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Abstract: Hematopoietic stem cells (HSC) are responsible for the production of blood and immune
cells during life. HSC fate decisions are dependent on signals from specialized microenvironments
in the bone marrow, termed niches. The HSC niche is a tridimensional environment that comprises
cellular, chemical, and physical elements. Introductorily, we will revise the current knowledge of
some relevant elements of the niche. Despite the importance of the niche in HSC function, most
experimental approaches to study human HSCs use bidimensional models. Probably, this contributes
to the failure in translating many in vitro findings into a clinical setting. Recreating the complexity
of the bone marrow microenvironment in vitro would provide a powerful tool to achieve in vitro
production of HSCs for transplantation, develop more effective therapies for hematologic malignan-
cies and provide deeper insight into the HSC niche. We previously demonstrated that an optimized
decellularization method can preserve with striking detail the ECM architecture of the bone marrow
niche and support HSC culture. We will discuss the potential of this decellularized scaffold as
HSC niche model. Besides decellularized scaffolds, several other methods have been reported to
mimic some characteristics of the HSC niche. In this review, we will examine these models and their
applications, advantages, and limitations.

Keywords: 3D culture; bone marrow niche; HSC; scaffold

1. Introduction

Hematopoietic stem cells (HSC) are rare, self-renewing, multipotent cells that are
responsible for maintaining the blood and immune cells supply through a process called
hematopoiesis. HSCs undergo several fate decisions including self-renewal and differenti-
ation that are key for hematopoietic homeostasis. Evidence demonstrates that HSC fate
is dependent on the surrounding environment, the specialized microenvironments in the
bone marrow called niches. The bone marrow niche comprises many cellular, biochemical
and physical components and the interaction between them defines specific stem cell func-
tions [1–4]. Despite the clear importance of the niche in HSC function, most experimental
approaches to study human HSCs malignization, drug efficacy, hematopoiesis, HSC aging
are based on conventional 2D culture.

Different niches are associated with defined anatomic structures and distinct resid-
ing cells in the bone marrow and HSC subpopulations with different proliferation and
differentiation potential [1–4]. A population of self-renewing HSCs remain in a quiescent
state, protected from genotoxic insults and exhaustion [5], while committed progenitors
mobilize to other niches and finally into circulation [1]. This balance of differentiation and
quiescence is essential to maintain homeostasis and health. Strong evidence proposes a
decisive role of the niche in these fate decisions [1–4].

HSCs are probably the most clinically used adult stem cells. These primitive progeni-
tors are responsible for the reconstitution of the hematopoietic system upon bone marrow
ablation and transplantation [6]. In addition to stem cell transplantation, HSCs have been
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extensively studied due to their role in hematologic disease. Disfunction of HSCs is respon-
sible for leukemogenesis [7], immune deficiencies [8], immuno-senescence [9], and several
hematologic diseases. In addition, the hematopoietic system is highly sensitive to radio-
therapy and chemotherapies [10]. Hematologic toxicity is a common and life-threatening
complication that limits the maximum doses administrable for several drugs [10].

Most efforts to study the bone marrow niche have been focus on the understanding
of HSC behavior and hematopoiesis. Besides hematopoietic cells, the bone marrow also
hosts another important stem cell lineage, mesenchymal stem cells (MSC). MSCs can
differentiate into different cell lineages in vitro and in vivo, modulate immune response and
inflammatory pathways in other cells [11]. Changes in the MSC physiology are associated
with numerous health conditions [12,13]. Several mesenchymal stem cell therapies are
currently under trial for numerous applications, including bone repair after fracture,
Acute graft-versus-host disease (aGVHD), cardiovascular repair and liver disease [11,12].
Although the focus of this review is HSC niche models, some 3D models of the bone
marrow used to study the MSC physiology will be also discussed.

Despite advances in the understanding of the role of the functional and structural
components of the HSC niche, there is no ex vivo model that can faithfully reproduce the
in vivo HSC niche homeostasis, long-term stem cell maintenance and complex cellular
interactions of the niche. Recreating artificially the extracellular matrix (ECM) composition
and intricated structure of stem cell niches is a bioengineering challenge for the decades to
come. To face this problem today, decellularized ECM scaffolds from tissues and organs
came as a short-cut that was used effectively as in vitro model and organ engineering
platform [14–19]. To study the HSC niche or model a pathological condition of the bone
marrow, a system that could faithfully reproduce the physical architecture, chemical and
cellular components of HSC niches seems ideal. However, for some applications that
require easy fabrication, scale up, and uniformity, only a few essential elements of the niche
need to be introduced, and synthetic scaffolds are more attractive.

