rb subjects (P1–P5) compared to non-advanced Rb (P6–P9) and
controls (Figure S2B). Statistical analysis of the metabolomics data with stringent filters
(p < 0.05, FC > 2) revealed 350 differentially expressed metabolites in the Rb vitreous hu-
mor (Figure 4C). Hierarchical clustering analysis performed on differentially accumulated
metabolites identified components of lipid metabolism (sphingosine and ceramide) and
fatty acid metabolism (okadaic acid, methyl palmitate, decanoyl-CoA, phytanic acid, and
hexacosanoic acid) to be upregulated in advanced Rb compared to the non-advanced
group. Strikingly, we found a low expression of soraphen A, an ACC inhibitor [34], in the
advanced group, further highlighting the role of long-chain fatty acid synthesis in high-risk
Rb tumors. A subset of the amino acids, namely creatine, taurine, and isoleucine–histidine–
lysine displayed varied degrees of regulation in Rb subtypes. However, key metabolites
of glycolysis (pyruvic acid, lactobionic acid, and galactosamine) were significantly down-
regulated in advanced Rb (Figure 4D). KEGG pathway analysis showed the enrichment of
metabolites associated with linoleic acid metabolism, taurine, and hypo-taurine metabolism,
and tyrosine metabolism, etc., as the top targets in Rb vitreous. Notably, metabolites that
were associated with the citrate cycle and fatty acid metabolism showed a higher degree
of enrichment than glycolysis and pyruvate metabolism in Rb vitreous (Figure 4E). This
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analysis highlights the unique details of significantly altered tumor metabolism in Rb eyes
compared to healthy ones.
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Figure 3. Validation of selected genes for mRNA expression in retinoblastoma subtypes. RT-PCR
validation of microarray-identified targets (A) Cell cycle checkpoint genes. (B) Epigenetic regulators.
(C) Photoreceptor-specific genes. (D) Energy and growth regulator genes. (E) Transcription factor
genes. (F) Pearson correlation plot between microarray and RT-PCR expression of genes involved
in cell cycle checkpoint, epigenetic regulation, photoreceptor-specific, energy regulation, and tran-
scription factors. Values represent mean ± SEM. Unpaired two-sided Student’s t-test was used for
statistical analysis. * p < 0.05, ns = no significance.
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Figure 4. Differentially accumulated metabolites revealed the enrichment of key metabolic pathways
in Rb vitreous humor. (A) Principal component analysis of metabolite profiling in the vitreous humor
of Rb and pediatric controls. (B) Density plot showing the distribution of metabolite intensity before
and after normalization. (C) Volcano plot of differentially accumulated metabolites. p < 0.05 (in red),
FC > 2: significantly increased; p < 0.05, FC < 2 (in blue): significantly reduced relative to the control.
(D) Hierarchical clustering heatmap of significant metabolites in the vitreous humor of Rb and
controls using Pearson correlation as the metric distance. The color code indicates the metabolite’s
abundance. (E) KEGG pathway enrichment analysis of differentially accumulated metabolites.

3.5. Integrated Transcriptomic and Metabolome Analysis Reveals Gene–Metabolite Interaction
Networks Associated with Retinoblastoma

