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Background: Population analysis of viridans streptococci is important because these species are associated

with dental caries, bacteremia, and subacute endocarditis, in addition to being important members of the

human oral commensal microbiota.

Design: In this study, we phylogenetically analyzed the rod shape-determining protein gene (rodA), which is

associated with cellular morphology, cell division, and sensitivity for antibiotics, and demonstrated that the

diversity of the rodA gene is sufficient to identify viridans streptococci at the species level. Moreover, we

developed a more convenient denaturing gradient gel electrophoresis (DGGE) method based on the diversity

of the rodA gene (rodA-DGGE) for detecting nine dominant streptococcal species in human saliva, namely,

Streptococcus sanguinis, Streptococcus oralis, Streptococcus mitis, Streptococcus parasanguinis, Streptococcus

gordonii, Streptococcus vestibularis, Streptococcus salivarius, Streptococcus mutans, and Streptococcus

sobrinus.

Results: This rodA-DGGE method proved useful in detecting viridans streptococci without cultivation,

isolation, and phenotypic characterization.

Conclusion: Analysis of the oral microbiota by rodA-DGGE offers a higher resolution than the conventional

DGGE using 16S rDNA and may be an alternative in the microbial diagnosis of streptococcal infection.
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D
enaturing gradient gel electrophoresis (DGGE)

analysis of the 16S rRNA gene (16S rDNA) is

used for investigating entire bacterial commu-

nities without cultivation (1). The advantage of this

method is that it uses 16S rDNA, which is present in

all bacteria and can be amplified with a set of universal

bacterial primers. Bacterial species are differentiated on

the basis of differential migration on a denaturing

gradient gel due to their melting behavior, which is based

on the difference in the G�C content. A bar code-like

profile is obtained, with each band presumably represent-

ing a different microorganism within the microbial

communities (1�3). This molecular technique has become

an important tool for studying complex bacterial com-

munities and has been applied for the analyses of various

microbiotas, such as those found in environmental

biofilms, food fermentation processes, feces, intestine,

gastrointestinal tract infections, corneal ulcer, and vagi-

nosis (4�10).

DGGE analysis using 16S rDNA (16S rDNA-DGGE)

has also been applied for analyzing the microflora found

in the periodontal pocket, dental plaque, and saliva in

order to identify the pathogens causing periodontitis,

dental caries, and halitosis (11�14). These reports indicate
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that the pathogenic bacteria of oral diseases, such as

Porphyromonas gingivalis, Aggregatibacter actinomycetem-

comitans, Prevotella intermedia, Fusobacterium nuclea-

tum, and Streptococcus mutans, are clearly detected by

16S rDNA-DGGE. However, viridans streptococci,

which are closely associated with bacteremia and sub-

acute bacterial endocarditis (SBE), have not been clearly

detected. One of the reasons is that the 16S rDNA genes

of several viridans streptococci are highly homologous

and that there is evidence of homologous recombination

between species (15). The 16S rDNA genes of Strepto-

coccus mitis, Streptococcus oralis, and Streptococcus

pneumoniae, in particular, exhibit more than 99% se-

quence homology with each other (16). Therefore, it is

difficult to clearly identify these species by 16S rDNA-

DGGE as this method is based on differences in the G�
C content. Hence, our hypothesis was that some other

gene, the evolutionary rate of which is higher than that of

16S rDNA, would be a useful target for DGGE analysis

aiming at detecting the abovementioned streptococci.

Previously, during the sequencing of the glucosyltrans-

ferase gene (gtfR) of S. oralis (17), we found three open

reading frames upstream of gtfR. By using the basic local

alignment search tool, one of them was identified as the

rod shape-determining protein (RodA) gene (rodA),

which is widely present in gram-positive and gram-

negative bacteria. This gene determines cellular morphol-

ogy and is associated with peptidoglycan degradation

during elongation and septation (18). In addition, since it

has been suggested that rodA of Streptococcus thermo-

philus is associated with oxidative stress defense and

streptonigrin tolerance (19, 20), it becomes one of the

interesting genes in the study of bacterial response against

environmental stress. Our preliminary alignment analysis

revealed 78% similarity of rodA of S. oralis to that of

S. mitis; further, this similarity was lower than that

between 16S rDNA of S. oralis and that of S. mitis. Thus,

we thought that the streptococcal rodA gene would

exhibit sufficient phylogenetic diversity to aid in identify-

ing viridans streptococci by DGGE.