Several models successfully recapitulated some aspects of the bone marrow niche
and contributed to HSC ex vivo expansion and understanding of HSC physiology. In this
review, we will overview the current knowledge of elements of the HSC niche and describe
up-to-date 3D culture HSC niche models.

2. Hematopoietic Stem Cells and Their Niche

Hematopoiesis occurs primarily in the bone marrow and relies on the multi-potency
and self-renewal capacity of the hematopoietic stem cell to take place throughout life.
Remarkably, the microenvironment must provide the appropriate signals, soluble cytokines,
tridimensional cues and cellular interactions for long-term maintenance and differentiation
of HSCs into different blood lineages. All these factors interact to regulate the balance
between self-renewal and differentiation that is critical to maintain the stem cell pool and
prevent malignant proliferation.

The concept of an HSC niche was first proposed in 1978, as the surrounding envi-
ronment of HSCs. Although the anatomic location of the HSC niche has been subject
of controversy, evidence points to the existence of an arteriolar niche, endosteal niche,
and peri-sinusoidal niche [1–4,20,21]. In their niches, HSCs are able to maintain their self-
renewal capabilities and evade differentiation in response to the signals received from their
microenvironment. While in their natural microenvironment HSCs maintain a life-long
self-renewal capacity, in culture these primitive progenitors rapidly differentiate and ex
vivo long-term maintenance of HSCs has remained challenging.

To recognize the need for an accurate HSC niche model, we need to understand the
complexity of the HSC niches and the cellular interactions that maintain homeostasis. The
bone marrow is a structurally complex organ hosting subpopulations of hematopoietic
progenitors and non-hematopoietic cells, vascularized, innervated and confined by the
bone. The inner surface of the bone, called endosteum, is lined by a thin cellular layer of
osteoblasts and osteoclasts. The endosteal “osteoblastic” niche was the first putative HSC
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niche [21]; however, the common assumption of direct contact of HSCs with osteoblasts
have been disputed by recent evidence [3,22]. The endosteum is an important lymphopoi-
etic site, and osteoblast secretion of CXCL12 is crucial for lymphoid differentiation [1].
While C-X-C motif chemokine ligand 12 (CXCL12) expressed by osteoblasts seems to be
responsible for early lymphoid progenitor maintenance, CXCL12 expressed by endothelial
and stromal cells influences maintenance of HSCs [1].Osteoblasts are known to regulate
HSC proliferation and erythroid differentiation by Osteopontin [23] (OPN) and erythropoi-
etin [24] (EPO) production. However, evidence shows that less than 20% of HSCs are in
direct contact to the endosteum [22] and most recent evidence suggests that the niche of
HSCs is primarily perivascular, remarkably around the arterioles and sinusoids [1–3,20,25].

Arterioles, which are close to the endosteum [3], are important HSC sites and are
essential for HSC quiescence and maintenance [3,25]. The arteriole niche harbors several
populations of stromal cells (particularly important, leptin receptor-expressing, CXC-
chemokine ligand 12 (CXCL12)-abundant reticular (CAR) perivascular stromal cells and
neural–glial antigen 2 (NG2) periarteriolar cells), endothelial cells, sympathetic nervous
system (SNS) nerves and non-myelinating Schwann cells. They all contribute with chemical
signals to HSC homeostasis. CAR cells are the main sources of CXCL12, they localize
surrounding endothelial cells in the sinusoids and arterioles and are in direct contact
to HSCs [26]. Schwann cells together with sympathetic nerves in the arteriole induce
quiescence of HSCs through transforming growth factor beta (TGF-b) activation and
maintain direct contact with a considerable number of HSCs [27]. Localization of the
primitive hematopoietic stem cells in specific niches is subject of controversy, probably due
to the different markers and limitations of the methods used to identify long-term HSCs.
Although strong evidence supports that quiescent HSCs localize away from the bone,
mainly around the sinusoids [28], another line of evidence showed that primitive HSCs, or
at least a subpopulation, localize near the arterioles, and proximal to the endosteum [20].
In line with these findings, NG2+ stromal cells in the arteriole niche have been associated
with lymphoid biased HSCs and megakaryocytes in the sinusoids have been linked to
myeloid-biased HSCs [29]. Interestingly, myeloid differentiation bias is associated with
immunosenescence, aging [30] and cancer [31]. Moreover, megakaryocytes in the sinusoidal
niche has been shown to regulate HSC quiescence through C-X-C motif ligand 4 (CXCL4),
TGF-b and expansion under stress through fibroblast growth factor 1 (FGF1) [4,32]. A
summary of these interactions is presented in Figure 1.