To gain insights into the overlapping pathways in Rb, we performed an integrated
network analysis of transcriptomics and metabolomics to identify unique functional re-
lationships between gene expression and metabolism. Using the KEGG global metabolic
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network, we mapped differentially accumulated metabolites detected in Rb vitreous sam-
ples (Figure 5A). Further, the enrichment analysis module of MetaboAnalyst was used,
which further confirmed the significant alteration of fatty acid metabolism (yellow edges),
amino acid metabolism (violet edges), and the pentose phosphate pathway (green edges)
in the global metabolome map of Rb (Figure 5A). The metabolome map also highlighted
the relatively low activity of glycolysis (blue edges) and the low abundance of the pyru-
vate metabolite. We constructed a metabolite–gene interaction network by integrating the
differentially expressed transcriptomic targets and the associated metabolites (Figure 5B).
The interactive map highlights the low abundance of the pyruvic acid metabolite (p < 0.05,
FC < 2) and the significant downregulation of glycolytic genes (p < 0.05, FC < 2). Similarly,
a low abundance of valproic acid (p < 0.05, FC < 2) is linked to a significant upregulation of
HDAC2 (Histone Deacetylase 2) gene expression (p < 0.05, FC > 2) in the interactome map.
The HDAC2 gene plays a redundant role in lipid accumulation [35], further confirming
the high fatty acid metabolic state in Rb. A relatively high expression of FN1 (fibronectin1)
and BAAT (Bile Acid-CoA:Amino Acid N-Acyltransferase) was also highlighted with
the low abundance of the taurine metabolite in the interactome map (Figure 5B). FN1
overexpression can trigger ER stress and facilitate lipid accumulation [36], while BAAT
transcription in conjugation with glycine or taurine regulates cholesterol and phospholipid
synthesis [37], favoring cancer growth. Highly abundant metabolites such as salicylic acid,
creatine, and myristic acid (p < 0.05, FC > 2) were found to interact with downregulated
metabolism-associated genes such as HIF1A (Hypoxia inducible factor 1 subunit alpha),
PRKAA2 (Protein Kinase AMP-Activated Catalytic Subunit Alpha 2), and GUCA1A (Guany-
late Cyclase Activator 1A) (p < 0.05, FC < 2). A low expression of HIF1A reduces glycolytic
metabolism and enhances mitochondrial oxidative phosphorylation [38,39], further pro-
viding evidence for low glycolysis in Rb. PRKAA2 encodes the AMPKα protein, which
functions as a metabolic sensor in many diseases, including cancer [40]. The GUCA1A
gene encodes for the GCAP1 protein, which regulates N-terminal myristoylation and lipid
modifications in photoreceptors [41]. A combined pathway analysis of transcriptomics
and metabolomics identified glycolysis, AMPKα signaling, HIF-1 signaling, and fatty acid
biosynthesis to be altered in Rb tumors (Figure S3A).