In this study, we investigated the prevalence of the rodA

genes in viridans streptococci, and phylogenetically

analyzed them as the identification tool of those species.

In addition, we developed a DGGE method based on the

phylogenetic diversity of the rodA gene for detecting

dominant streptococci in human oral cavity.

Methods

Sampling of streptococcal strains in saliva
The study group comprised eight healthy adult volun-

teers. The study protocol was approved by the Ethics

Board of the Institute of Dentistry, Nagasaki University,

and informed consent was obtained from all the subjects.

Non-stimulated saliva was used as the clinical sample in

this study, since it roughly represents a summary of the

oral microbiota of the teeth, tongue, and mucosa of the

upper respiratory tract. These samples were obtained by

collecting whole saliva in a sterile tube before tooth

brushing. The samples were serially diluted and inocu-

lated on mitis-salivarius (MS) agar (Difco Laboratories,

Detroit, MI). From the inoculated MS agar plates, 20

colonies were randomly selected and streptococcal strains

in saliva were isolated. These clinical isolates were

identified by a combination of phenotypic characteriza-

tion performed using STREPTOGRAM (Wako Pure

Chemicals, Osaka, Japan) (21), polymerase chain reac-

tion (PCR) based on the species-specific variety of gtf

genes (22), and sequencing of the 16S rRNA gene (16)

and were examined for the rodA sequence according to

the following method.

Bacterial strains and culture
The reference strains used in this study were taken from

our own culture collection (Table 1) (21, 23). These were

selected as the streptococcal species that could be

detected in the oral cavity. The strains designated

ATCC, NCTC, CCUG, and GTC were obtained from

the American Type Culture Collection, National Collec-

tion of Type Cultures (Colindale, London, England),

Culture Collection of the University of Göteborg (Gö-

teborg, Sweden), and Gifu Type Culture Collection

(Gifu, Japan), respectively. These organisms were routi-

nely cultured in brain heart infusion broth (BHI; Difco

Laboratories) and on 5% defibrinated sheep blood agar

(Nissui Pharmaceutical Co. Ltd., Tokyo, Japan).

Preparation of DNA for PCR
DNA of the cultured bacteria was obtained as previously

described (17). In brief, the organisms were grown in BHI

broth at 378C for 18 h, collected, and then washed by

centrifugation. The cells were suspended in a solution of

50 mM NaCl and 10 mM Tris-HCl (pH 7.4) and then

digested with mutanolysin (final concentration, 33.3 U

mL�1; Sigma-Aldrich Co., St. Louis, MO) at 508C for 1

h. Thereafter, the cells were lysed by adding N-lauroyl

sarcosine (final concentration, 1.5%) and Ethylenediamin

etetraacetic acid (EDTA) (final concentration, 10 mM).

The lysate was treated with RNase (0.3 mg mL�1; Wako

Pure Chemicals) and proteinase K (0.3 mg mL�1; Sigma-

Aldrich Co.). DNA was purified from the cell lysate by

phenol, phenol-chloroform, and chloroform extractions

and collected by ethanol precipitation.

Further, the bacterial DNA from the saliva samples

was extracted as previously described (22). In brief, the

organisms in the saliva were harvested from 500 mL of the

samples by centrifugation at 16,000�g for 10 min. The

bacterial cells were heated in a microwave oven at 500 W

for 5 min to destroy the cell walls and then digested in 100

mL of 200 U mL�1 mutanolysin (Sigma-Aldrich Co.) at
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508C for 1 h. The lysate was treated with 80 mL of nuclei

lysis solution (Promega, Madison, WI) at 808C for 5 min,

and the proteins were removed by centrifugation after

adding 60 mL of protein precipitation solution (Promega).