Figure 1. A graphical overview of the bone marrow components and cellular interactions taking place in the bone marrow niche.

Chemical and physical characteristics of the bone marrow have effects in HSC be-
havior. Oxygen tension, which is considered central to HSC quiescence, is not uniform
throughout the bone marrow. Direct measurement of oxygen pressure identified gradual
differences, and contrary to common thought, endosteal regions are the most oxygenated
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and perisinusoidal regions the most hypoxic [33]. Bone marrow stiffness, which regulates
stem cell, MSC and HSC behavior [34,35], is also different across the marrow: the rigid bone
is >106 KPa, the osteoblastic matrix of the endosteal surface is much less rigid (>30 kPa),
while the central marrow is soft (0.3 kPa) [35,36]. Material stiffness seems to be a particularly
important consideration for 3D culture scaffolds [37–39]. Interestingly, scaffold rigidity in-
duces greater HSC adhesion and migration and has been associated with a myelo-erythoid
bias in vitro, while softer matrices promote granulocyte differentiation [40]. In addition,
osteogenic differentiation of stromal cells also is induced by substrate stiffness [41], which
could indirectly contribute to the formation of an in vitro endosteal niche.

In addition to cellular elements, the extra-cellular matrix is an important active element
of the niche. It is clear that changes in the physical characteristics and composition of the
ECM affect stem cell function [42]. The constituents of the ECM may comprise more than
a 200 proteins [43], including collagens, proteoglycans, Laminin, fibronectin, elastin and
ECM-associated growth factors, cytokines and ECM remodeling enzymes. These elements
are continuously being synthesized, modified, and secreted by the cellular components
they support. These components are dynamically interlinked, for instance, cytokines and
growth factors are often sequestered in the ECM, regulating their availability and matrix
metalloproteinases are remodeling the ECM in which they are embedded [44]. Using
state-of-the-art imaging and proteomics analysis, Mayorca et al, demonstrated that cancer
progression drives dramatic ECM remodeling that includes changes in composition and
structure [45]. The ECM is actively connected to the cell through integrins, syndecans, and
other receptors. Fibronectin, laminin, and collagen are known to be required for migration
and proliferation of HSCs through a common integrin-binding domain, termed RGD [40].
Unsurprisingly, introducing these anchorage peptides (RGD) in artificial scaffolds has
shown superior performance in adhesion, repopulation and differentiation of several stem
cells [46,47], including HSCs [48].

The bone marrow environment is not homogeneous and at least three distinct HSC
niches have been extensively described: endosteal, arteriolar and sinusoidal. Each of these
microenvironments has particular ECM characteristics, distinct cellular elements, oxygen
tension and physical properties that regulate HSC physiology.

3. Applications of 3D Models of BM Niche for Cell Culture
3.1. Ex Vivo Expansion of HSC

Hematopoietic stem cell transplantation (HSCT) is the only potentially curative treat-
ment for numerous hematologic disorders. Access to this life-saving procedure is limited
by the availability of an HLA-matched donor, which could be as low as 16% in some ethnic
groups [49]. Ex vivo expansion of hematopoietic stem cells in an artificial culture system
would provide a therapeutic alternative for patients without available donors.