3.6. Validation of Molecular Signatures That Specify Clinical and Histopathological Grades
of Retinoblastoma

To validate the multi-omics-identified targets in Rb, we first performed immunohisto-
chemical staining on the same set of advanced and non-advanced Rb tumor tissues, using
pediatric retina as the controls to evaluate the classical molecular signs. H and E staining
confirmed densely packed tumor cells with little cytoplasm partly arranged in perivascular
cuffs in advanced Rb (Figure 6A). In contrast, the non-advanced Rb tissues contained tumor
cells surrounding cystic spaces with relatively more cytoplasm and smaller nuclei. Healthy
pediatric retina shows clear and visible retinal layers in H and E staining. Advanced Rb subjects
showed strong and consistent immunostaining positivity for the proliferation marker Ki67 and
the transcription factor E2F1, while their signals were relatively weaker, though not significant
in non-advanced Rb, and undetectable in the pediatric retina (Figure 6A,C). The total Rb expres-
sion, observed in the healthy retina, was not detectable in tumors using IHC (Figure 6B,C). We
further profiled the microarray expression of Ki67, E2F1, RB1, RBL1, and RBL2 in Rb subjects
based on their laterality and severity. Ki67 expression was higher in bilateral and unilateral
Rb tumors, and this consistent expression trend was evident in advanced and non-advanced
Rb subjects (Figure 6D). E2F1 expression was higher in the bilateral group compared to the
unilateral (p < 0.005), and in advanced Rb compared to non-advanced Rb (p < 0.05), providing
clues as to Rb-loss mediated transcriptional effects. RB1 expression was significantly low in
unilateral Rb compared to bilateral, advanced, and non-advanced Rb groups (Figure 6F), while
its pocket protein family gene RBL2 (p130) [42] was significantly low in the bilateral and unilat-
eral Rb groups, and in the advanced and non-advanced Rb compared to the pediatric controls
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(Figure 6H). However, RBL1 (p107) was upregulated in Rb subjects, confirming its cell cycle
compensation effects [43] compared to the controls (Figure 6G).
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Figure 5. Integrated transcriptomic and metabolome analysis provides unique insights into pathways
that are associated with retinoblastoma. (A) Differentially accumulated metabolites identified in
Rb vitreous were mapped onto the KEGG global metabolome map associated with Rb. The nodes
in the figure represent metabolic compounds. Edges are enzymatic transformations. Highlighted
nodes represent the differentially accumulated metabolites identified in Rb vitreous. p < 0.05, FC > 2;
upregulated (in red), p < 0.05, FC < 2; downregulated (in green). Edges highlighted in violet represent
the glycolysis/gluconeogenesis map in Rb. Edges highlighted in yellow represent the fatty acid
metabolism-related enzyme map in Rb. Edges in pink represent the amino-acid metabolism map
in Rb. Edges in green represent the pentose phosphate pathway enzymes in Rb. (B) Integration of
transcriptomic and metabolomic interaction network. Circular nodes indicate differentially regulated
genes identified from the microarray; (in green as downregulated set: p < 0.05, FC < 2; in red as
upregulated set: p < 0.05, FC > 2. Square blue nodes indicate differentially accumulated metabolites
from metabolomics analysis (p < 0.05). Blue square nodes indicate upregulated metabolites (FC > 2),
and yellow square nodes indicate downregulated metabolites (FC < 2).
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Figure 6. Molecular signatures specific to the clinical and histopathological grades of retinoblastoma
in primary enucleated eyes. (A) H and E and immunohistochemistry profile showing the expression
of Ki67, Rb, and E2F1 on 4 Rb tissues. High levels of expression for Ki67 and E2F1 were observed
in the advanced Rb group, while expression of both proteins were lower in the non-advanced Rb
group. Scalebar = 50 µm. (B) H and E and immunohistochemistry profile showing expression of Ki67,
E2F1 on 2 pediatric retina tissues. Rb expression was high in pediatric control tissues while no E2F1
expression was observed. Scalebar = 50 µm. (C) IHC scores of Ki67, Rb, and E2F1 in 9 Rb tissues and
2 pediatric retina tissues. (D) Gene expression of Ki67 in bilateral, unilateral, Group E, and Group D
identified in microarray compared to control. Ki67 expression was high in the Rb tumor microarray.
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(E) Gene expression of E2F1 in bilateral, unilateral, Group E, and Group D identified in microarray
compared to control. E2F1 expression was significantly higher in Bilateral and Group E Rb subjects
compared to unilateral and Group D Rb subjects. (F) Gene expression of RB1 in bilateral, unilateral,
Group E, and Group D identified in microarray compared to control. RB1 expression was found to be
significantly low in both Group E and Group D compared to pediatric controls. RB1 expression was
low in the unilateral and bilateral groups compared to pediatric control. (G) Microarray expression
of RBL1 (p107) in Group E and Group D, unilateral and bilateral Rb subjects. RBL1 expression was
found to be significantly high in both Group E and Group D compared to pediatric controls. RBL1
expression was high in the unilateral and bilateral group compared to pediatric control. (H) Mi-
croarray expression of RBL2 (p130) in Group E, Group D, unilateral, and bilateral Rb subjects. RBL2
expression was found to be significantly low in both Group E and Group D compared to pediatric
controls. RBL2 expression was low in the unilateral and bilateral groups compared to pediatric
control. Values represent mean ± SEM. Unpaired two-sided Student’s t-test was used for statistical
analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, ns = no significance.