The DNA was then purified by phenol-chloroform

extraction and collected by ethanol precipitation.

Alignment analysis and construction of the
phylogenetic tree
ClustalX software (24), downloaded from http://www.

ebi.ac.uk, was used to align the sequences. Phylogenetic

tree was constructed by using the neighbor-joining

algorithm with MEGA 4 (25) on the basis of nucleotide

sequences by using the maximum composite likelihood

model. The corresponding parameter of the neighbor-

joining algorithm was set as ‘complete deletion.’

Phylogenetic analysis of the known rodA sequences
To evaluate the appropriateness of the phylogenetic

reconstruction based on rodA genes and to design the

primers used in this study, relevant, available gene

sequences of rodA and 16S rDNA genes were obtained

from the GenBank database and analyzed. The phyloge-

netic distances were calculated with the abovementioned

algorithm and parameter using MEGA 4.

Design of PCR primers
The primers used in this study to amplify the fragments

of the rodA gene and to determine their sequence were

Rd_uni-F (5?-CCDTCAGARTTTATGAAGATWTCC-

3?) and Rd_uni-R (5?-AATCATATCHSWYTCDCG-

DACWGG-3?). Approximately 520-bp-long fragment of

the rodA gene was amplified with these primers. These

oligonucleotide primers were designed on the basis of

conserved sequences, which were identified by aligning

the streptococcal rodA genes in the GenBank nucleotide

database. The DGGE sample was amplified using

Rd_uni-F and a primer constructed by the addition of

the GC clamp (CGCCCGGGGCGCGCCCCGGGC

GGCCCGGGGGCACCGGGGG-) to Rd_uni-R.

PCR conditions
The rodA gene was amplified by performing PCR in 50 mL

of a reaction mixture containing 0.5-U Takara Ex TaqTM

Hot Start (HS) Version (Takara, Kyoto, Japan), 0.5 mM of

the oligonucleotide primers, template DNA

(B20 ng mL�1), and 1.5 mM of MgCl2, according to

the manufacturer’s instructions. Amplification was per-

formed using GeneAmp† System 9700 (Applied Biosys-

tems, Foster City, CA), under the following conditions: 35

cycles of denaturation at 988C for 10 s, primer annealing

at 488C for 30 s, and extension at 728C for 30 s. The PCR

products were analyzed by 1.5% agarose gel electrophor-

esis, after staining with ethidium bromide. The amplicons

were then purified with a Qiagen PCR purification kit

(QIAGEN GmbH, Hilden, Germany) and used as the

template for subsequent sequencing and amplification of

the DGGE sample. The DGGE samples were amplified

by PCR by changing the annealing temperature to 538C
and using the purified amplicons as the template.

Sequencing and analysis of the streptococcal
rodA genes
The cycle sequencing reaction of the purified amplicons

were performed by using BigDye Terminator v3.1 cycle

sequencing kit (Applied Biosystems) and the products

Table 1. Streptococcus strains used in this study

Streptococcus group Accession number

Species Strain rodA 16S rDNA

Mitis group

S. mitis NCTC 12261T SMT1128a D38482

S. pseudop-

neumoniae

CCUG 49455T AB441144b AY485599

S. oralis ATCC 10557 AB439009b AB355617

S. gordonii ATCC 10558T AB441145b AY485606

S. sanguinis ATCC 10556T AB441146b DQ303192

S. parasanguniis ATCC 15912T AB441147b DQ303191

S. infantis ATCC 27375T AB441148b AB008315

S. australis ATCC 700641T AB441149b AY485604

S. cristatus NCTC 12479T AB441150b AB008313

S. peroris GTC848T AB441151b AB008314

Salivarius group

S. salivarius NCTC 8618T AB441152b AB355616

S. vestibularis ATCC 49125T AB441153b AY188353

S. thermophilus ATCC 19258T AB441154b X68418

Anginosus group

S. anginosus ATCC 33397T AB441155b AB355609

S. constellatus

subsp. constellatus

ATCC 27823T AB441156b AB355606

S. constellatus

subsp. pharyngis

CCUG 46377T AB441157b AY309095

S. intermedius ATCC 27355T AB441158b AF104671

Mutans group

S. mutans NCTC 10449T AB441159b AB294730

S. sobrinus ATCC 27351 AB441160b AF439398

Bovis group

S. equinus ATCC 33317c AB441161b AB002482

S. gallolyticus

subsp.

