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Ni-catalyzed hydroarylation of alkynes with
unactivated β-C(sp2)−H bonds
Shao-Long Qi1, Yu-Peng Liu1, Yi Li1, Yu-Xin Luan1 & Mengchun Ye 1,2✉

Hydroarylation of alkynes with unactivated C(sp2)−H bonds via chelated C−H metalation

mainly occurs at γ-position to the coordinating atom of directing groups via stable

5-membered metallacycles, while β-C(sp2)−H bond-involved hydroarylation has been a

formidable challenge. Herein, we used a phosphine oxide-ligated Ni−Al bimetallic catalyst to

enable β-C−H bond-involved hydroarylations of alkynes via a rare 7-membered nickelacycle.
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Hydroarylation of alkynes with arenes provides a highly
atom- and step-economical route to aromatic alkenes that
widely exist in natural products, bioactive compounds,

and material molecules1–8. During the past several decades, a

large number of transition metal-catalyzed hydroarylation reac-
tions have been reported. According to electronic nature of are-
nes, these hydroarylations can be divided into three types
(Fig. 1a): electron-rich (hetero)arenes (Type I), electron-deficient

Fig. 1 TM-catalyzed hydroarylation of alkynes with (hetero)arenes. a Three types of hydroarylations of alkynes and (hetero)arenes: electron-rich arenes
(type I), electron-deficient arenes (type II), and general arenes with unactivated C(sp2)−H bonds (type III). b Stability of metallacycles and reported
various metallacycle-involved hydroarylations: γ-C−H bond-activation-involved hydroarylation (widely explored); δ-C−H bond-activation-involved
hydroarylation (rarely explored); β-C−H bond-activation-involved hydroarylation (elusive challenge); c β-C−H bond-involved hydroarylation via
7-membered metallacycles (this work). T.M.= transition metal. Het= heterocycle, D= electron-donating group. W= electron-withdrawing group.
DG= directing group. PO= phosphine oxide ligand.
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(hetero)arenes (Type II), and general arenes with unactivated
C(sp2)−H bonds (Type III). Type I reactions mainly proceed via
a Friedel-Crafts-type pathway, requiring multiple electron-rich
substituents to enhance the electron density of (hetero)arenes9–11.
This structural requirement results in a limited scope of sub-
strates and difficult site selectivity. Especially in case of less
electron-rich arenes, a large excess of substrates is often required
for reasonable yields. Instead, most of type II reactions proceed

via oxidative addition pathway, because the presence of strong
electron-negative heteroatoms or electron-withdrawing groups in
substrates leads to uneven distribution of electron density, and
then electron-deficient C−H bonds will easily undergo oxidative
addition with metal. However, unique electron demand renders
substrates limited to special heterocycles such as pyridines,
polyfluoroarenes, imidazoles, and other analogs12–24. To activate
arenes with unactivated C(sp2)−H bonds for hydroarylation
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Fig. 2 Reaction optimization. Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), AlEt3 (1 mol/L in hexane, 0.08mmol), toluene (0.4 mL) under N2 for
12 h. Yield was determined by 1H NMR. cod= 1,5-cyclooctadiene. Et= ethyl. Cy3P= triisopropylphosphine. BINAP= 2,2’-bis(diphenylphosphino)-1,1’-
binaphthalene. IPr= 1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-imidazole. SIPr= 1,3-bis (2,6-diisopropylphenyl)imidazolidine. IMes= 1,3-dimesityl-
2,3-dihydro-1H-imidazole. iBu= isobutyl. tBu= tert-butyl. Mes= 2,4,6-trimethylphenyl. Dipp= 2,6-diisopropylphenyl.
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reactions, chelated C−H metalation has been devised by incor-
porating proper directing groups in substrates (Type III). With
the aid of directing groups, unactivated C(sp2)−H bonds can be