Evidence from serial transplantation in mice demonstrates that HSCs have extremely
long-term self-renewal capacity in vivo [50]. However, long-term maintenance of HSCs ex
vivo has proven challenging and in vitro expansion of repopulating HSCs have had limited
success [51,52]. In this sense, in vitro HSC expansion systems should ideally mimic key
microenvironmental characteristics of the bone marrow to achieve homeostasis and long-
term maintenance of HSCs. Evidence suggests that signals existing in the tridimensional
microenvironment of the cell are key to stemness maintenance and 3D culture systems
are superior in maintaining pluripotency of several stem cells [53–55]. In addition to
tridimensionality, chemical signals from other cellular elements of the niche and ECM
components are also important and probably should be considered to establish maintenance
and expansion ex vivo [3,4,26,27,56,57].

Probably expansion of HSCs is the most studied application for 3D culture of HSCs.
Numerous synthetic 3D scaffolds have proven to provide a more favorable environment for
HSC expansion and maintenance of pluripotency than bidimensional cultures [48,58–62],
see Table 1 for a brief description. Although the use of 3D scaffolds for HSC expansion is
attractive, cell recovery from the scaffold after potential expansion might be challenging
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depending of the scaffolding material. In the case of an ECM decellularized bone marrow
(such as DeBM presented in Section 4.2), collagenase treatment could be an option for cell
recovery; however, feasibility of this approach has not been tested. The combination of a
bioreactor with a 3D scaffold could allow the release of HSCs into the liquid phase; however,
in [61], the authors noted that the released cells showed differentiation commitment.
Remarkably, they were able to recover HSCs from the solid phase using perfusion with
collagenase in the bioreactor; however, viability of the recovered population was not
stated [61].

Scaffold-less 3D culture approaches, such as cellular microspheres, have been shown
to also enhance HSC expansion [55,63]. Fewer natural decellularized scaffolds have been
described as bone marrow niche models in the literature [18,64]. Although these models
might resemble better the natural microenvironment of HSC, no reports of their suitability
for HSC expansion are currently available.

3.2. Bone Marrow Study Model

Traditional bi-dimensional culture systems fail to reproduce the behavior of the natural
tissue. Evidence shows that monolayer culture ultimately modifies cellular phenotype
and gene expression compared to tridimensional culture and natural tissue [65,66]. For
decades, we have used cell monolayer or suspension cell culture models to understand
cellular physiology. These culture systems dismiss completely the effect of the niche:
tridimensionality, ECM-cell interactions and complex multi-cellular dynamic interplay.

Immortalized leukemia cell lines adapt very well to 2D culture and are useful models
of disease. However, the study of leukemogenesis from human hematopoietic cells to
leukemic stem cells depends on the study of primary HSCs. Maintaining the natural
phenotype of HSCs in a traditional culture system requires demanding conditions and
even in optimal conditions, changes in the expression profile and phenotype have been
reported [67]. In vitro 3D models of the BM niche are valuable tools to study HSCs and
unravel changes that lead to malignization. For instance, a humanized gelatin-based porous
scaffold seeded with MSC was used successfully as model In vitro and in vivo. Moreover,
it allowed successful xenotransplantation of primary cells from leukemia patients that
showed no engraftment using traditional methods [68], allowing studying these cells
in vivo.

An ex vivo HSC microenvironment also allows studying hematopoiesis in homeostasis
and disease. A collagen scaffold-based 3D culture system allowed to study migration and
differentiation bias of HSCs in different compartments of their system [69]. An artificial
thymic organoid (ATO) system allowed the study in vitro of T-cell differentiation. Differ-
entiation from HSC to T cells exhibiting mature naive phenotypes recapitulated in vivo
differentiation and was much more efficient in the ATO system than in conventional 2D
systems [70].

In addition, studying the HSC niche requires a tridimensional setting. Most of our
understanding of the HSC niche comes from mouse models and microscopic analysis of
the murine bone marrow. Although many of the insights obtained from these models
have proven to extrapolate in the human HSC niche, there are fundamental differences
between mice and human hematopoietic system [71]. In this sense, 3D culture systems
are instrumental to study characteristics of the human HSC niche. ECM is produced by
cells in vitro, and this production of matrix can be exploited to obtain natural scaffolds that
resemble natural characteristics of the tissue ECM. An ECM scaffold produced using this
approach revealed specific characteristics of the ECM produced by osteoblasts, endothelial
and mesenchymal cells and assessed their performance as platforms for MSC and HSC
culture [72]. Unquestionably, the development of a realistic ex vivo model of the human
bone marrow would be an unprecedented tool to study HSCs, MSCs and niche interactions
in a natural context.
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3.3. Large Scale Drug Testing Platforms