macedonicus

CCUG 39970T AB441162b AF459431

TT means type strain.
aTIGR locus name in the genome database of TIGR.
bAccession number of a sequence determined in this study.
cThis strain is the type strain of once ‘Streptococcus bovis.’
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Fig. 1. (Continued)
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were examined with an automatic DNA sequencer (ABI

Prism 3,100; Applied Biosystems), according to the

manufacturer’s instructions. The resultant sequences

were aligned using ClustalX and then analyzed with

MEGA 4, as described above.

DGGE analysis
In this study, the DGGE analyses were performed with

the DCodeTM universal mutation detection system (Bio-

Rad Laboratories, Hercules, CA), according to the

manufacturer’s instructions. The DGGE analysis was

initially performed with a perpendicular denaturing

gradient gel in order to determine the conditions for

that with a parallel gradient gel. To determine the

streptococcal rodA genes having the highest and lowest

melting temperature (Tm) among nine dominant strepto-

coccal species in the human oral cavity, S. mitis,

Streptococcus sanguinis, S. oralis, Streptococcus gordonii,

Streptococcus parasanguinis, Streptococcus salivarius,

Streptococcus vestibularis, S. mutans, and Streptococcus

sobrinus (26, 27), the Tm values of the rodA amplicons

were calculated using the following formula: Tm�
81.58C�16.6 (log10[Na�])�0.41(%[G�C])�(500/n) (28).

The samples with genes having the highest and lowest

Tm values were applied on a perpendicular denatur-

ing gradient gel containing 6% of acrylamide and

0�70% linear gradient of denaturant (100% denaturant

was equivalent to 7 mol �L�1 urea and 40% deinonized

formamide) and separated at 80 V for 2 h at 568C. On

the basis of the result obtained, the appropriate constant

denaturant concentration in the DGGE analysis to detect

the selected nine streptococcal species was manually

determined by changing it into every 2% from the

dissociable denaturant concentration of the lowest-

Tm rodA fragment to that of the highest-Tm fragment.

The electrophoresis patterns of nine streptococcal refer-

ence strains were adopted as the reference markers

to identify these species. In the constant denaturing

gel electrophoresis, a gel containing 8% (w/v) of acryl-

amide and 28% of denaturant was used, and electro-

phoresis was performed at 260 V for 6 h at 568C.

The electrophoresed gels were visualized by staining

with SYBR† Gold (Invitrogen Corp., Carlsbad, CA).

Registration of sequences
The newly determined rodA sequences were deposited in

DDBJ. Their accession numbers are shown in Table 1.

Results

Phylogenetic analysis of reference rodA genes from
selected gram-positive bacteria and sequence
analysis of streptococcal rodA genes
At first, in order to investigate the prevalence of rodA gene

in Streptococcus spp., we performed phylogenetic analysis

of the sequences obtained from members of the genus

Streptococcus and related genera. We obtained 26 rodA

genes, derived from the members of the genera Strepto-

coccus, Lactococcus, Lactobacillus, Leuconostoc, and

Listeria, from the GenBank database. The phylogenetic

tree of these genes was constructed, with its root

representing the rodA gene of Listeria monocytogenes

(Fig. 1A). This tree clearly divides the tested strains at the

genus and species levels. Therefore, the streptococcal rodA

genes were considered to exhibit sufficient phylogenetic

diversity to classify the genus at the species level. More-

over, when the sequence similarities of rodA genes among

S. pneumoniae R6, S. mitis NCTC 12261, and S. oralis

ATCC 10557 were calculated, the similarity between S.

pneumoniae and S. mitis, S. pneumoniae and S. oralis, and

S. oralis and S. mitis was 93%, 77%, and 78%, respectively.

These similarity values were smaller than those of the 16S

rRNA genes among the three abovementioned strains.