metallated, and tuning the size of the formed metallacycles would
in principle achieve diverse site selectivities. Owing to these
advantages, chelated C−H metalation-involved hydroarylation
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Fig. 3 Scope of benzimidazoles and analogs. Reaction conditions: 1 (0.4 mmol), 2a (0.8mmol), AlEt3 (1 mol/L in hexane, 0.16 mmol), toluene (0.8mL)
under N2 for 12 h. Yield of isolated products. *100 °C, AlMe3 (1 mol/L in hexane, 0.32mmol). †PO-3 was replaced by bulkier PO-6 (see the structure in the
SI). ‡30 °C. §mono refers to C5-alkenylated product and di refers to C5 and C8-dialkenylated product. nPr= n-propyl.
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has been widely explored in the past decades by using various
metal catalysts such as Ru25–32, Ir33–36, Rh37–47, Co48–54,
Mn55–57, Re58,59, and Fe60 (Fig. 1b, left). However, most examples
are limited to C−H bonds at γ-position to the coordinating atoms
of directing groups, because the formation of stable 5-membered
metallacycles has more favorable entropic effect and ring strain
than other larger (6- or 7-membered) or smaller (4-membered)
metallacycles61–65. Only two examples are reported for δ-C−H
bond-involved hydroarylations via a 6-membered metallacycle
(Fig. 1b, middle)66,67. In contrast, there are no reports on other C
−H bond-involved hydroarylations, especially very challenging
β-C−H bond-involved hydroarylations, because a highly strained
4-membered metallacycle is difficult to form (Fig. 1b, right). Here,
we show that a phosphine oxide (PO)-ligated Ni−Al bimetallic
catalyst can activate an unactivated β-C−H bond on the phenyl
ring of benzimidazole to undergo hydroarylation via a rare
7-membered nickelacycle, bypassing an unstable 4-membered
nickelacycle (Fig. 1c). A series of C4-alkenylated 2-phenylbenzi-
midazoles, including complex bioactive molecules, can be pro-
duced in 41−96% yield, providing a distinctive site selectivity
beyond traditional selectivity that generally occurs at C2-phenyl
ring via a 5-membered metallacycle.

Results
Reaction optimization. 2-Phenyl benzimidazole (1a) bearing
both β-C−H bond and γ-C−H bond was selected as a model

substrate, because such a structural motif can be found in a large
number of bioactive and material molecules68,69. However, due to
strong directing ability of imine N atom, transition metal-
catalyzed selective C−H activation of 2-phenyl benzimidazoles
mainly occurs at γ-C−H bond at ortho-position of C2-phenyl
ring38,70–76. For example, with RhCl(PPh3)3 as a catalyst, the
reaction of 1a and oct-4-yne (2a) afforded 3a′ as the sole product
in 37% yield with a E:Z ratio of 6.4:1 (Fig. 2, entry 1). Similarly,
the use of [Ru(p-cymene)Cl2]2 as a catalyst also generated 3a′ in
32% yield (entry 2). Given important bioactivity of C4-
alkenylated benzimidazoles and derivatives77,78, reversing tradi-
tional γ-C−H bond activation to β-C−H bond activation in the
hydroarylation reaction (product 3a) would be highly desirable.
We envisioned to use a ligand-ligated Ni−Al bimetallic catalyst
for the investigation:79–81 firstly, the coordination of Al-Lewis
acid with benzimidazole could direct Ni to activate β-C−H bonds
via a 7-membered nickelacycle, bypassing a highly strained
4-membered nickelacycle; secondly, the coordination of Al-Lewis
acid would favor inhibiting the activation of γ-C−H bonds on the
C2-phenyl ring via a 5-membered nickelacycle. Systematic survey
on ligands, Lewis acids, solvents, and temperatures revealed the
desired C4-alkenylated product 3a can be indeed obtained. Under
the optimal conditions: Ni(cod)2 (10 mol%), PO-3 (10 mol%),
AlEt3 (40 mol%) in toluene at 80 oC, 3a was produced in 84%
yield (entry 3). Control experiments showed that the presence of
nickel, Al-Lewis acid, and phosphine oxide ligand is essential to

Fig. 4 Scope of alkynes. Reaction conditions: 1a (0.4 mmol), 2 (0.8mmol), AlEt3 (1 mol/L in hexane, 0.16 mmol), toluene (0.8 mL) under N2 for 12 h. Yield
of isolated products. Et= ethyl. nBu= n-butyl. nPent= n-pentyl. nHex= n-hexyl. iPr= isopropyl. TBS= tert-butyldimethylsilyl. tBu= tert-butyl.
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the reaction efficiency, the removal of any of them would inac-
tivate the reaction (entries 4−6). Notably, under the optimal
conditions, the use of Rh or Ru instead of Ni led to neither 3a nor
3a′ (entries 7 and 8), suggesting that the PO−Ni−Al bimetallic
system is sensitive to transition metals.