Drug development is a lengthy and expensive process that encompasses several
stages from target identification to clinical trials. Despite the tremendous effort invested in
pre-clinical drug testing, phase II and III clinical trials have very high attrition rates [73].
Remarkably, more than half of failures are due to a lack of efficacy [73], suggesting severe
limitations in current pre-clinical models.

High-throughput screening of small compound libraries for identification of potential
therapeutic compounds is an essential step in the drug development process. The majority
of cell-based high-throughput screening approaches rely on well-characterized cell lines
in bidimensional cellular culture systems. These systems do not allow for the influence
of surrounding cells, molecular diffusion gradients and physical characteristics of the cell
environment. All these elements are relevant to cellular behavior and treatment efficacy.
Stromal cells are key to drug resistance and drug efficacy is reduced when malignant cells
are associated with stromal cells [74]. Diffusion of candidate drugs to the target cell, oxygen,
nutrient diffusion, and cellular migration are known variables that affect drug delivery and
efficiency [75]. The use of synthetic scaffolds or decellularized tissue present a physical
barrier that will affect the diffusion of drugs, cytokines and/or other substances and alter
cellular migration. In addition, biochemical characteristics of the scaffolding material or
method used for decellularization (in the case of decellularized tissue) may affect the barrier
properties and general performance of the scaffold. New tools and methods that take into
account these factors are needed to increase precision in the assessment of drug candidates.

On the downside, high-throughput screening (HTS) assays are, in most part, not
compatible with three-dimensional culture systems. Traditional imaging methods have
limited optical access into tridimensional structures, co-culture of multiple cell types and
irregularity of the natural niches are factors limiting HTS application of 3D culture. In
addition to imaging, gene expression has been used to assess phenotypic changes in HTS
approaches in the context of hematologic disease [76]. Tridimensional culture will also
present challenges for gene expression-based high-throughput screenings, depending on
the scaffolding material, recovery of cellular material might be problematic and successful
implementation will also depend on uniform seeding and adhesion.

Customizable synthetic polymers and natural scaffolding materials have significant
advantage for HTS, and several efforts to use 3D scaffolds in HTS have shown feasibility.
Matrigel, which is a complex mixture of natural proteins from the ECM, is suitable for
nanoliter-scale 3D culture ‘on chip’, allowing the evaluation of more than 500 conditions
for HTS [77]. This approach also supported superior proliferation of a neural progenitor
cell line compared to 2D culture. In another example of HTS application, a 3D porous
polystyrene scaffold plated in regular plates was used in neural progenitor culture. The
authors demonstrated that cells clustered, proliferated and differentiated in a manner
similar to neuro-spheres, considered reference of in vivo behavior [78]. Scaffolds using
artificial polymers are highly homogeneous, easier to fabricate and scale into 96-well plates
to be compatible to most high-throughput screening equipment; however, these platforms
lack many key features of the natural microenvironment. We previously demonstrated
that a decellularized bone marrow scaffold preserves histologic characteristics of the bone
marrow niche and supports HSC adhesion and growth [18]. Similar decellularized lung
scaffolds have been proposed to be a suitable platform for high-throughput screening
analysis [79]. However, to our knowledge, no HTS assay using a decellularized tissue
scaffold has been developed to quantitively measure a specific phenotype. Probably one of
the most challenging obstacles is the irregular topology of natural tissue that complicates
uniform adhesion of seeded cells and subsequent quantitative interrogation of phenotypic
changes. Although the use of 3D culture systems that recapitulate niche complexity in drug
discovery and repositioning is very promising, many limitations need to be addressed
before 3D culture is widely used for high-throughput and automated screening.
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4. Current 3D Models of the Bone Marrow Niche

A wide variety of materials are currently used in the production of artificial scaffolds
for cell culture applications. Scaffolds are usually porous and polymeric structures, which
allow cell infiltration and support cell growth, and easily customizable. Despite their
wide use in cell culture, and their advantages, they lack the complexity of the native
extra-cellular matrix and present problems of bio-compatibility [80]. Natural scaffolds
obtained from decellularized tissues maintain the tridimensional structure of the native
tissue and the only scaffolds that have been used to recreate functional organs [14–16,19,81].
Upon seeding into the decellularized scaffold, cells are able to recognize their native
cellular microenvironment and these sole cues lead to proliferation and differentiation [17].
Moreover, extra-cellular matrix components, such as collagen and fibronectin are highly
conserved proteins which explained that decellularized tissues present low cytotoxicity
and immunogenicity even between different species [82].