Next, we performed the alignment analysis of the

streptococcal rodA gene sequences retrieved in order to

design the universal PCR primers that could amplify all

the streptococcal rodA genes. As a result, we constructed

the primers that could amplify approximately 520-bp-

long fragment from the N-terminus region of 1,200-bp-

total length of the rodA gene and the amplicons isolated

from 21 nonhemolytic streptococci were sequenced (Table

1). In the phylogenetic analysis, approximately 370-bp

sequence determined with fidelity was used.

Phylogenetic analysis of the streptococcal
rodA genes
The phylogenetic distances of the rodA (approximately

370 bp) and 16S rDNA (approximately 1,200 bp) genes

among streptococcal strains in Table 1 were computed

with MEGA 4 by using the following: bootstrap analyses

(500 replicates), gap/missing data (complete deletion),

model (maximum composite likelihood), and substitution

(d; transition�transversion) (Table 2). The mean phylo-

genetic distance of the rodA and 16S rDNA genes

was calculated and found to be 0.527 (SE, 0.474) and

0.043 (SE, 0.005), respectively. For this reason, the base

Fig. 1. Phylogenetic analyses of the sequences of the rodA gene. A, Phylogenetic tree derived from gram-positive bacteria’s rodA

gene, which was obtained from the GenBank database. The numbers in parentheses indicate the GenBank accession numbers.

Comparison of the phylogenetic trees of partial sequences of rodA and 16S rDNA constructed using the reference strains of

nonhemolytic streptococci in Table 1. B, Phylogenetic tree derived from partial sequences of rodA (370 bp) and C, Phylogenetic

tree derived from partial sequences of 16S rDNA (1,277 bp). The scales of both phylogenetic trees were adjusted so that they

were equivalent.
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substitution rates in the rodA genes were observed to be

considerably higher than those in the 16S rDNA

sequences, though the phylogenetic distance between

the rodA genes of Streptococcus australis and Strepto-

coccus infantis was 0.00. The phylogenetic tree also

indicated that the evolutionary rates of the rodA genes,

except those of S. australis and S. infantis, were higher

than those of the 16S rDNA sequences (Fig. 1B and C).

Thus, it was revealed that the phylogenetic analysis based

on the rodA sequences of Streptococcus spp. except S.

australis and S. infantis, would be able to differentiate the

species that are closely related by 16S rDNA analysis.

Determination of the conditions for DGGE with
constant denaturing gradient gel
As for the nine dominant streptococcal species in the

human oral cavity, the G�C content (%) and Tm value

(8C) were estimated from these sequence data in order to

determine the conditions for the subsequent DGGE

analysis. The rodA genes of S. sobrinus and S. mutans

showed the highest (49.78C) and lowest (37.68C) Tm

values, respectively. The fragments of the genes obtained

from these two strains, which were amplified with the GC-

clamped primer set, were applied to perpendicular dena-

turing gradient gel to determine the optimal concentration

Fig. 2. Negative image of the rodA-DGGE analyses. The appropriate denaturant concentration in the following experiment was

determined by the ethidium bromide-stained perpendicular DGGE gel. The rodA gene fragments of S. sobrinus (with highest