Ligand examination showed that various phosphines (entries
9−11), N-heterocyclic carbenes (entries 12−14), and commonly-
used phosphine oxides (entries 15−18) were all ineffective,
suggesting that the optimal PO-3 plays a critical role in the
reaction. In addition, the selection of Lewis acid proved
important. Although AlMe3 gave a slightly lower yield than that
of AlEt3, all other Lewis acids with either bulkier steric hindrance
or weaker Lewis acidity led to a big decrease in yield (entries
19−22).

Scope of benzimidazoles and alkynes. With the optimized
conditions in hand, various C2-aryl benzimidazoles were inves-
tigated first (Fig. 3). Results showed that various substituents on
C6-position, including alkyl group (3b and 3c), alkenyl group
(3d), aryl group (3e), and heteroaryl group (3f, 3g, and 3h) did
not have a strong influence on the reaction efficiency, providing
the corresponding products in 76−96% yield. In addition, the
investigation on electronic effect proved that either electron-rich
group (3i) or electron-deficient group (3j and 3k) were also well-
tolerated, delivering 82−86% yield. Given that C7-substituent
would have direct influence on the electronic density of the
C4−H bond, various substituents with different electronic
property were examined. Methyl group provided 52% yield (3l),
but electron-deficient fluoro group (3m) and CF3 group (3n)
increased yield to 67% and 78%, respectively. Different from C6-
and C7-positions, C5-position locates closely to the reaction site
and substituents on this position would have detrimental effect to
the reactivity owing to steric hindrance. For example, C5-methyl

afforded trace amount of products and only smaller C5-F group
still led to the corresponding product in 48% yield (3o). Notably,
various N1-substituents are far away from reaction site and can
be well compatible with the reaction. For example, methyl group
(3p) and tert-butyl group (3q) provided the corresponding pro-
ducts in 75% and 78% yield, respectively. When C2-phenyl group
was replaced by alkyl group like methyl group (3r) or benzyl
group (3s), the reaction still proceeded smoothly at a little ele-
vated temperature and loadings of Al-Lewis acid. Beyond benzi-
midazoles, other heterocycles such as benzoxazoles (3t, 3u, 3v,
3w) and triazoles (3x and 3y) also proved to be suitable substrates
under modified conditions. To compare the effect of C2-aryl ring,
we also prepared a wide range of C2-arylated benzimidazoles and
checked their reactivity.

Results showed that either electron-rich groups (4a to 4d) or
electron-deficient groups (4e to 4i) at para position of C2-phenyl
ring can be well-tolerated, providing C4-alkenylated products in
56−85% yield without observing C−H activation on the C2-aryl
ring. Similar results appeared for substituents at other positions
such as ortho- (4j), meta (4k to 4n), and even multiple sites (4o to
4r). These results showed that the current method can provide
high β-site selectivity for all examined substrates.

Next, the scope of alkynes was investigated (Fig. 4). Aryl
alkynes were in general ineffective, which may be attributed to
their big steric hindrance and strong coordinative ability with
nickel, while various alkyl alkynes such as ethyl (5a), n-butyl (5b),
n-pentyl (5c), n-hexyl (5d) and i-hexyl (5e) were compatible very
well, providing the corresponding products in 85−89% yield.
When functional groups such as phenyl group (5f) or hydroxyl
group (5g) were incorporated into the alkyl chain, no significant
loss of yields were observed. In addition, cyclic alkyne was still
compatible with the reaction, providing 51% yield (5h). Notably,
besides symmetrical alkynes, non-symmetrical alkynes also
displayed good reactivity (5i, 5j, 5k), but the regioselectivity

Fig. 5 Synthetic utility. a Gram-scale reaction and product transformations. b Late-stage selective β-C−H bond alkenylation of bioactive molecules such as
Telmisartan ester, tocopherol derivative and estrone derivative. nPr= n-propyl. m-CPBA=m-chloro perbenzoic acid.
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was highly depending on steric hindrance of substituents of
alkynes. For example, tert-butyl methyl alkyne (5i) and isopropyl
methyl alkyne (5j) gave one single regioisomer product, while n-
propyl methyl alkyne (5k) delivered a mixture of regioisomers in
a ratio of 2:1.