3.7. Validation of Multi-Omics Findings in Rb Subjects and the In Vitro Model

The combined analysis of transcriptomics and metabolomics revealed glycolysis and
pathways in cancer to be significantly altered in Rb (p < 0.001). We corroborated these
findings by validating the expression of their key candidate markers: HK1, which regulates
glycolysis [24], and the E2F2 transcription factor associated with key cancer pathways [44].
We performed an immunohistochemical analysis on an additional cohort of advanced
(n = 15) and non-advanced Rb tissues (n = 10), and detected strong and consistent im-
munostaining positivity for E2F2 (IHC score= 2–3), while the signals were undetectable
in control pediatric retinae (n = 2, IHC score = 0). HK1 showed weak signals in advanced
(n = 15) and non-advanced Rb (n = 10) tumor areas (IHC score = 0–1), while strongly
staining the intact retina portions within non-advanced Rb tissues, thereby serving as an
internal control. Notably, HK1 exhibited strong and consistent signals in the photoreceptor
layer of healthy pediatric controls (n = 2; IHC score= 3) (Figure 7A,B). RT-PCR validations
further confirmed the expression pattern of E2F2 and HK1 in advanced and non-advanced
Rb tumors (Figure 7C). To elucidate how RB1 influences HK1 and E2F2 expression in the
context of cancer, we overexpressed the wild-type RB1 in Rb null WERI-Rb1 retinoblastoma
cells in vitro. The ectopic expression of RB1 induced HK1 protein and transcript in WERI-
Rb1 cells (Figure 7D,E,G, p < 0.001), while reducing E2F2 transcript and protein levels
(Figure 7D, F, p < 0.001). We further performed total mRNA profiling using RB1-null Y79
and RB1-overexpressed Y79 microarrays. We applied the standard QC procedure, and the
data was normalized, leading to comparable distributions between all arrays (Figure S3B).
Statistical analysis revealed a distinct cluster of expression profiles between RB1-null and
RB1-overexpressed Y79 (Figure S3C). We identified 65 differentially expressed genes be-
tween RB1-null and RB1-overexpressed Y79 (p < 0.05, FC > 2). The E2F transcription factor
genes (E2F1, E2F2) and cell cycle genes (CDK1, CCNB2) were significantly upregulated
(p < 0.05, FC > 2), and the glycolytic genes were significantly downregulated (HK1, ENO1,
and G6PC3) (p < 0.05, FC < 2) (Figure 7H). The transcriptomic analysis also revealed a high
degree of expression for the aldolase isoenzymes ALDOA, ALDOB, and ALDOC in the
Rb-null condition, while RB1 complementation showed a significant downregulation of
aldolase isoenzymes (Figure 7I). KEGG enrichment pathway analysis revealed sphingolipid
metabolism, branched-chain amino-acid metabolism, apoptosis, and the DNA repair path-
way to be significantly altered between the RB1 null and RB1-complemented Y79 cells,
indicating that the cell line microarray had significant similarities with the transcriptomic
landscape of the Rb subjects (Figure 2).
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Figure 7. Differentially expressed targets confirm multi-omics findings in enucleated Rb tissue samples
and in vitro. (A) Immunohistochemistry profile showing the expression of phospho-Rb, E2F2, and HK1
on 4 Rb tissues and 2 pediatric retinae. Scalebar = 200 µm. (B) IHC scores of phospho-Rb, E2F2, and
HK1 in 25 Rb tissues and 2 pediatric retina tissues. (C) Gene expression of E2F2 and HK1 in Rb subtypes
relative to the pediatric retina. (D) Protein expression of phospho-Rb, Rb, E2F2, and HK1 in the control
and RB1-complemented WERI-Rb1 cells. Relative gene expression of (E) RB1, (F) E2F2, and (G) HK1
in control and RB1-complemented WERI-Rb1 cells, which illustrate their differences at the molecular
level. (H) Volcano plot of differentially regulated genes in RB1-null and RB1-complemented Y79 cells.
(I) Heatmap showing significantly differentially expressed genes identified in the RB1-null and RB1-
complemented Y79 cells. Values represent mean± SEM. Unpaired two-sided Student’s t-test was used for
statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ## p = 0.005.
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4. Discussion