Tm) and S. mutans (with lowest Tm) were amplified with the GC-clamped primer set. The amplicons were applied on the same

perpendicular denaturing gradient gel containing 6% of acrylamide and 0�70% linear gradient of denaturant and

electrophoresed at 80 V for 2 h at 568C. The electrophoretic bands of these two amplicons were separated at concentrations

of the denaturant ranging from 22 to 56% (A). The rodA-DGGE analysis with parallel constant denaturant gel was applied to

detection of viridans streptococci in saliva. In this experiment, a parallel constant denaturant gel containing 8% (w/v) of

acrylamide and 28% of constant denaturant was used, and the GC-clamped rodA gene fragments were separated at 260 V for 6 h

at 568C in 0.5� Tris-acetate-EDTA buffer. As the reference markers to identify the streptococcal species, the GC-clamped rodA

fragments of S. sobrinus (sob), S. sanguinis (san), S. oralis (ora), S. mitis (mit), S. vestibularis (ves), S. salivarius (sal), S.

parasanguinis (par), S. gordonii (gor), and S. mutans (mut) were used. The Arabic numerals identify the individual subjects (B).
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of the denaturant (Fig. 2A). It was observed that these two

amplicons separated between 22% and 56% of the

denaturant and that the double-strand rodA fragment of

S. mutans and S. sobrinus started to denature at 22% and

34% of the denaturant, respectively. Thus, the appropriate

constant denaturant concentration in the DGGE analysis

to detect the nine streptococcal species was fixed at 28%. In

this condition, the rodA fragments from the nine species

showed clearly different mobility (Fig. 2B) in order of the

estimated Tm value except S. sanguinis and S. mitis (data

not shown).

Detection of nine Streptococcus species by DGGE
analysis based on the diversity of the rodA gene
As shown in Fig. 2B, the electrophoresis patterns of the

rodA gene fragments of the clinical samples were

compared with those of nine reference streptococcal

strains, and the streptococci present in the saliva samples

were expected (Table 3). Then, we extracted the DNA

fragments from the band on the DGGE gel in Fig. 2B

and carried out direct sequence. The sequence of the

streptococci asterisked in Table 3 were consistent with the

rodA sequence of the corresponding bacterial species

isolated from MS agar, although the fragments extracted

from thin bands in lanes 2, 3, and 4 could not be

sequenced. On the other hand, all species listed in Table 3

were contained in the sample of streptococci isolated

from MS agar plate cultures. Thus, it was revealed that

the rodA-DGGE analysis could detect the streptococcal

species as well as the cultivation method.

Discussion
RodA is the molecule that participates with penicillin-

binding protein 2 in peptidoglycan synthesis and cell

division (29). Peptidoglycan synthesis by these two

molecules has been investigated in association with

susceptibility to antibiotics such as penicillin (30), and

many studies on this subject have been reported not only

on gram-negative bacilli such as Escherichia coli or

Salmonella (31�33) but also on gram-positive cocci such

as S. pneumoniae and viridans streptococci (34�41).

Therefore, it is important that peptidoglycan synthesis

and cell division by RodA and penicillin-binding protein

2 is studied in these streptococci in the future. Further, it

is thought that phylogenetic analysis of the streptococcal

rodA gene, which is one of the genes associated with the

abovementioned biological activities, is more important

as the initial step in the investigation of the mechanism

underlying drug resistance in streptococcal infection.

However, until now, there is no report on the phyloge-

netic analysis of the streptococcal rodA gene. In the

present study, we investigated the prevalence of the rodA

gene in viridans streptococci and determined the phylo-

genetic relationship of the streptococcal rodA gene in

certain representative gram-positive bacteria by con-

structing a phylogenetic tree. It was revealed that the

genus Streptococcus, together with the genus Lactococcus,

formed one cluster of cocci in the dendrogram rooted by

genus Listeria, while Leuconostoc mesenteroides was

classified in the bacilli cluster.