Synthetic utility. To demonstrate the utility of the reaction, a
gram-scale reaction of the model substrates was conducted,
providing the desired product 3a in 81% yield (Fig. 5a). The
alkene motif in the product is a versatile synthetic precursor and
it can be transformed into alkyl group through hydrogenation (6,
quantitative yield), epoxide (7, 60% yield), and ketone (8, 73%
yield) through different extent of oxidation. In addition, the
selective C−H alkenylation method can be applied to the late-
stage derivation of complex molecules (Fig. 5b). Telmisartan
ester, a long-acting antihypertensive drug, can be selectively
activated at C4−H of benzimidazole, achieving a new telmisartan
derivative 9 in 75% yield. Other bioactive molecules such as
tocopherol and estrone-derivatives were also well compatible with
the reaction, providing the corresponding products 10 in 52%
yield and 11 in 62% yield, respectively. Compared with traditional
selectivity that dominantly occurs at ortho-C−H bond of C2-
phenyl ring of benzimidazoles66–69, the current method provides
a different molecular elaboration.

Mechanistic discussion. To gain insight into this reaction,
additional mechanistic experiments were conducted. Deuterium-
labeling experiment disclosed that the alkenyl H completely came
from aryl H on the C4-position of benzimidazole (Fig. 6a), sug-
gesting a C4−H bond metalation. The determination of kinetic
isotopic effect via either intermolecular competitive experiment
or parallel experiments revealed significant isotopic effect
(Fig. 6b), suggesting that C4−H bond cleavage may be involved
into a rate-determining step. On basis of these results, a plausible
mechanism was proposed in Fig. 6c. Al-Lewis acid of phosphine
oxide-ligated Ni−Al bimetallic catalyst coordinates to N atom of
the imidazole first, and then nickel is directed to selectively
activate β-C−H bond to form a 7-membered nickelacycle,
bypassing the formation of a more challenging 4-membered
nickelacycle and a traditional 5-membered metallacycle. Sub-
sequent alkyne insertion and reductive elimination delivered the
desired product 3a and regenerated the bimetallic catalyst.

In summary, we have developed an unactivated β-C(sp2)−H
bond-involved hydroarylation of alkynes, providing a series of
C4-alkenylated 2-phenyl benzimidazoles including bioactive
complex molecules in 36−96% yield, overriding traditional
γ-selectivity via a stable 5-membered metallacycle. The phosphine
oxide-ligated Ni−Al bimetallic catalyst effectively directed Ni to
generate β-selectivity via a 7-membered metallacycle, bypassing
a highly strained 4-membered nickelacycle. The ligand-ligated

Fig. 6 Mechanistic experiments. a Deuterium-labeling experiment, showing that C4−D was completely transferred to the alkene of the product. b Kinetic
isotopic effect determination: a significant KIE for C4−H bond suggests that the activation of C4−H bond could be a rate-determining step. c Proposed
mechanism.
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bimetallic catalyst provides an efficient tool for site selective C−H
bond activation and would find wide applications in other types
of reactions in future.

Methods
General procedure for β-C(sp2)−H bond-involved hydroarylation. In an argon-
filled glove-box, to an oven-dried sealed tube were added Ni(cod)2 (11.0 mg,
0.04 mmol), PO-3 (17.2 mg, 0.04 mmol), toluene (0.8 mL), 1 (0.40 mmol), AlEt3
(1 mol/L in hexane, 160 μL, 0.16 mmol), and 2 (0.80 mmol) in sequence. The tube
was then sealed, removed out of the glove-box, and heated at 80 °C with heating
mantle as the heat source for 12 h. Then the mixture was cooled to room tem-
perature and concentrated in vacuo. The crude product was purified by flash
column chromatography using ethyl acetate/hexane as eluent.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information file. For the experimental
procedures and data of NMR see Supplementary Methods in Supplementary Information
file. The X-ray crystallographic coordinates for structures reported in this study have
been deposited at the Cambridge Crystallographic Data Centre (CCDC), under
deposition number CCDC 2101580. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.
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