This integrated omics analysis of the Rb tumor transcriptome and the vitreous humor
metabolome within the human Rb tumor subtypes using the pediatric retina as controls
was performed to enrich our understanding of altered gene function with changes in tumor
metabolism. Although there have recently been a few reports on alterations in the Rb
tumor-associated metabolites [45,46], we found significantly more functional associations
between the metabolic targets and the enriched pathways owing to the coordinated samples
used for analysis and the use of age-matched pediatric controls. Although we have focused
on intraocular advanced and non-advanced retinoblastoma tumors, our findings can be
extended to other cancer systems with persistent RB1 mutations.

Rb is a complex disease with predominant genetic and epigenetic events [47], and it is
important to focus on improving our understanding of the regulatory mechanisms that
promote tumor growth and intra-tumoral heterogeneity. To accomplish this, we classified
our Rb cohort based on the AJCC or IIRC guidelines as advanced and non-advanced Rb,
and used age-matched pediatric controls. The different clinical and pathological features
of the two subtypes identified the relevance of this classification. The limitation of our
study was the relatively small sample size due to the prerequisite of different sample types
that were collected at the same time from each eye in the investigation. However, the
major strength of the study, in comparison with the previous publications, is the ability to
integrate different omics data sets from tumors and vitreous humors from the same patients.
Further, we validated the protein levels in FFPE sections of the same tumors, as well as
an additional independent cohort of 25 Rb tissues. These data sets allowed us to discover
new insights into the interactions between the data sets, and to reveal new insights into the
disease mechanism that was lacking in previously reported single omics studies [48–50].

Using transcriptomic profiling, we found there was a high degree of expression
of cell cycle regulators and DNA damage and response checkpoint genes in both Rb
subtypes, a consequence of pRb loss in the tumors [51,52]. Moreover, we report on the
significant enrichment of E2F pathway genes in advanced Rb compared to non-advanced
Rb, highlighting major flaws in transcriptional events due to RB1 inactivation in high-
risk tumors. In contrast to previous findings on E2F1 [53], we report on the significantly
high expression of E2F2 in advanced Rb tumors, along with the low expression of the
E2F repressors E2F7 and E2F8, compared to non-advanced Rb in our study, which is also
supported by a recent study [54]. Various studies have highlighted MYCN expression in
Rb tumors [55], while we show the presence of the differential expression of MYCN in Rb
tumor subtypes. Furthermore, we report on the elevation of tumor-specific transcription
factors such as RUNX1 and GABPB1, and the reduced expression of FOXO3 that is low in
the advanced group. While these transcriptional alterations are expected from the literature
on other high-risk pediatric tumors [56–59], their distinct transcriptional regulation in
advanced Rb tumors is a new observation.