Several attempts to reproduce the bone marrow microenvironment using 3D culture
models have been reported. Early attempts of HSC tridimensional culture using scaffold-
free 3D culture have been reported. Bioreactors were used to increase cell-cell interactions
and optimize availability of cytokines and nutrients [83,84]. This type of scaffold-free
systems had limited success in HSC expansion. A hanging drop system was implemented
using co-culture of MSC and HSC; however, it presented problems of migration and it
did not succeed in expanding HSCs [85]. Culture conditions previously associated with
hematopoietic stemness maintenance such as hypoxia [86,87] have been incorporated in
3D models. Gradient hypoxia in an hydrogel scaffold produced distinct niches, which were
abolished in an hypoxic environment [88]. Dynamic and steady culture conditions were
assessed, using a sophisticated 3D culture system, in as attempt to mimic the natural blood
flow in the HSC niches; however, no significant differences in HSC maintenance were
observed [89]. We will describe the 3D culture methods recently develop for HSCs and
other niche cells. A brief summary of these methods described in the literature is presented
in Table 1.

Table 1. 3D culture systems developed to mimic the bone marrow niche.

System Description Main Results

Synthetic scaffolds

Poly (lactic-co-glycolic acid)
(PLGA)

PLGA is a biocompatible and
biodegradable material.

It does not support CD34+

cells growth [58].

Polycaprolactone (PCL) elastic mechanical properties
and slow degradation rate

Supports CD34+ adhesion and
proliferation [58].

Polyurethane (PU)
PU is a polymer with
attractive mechanical
properties and biocompatible.

Supports Cd34+ proliferation,
differentiation and egress [59].

Non-woven polyester
fiber/polypropylene mesh

Fibrous material, multiple
fibrous layers of polymers.

Supports CD34+ proliferation
[60].

Biodegradable zwitterionic
hydrogel

Poly-carboxybetaine
acrylamide (pCBAA)
hydrogel, with zwitterionic
segments of 20 alternating K
and E residues and a
metalloproteinase-cleavable
motif for degradation.

Prevents differentiation,
maintains self-renewal and
reduces metabolic activity of
HSCs. Shows superior
expansion of primitive HSCs
[90].
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Table 1. Cont.

System Description Main Results

Bio-functionalized scaffolds

Ceramic scaffold
bio-functionalized with
mesenchymal cells and
osteoblasts

Ceramic scaffold is cultured
with hMSC and osteoblast to
produce ECM and cytokines
previous to HSC culture.

MSCs and osteoblasts
produced a bone marrow-like
environment. Functionalization
increased expansion of HSCs
capable of hematopoietic
reconstitution [61].

Polyethylene glycol (PEG)
bio-functionalized hydrogels

PEG-acrylate hydrogel was
bio-functionalized by
including a modified RGD
peptide (involved in ECM-cell
adhesion)

Supports CD34+ expansion
and stemness better than 2D
culture [48].

Bio-derived bone scaffolds
(BDBS)

Scaffold from human bone is
biofunctionalized with MSCs
and osteoblasts.

Supports adhesion, expansion
and maintenance of stemness
in HSCs better than 2D
co-culture [62].

Gelatin-based porous scaffold
(Gelfoam) functionalized with
several stromal cells

Scaffold was cultured with
MSC, endothelial, osteoblasts
previous to HSC on the
Gel foam.

This functionalized scaffold
allowed adhesion and growth
of different niche cells.
Supported expansion and
maintenance of HSC [68].

Natural Materials

Collagen Elastic, biodegradable, natural
component of the ECM

Co-culture in collagen
supports CD34+ differentiation
and expansion [69].