In the field of the water examination, since the

microbial population associated with denitrification can-

not be precisely identified by 16S rDNA-DGGE alone,

DGGE methods based on nirS and nirK have been

developed and applied (42�44). Similarly, the application

of the DGGE to analysis of other housekeeping and/or

prevalent genes as an alternative or supplement to 16S

rDNA-DGGE is thought to offer a higher resolution to

analyses of complex microbial populations such as that of

the human oral cavity. In this study, for developing the

DGGE method for the analysis of the oral streptococcal

population, we used the rodA gene. We first performed a

phylogenetic analysis of the rodA gene derived from the 21

streptococcal species that may be isolated from the oral

cavity. The analysis results revealed that the phylogenetic

tree of rodA classified these streptococci, except

S. australis and S. infantis, with a phylogenetic resolution

that was 10 times that of the phylogenetic tree based on

16S rDNA. These results suggested that the rodA gene

possesses sufficient genetic diversity to identify viridans

streptococci and that phylogenetic analysis of this gene

may be an efficient tool for their classification and

identification. However, this phylogenetic analysis has a

potential limitation, since any analysis of oral streptococci

based on single gene loci may be flawed by inter-species

homologous recombination, which is not uncommon in

these bacteria (15, 45). In the present study, one possible

example of this may be the lack of discrimination between

S. australis and S. infantis. For this reason, we should

make an allowance for homologous recombination in the

identification based on single gene loci.

Next, we succeeded in developing a DGGE method

based on the diversity of rodA (rodA-DGGE) in order to

Table 3. The rodA-DGGE analysis of clinical samples

No. Detected streptococci

1 S. gordonii*, S. salivarius*, S. oralis*

2 S. gordonii*, S. salivarius*, S. mitis, S. oralis

3 S. mutans*, S. gordonii*, S. parasanguinis, S. salivarius*, S.

mitis*, S. sanguinis*

4 S. gordonii*, S. salivarius, S. mitis*

5 S. gordonii*, S. parasanguinis*, S. salivarius*, S. oralis*

6 S. gordonii*, S. salivarius*, S. vestibularis*, S. mitis*

7 S. mutans*, S. gordonii*, S. salivarius*, S. vestiburalis*

8 S. salivarius*, S. vestibularis*, S. mits*, S. oralis

*The asterisked streptococci were consistent with the rodA

sequence of the corresponding bacterial species.
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detect nine selected streptococcal species, which fre-

quently are isolated from the oral cavity and associated

with oral disease such as dental caries, and systemic

disease such as bacteremia and SBE (21). As we could

detect and differentiate the nine species in saliva by rodA-

DGGE without cultivation, it was suggested that our

developed method is an efficient initial screening test for

the detection of the pathogenic and commensal strepto-

cocci derived from the human oral cavity. Especially, in

the situation where the SBE-causing streptococci had

been isolated, our rodA-DGGE would provide the

opportunity to simultaneously evaluate the existence of

the infecting organism in the oral cavity, blood, the

infected organ, and saliva of the patient. Even though a

causative organism cannot be identified by this DGGE

method, sequencing analysis followed by Basic Local

Alignment Search Tool (BLAST) search of the tested

rodA fragment will be able to identify the species among

the other 12 Streptococcus species that were not adopted

as reference markers. Although these 12 Streptococcus

species are minor in human saliva, e.g. Streptococcus

anginosus is one of the bacteria associated with bacter-

emia (21). For this reason, a database of rodA gene

sequences as well as other housekeeping genes is im-

portant (45). Moreover, we believe that identification

based on a combination of phylogenetic analysis of rodA

gene and 16S rDNA offers a higher resolution and

overcomes weaknesses in each method. For example,

although our method could not distinguish S. infantis

and S. australis, the phylogenetic analysis of 16S rDNA

could classify these species (46, 47). On the other hand,

although the phylogenetic analysis of 16S rDNA could

not clearly identify S. mitis, S. oralis, and S. pneumoniae

(16), our method could divide them.

In conclusion, we showed the prevalence and phyloge-

netic analysis of rodA gene in viridans streptococci and

demonstrated that identification based on the diversity of

rodA genes, containing rodA-DGGE, was convenient and

effective as an initial screening of viridans streptococci. In

our future clinical study, we will apply the phylogenetic

analysis of rodA gene containing rodA-DGGE to the

detection of SBE-causative streptococci by using the

bacterial DNA samples extracted from the isolated strep-

tococci, the blood, infected organ, and saliva of their host.
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