Previous studies have highlighted the role of epigenetic modifications and SYK in
targeting Rb tumorigenesis [4]. In agreement with these findings, we report on the high
expression of SYK in advanced Rb tumors compared to non-advanced Rb. In addition,
we also discovered the differential expression of PRDM1 and TK1 in Rb subtypes, which
are known epigenetic regulators in other cancers [60,61]. Our study also highlights the
low expression of known canonical epigenetic readers such as BRD4, DNMT3A, and
MGMT in advanced Rb tumors, highlighting a diverse epigenetic landscape in advanced
tumors, extending our insights into Rb pathogenesis. These observations give support
for the further investigation of broad epigenetic modulators for adjunctive treatments
in advanced Rb. We further report on the differential expression of several immune cell
surface receptors within the tumor tissues. B-cell maturation genes such as CD19 and
its binding partner CD81 were significantly altered in the Rb subtypes, which have roles
in regulating the immune response and receptor signaling [62]. We also observed high
CD86 levels in the advanced tumor, which are supported by the presence of high CD86 B
cell signatures in advanced stages of other cancers [63]. However, a high degree of CD80
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expression, along with CD86 and increased transcript numbers of T-cell counter receptors
(CD28 and CTLA4) (data not shown) in tumors also point out the costimulatory roles of
CD86/CD80, which are known to induce T cell anergy [64]. The differential expression
of these immune markers highlights a unique immunophenotype of the Rb tumors that
requires further exploration to understand their roles in tumor growth and its progression
of severity. We also observed a differential loss of visual cycle-associated genes among the
clinical subgroups and compared to controls, aspects of which are supported by certain
studies [65,66]. Both the Rb subtypes expressed the cone-specific markers RXR γ, CRX,
OTX1, and TRβ2 (data not shown), compared to the pediatric retina, supporting the cone
photoreceptor origin of cancer [67].

We found that advanced Rb was associated with a low expression of glycolytic genes
and altered Krebs cycle with a higher propensity for fatty acid metabolism. Our findings
are also supported by a recent study that highlighted the role of lipid metabolism in
Rb tumors [45]. Furthermore, our global metabolomic profiling of Rb vitreous humor
identified a variety of differentially accumulated metabolites that are distinct from the
pediatric controls. Importantly, we observed a significantly low abundance of pyruvate in
Rb vitreous humor, which directly correlated with the loss of glycolytic gene expression,
particularly HK1. Pathway analysis further confirmed our findings, highlighting the low
enrichment of glycolysis and pyruvate metabolism pathways compared to high fatty
acid and lipid metabolism in advanced Rb. Therefore, the metabolomics findings in
vitreous humor corroborated with the transcriptomics profile of the Rb tumor and revealed
a significant distinction in metabolite abundance between the Rb subtypes. The data
integration of transcriptomic and metabolomic profiles of Rb revealed altered pathways,
including cellular metabolism and transcriptional machinery, and we identified HK1 and
E2F2 as being representative genes that regulate distinct transcriptional networks in Rb
tumors. Through immunohistochemistry, we show the distribution of HK1 and E2F2
proteins in Rb tissue subtypes. The RB1 complex binds to E2F2 promoters and represses
its function during the development and differentiation programs [68], and we assume
that the high expression of E2F2 in tumors is a direct consequence of RB1 inactivation.
However, HK1, which controls glycolytic flux [69], has been found to be upregulated in
other tumors [70] and is associated with oncogenes such as KRAS [71] mutants. In this
aspect, we find Rb tumors to behave in a metabolically opposite manner to other types of
solid tumors, thus providing a potentially unique therapeutic target. In addition, recent
reports highlight the glycolytic control exerted by pRb proteins [72], and we hypothesize
that the low enrichment of glycolysis in tumors is a direct consequence of the loss of pRb
proteins. Therefore, our observation in Rb tumors is critical in terms of delineating the
unique metabolic phenotypes of tumors of diverse origins. Using in vitro models, we show
that RB1 complementation enhanced the glycolytic HK1 protein and its transcript, while
reducing E2F2 levels, further confirming our findings in human tumors. The transcriptomic
profiling of RB1-complemented Y79 shows differentially regulated cell cycle and metabolic
pathways that corroborated with findings in Rb tumors.

5. Conclusions

In conclusion, the comprehensive transcriptomic profiling of the Rb tumor subtypes
revealed differentially expressed genes belonging to cell cycle, metabolism, epigenetics,
immune regulation, and phototransduction pathways. The global metabolomic analysis of
Rb vitreous humor revealed metabolites that are associated with critical signaling pathways
that are committed to the cancer state, which are otherwise not apparent. The integration
of multi-omics data identified co-expression network modules within Rb clinical subtypes
that may be crucial for prognostication and future drug development efforts.
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