Fibrin Natural protein, highly
biocompatible.

Supports CD34+ adherence
and proliferation [58].

Cellulose
Abundant, low-cost,
non-biodegradable. Could be
natural or synthetic.

Cellulose beads did not
support CD34+ cell adhesion
and proliferation [60].

Microspheres/organoids

Collagen microspheres

MSCs were encapsulated in
collagen microspheres,
osteogenic differentiation was
induced and subsequent
decellularization to use it as
scaffold for HSCs culture.

Supported mice HSC and
MSC proliferation and
adhesion [91].

Mesenspheres

Spheres of a low-adherence
population of MSCs formed
spontaneously in ultra-low
adherent dishes

BM Mesenspheres support
expansion of HSC [63] in
co-culture.

Hematosphere
Peripheral blood mononuclear
cells formed spheres in
ultra-low attach surfaces.

Spheres formed from
PBMNCs support extensive
expansion of primitive
Lin(−)CD34(+)-CD38(−)
HSCs [55].

Bone marrow organoid

Cord blood fibroblasts form a
cellular pellet, this pellet was
differentiated in vitro to a
chondroid rudiment. After
implantation in mice these
rudiments remodeled into a
functional BM niche.

The implanted organoid
resembled the natural HSC
niche. Host cells formed
vascular structures and HSC
engrafted in the organoid [92].
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Table 1. Cont.

System Description Main Results

Decellularized ECM/tissue/organ scaffolds

Decellularized ECM
Obtained by decellularization
of ECM produced by stromal
cells in vitro

Enhanced HSC adhesion and
expansion of CD34+ cells [57].

Decellularized bovine bone
marrow (DeBM)

Detergent-free decellularized
bovine bone marrow with
highly preserved bone
marrow architecture

DeBM supported adhesion,
focal localization and
proliferation of mesenchymal
and HSCs [18].

Decellularized porcine
bone marrow

High-hydrostatic
Pressurization method for
decellularization of BM.
Cultured with MSCs.

Supported MSC growth and
differentiation. Implantation
in mice induced HSC
recruitment [64].

3D printing

3D printing of MSCs-laden
alginate-gelatin bioink

HSCs were cultured in a
printed 3D scaffold fabricated
using a mix of alginate,
gelatin and MSCs.

Enhanced expansion and
stemness of HSCs. Induced
expression of integrins and
adhesion [93].

3D printing model of
endosteal and
perivascular niches

3D printing of pasty calcium
phosphate cement in
cylinder-like format and
seeded with osteogenic MSC
to emulate the endosteal niche
and endothelial cell laden
Matrigel to mimic the
perivascular niche.

Supported proliferation of
CD138+ myeloma cells [94]

4.1. Decellularized 3D Model of the Bone Marrow Niche

Natural bio-scaffolds derived from decellularized tissue have been prepared from
a variety of tissues [15–17,19,82,95]. Decellularized 3D scaffolds are the most complex
and mimic more realistically the cellular environment, and the only platform that, so
far, could support whole organ re-engineering [15,16,96]. These tissues/organs can be
harvested from various species including pigs, cows, horses, and humans [97]. Unlike
available synthetic scaffolds, natural decellularized scaffolds possess the native complex
architecture and composition that are essential for mediating cellular responses. These
unique properties ultimately facilitate integration into the host tissue after implantation and
elicit less immune response toward the ECM components upon adequate decellularization
treatment [98,99]. Decellularization of extracellular matrix produced by cells in vitro has
also offered a simplified alternative to mimic the in vivo microenvironment of cells [57,100].

Several optimization strategies have been implemented to achieve sufficient preservation
of the native structural and functional components for successful decellularization [101,102].
Furthermore, thorough removal of any cellular and DNA residues is also critical in pre-
venting adverse immune reactions especially in xenogenically sourced ECM [102,103].

The decellularization starts with physical methods used to lyse cells, between all the
methodologies the Freeze/thaw cycles are the most commonly used. The rapid changes
on the temperature can freeze the intracellular fluid and the ice crystals formed by this
process disrupt the cellular membranes causing cell lysis [104]. During the freeze/thaw
cycles a meticulous control of the temperature is necessary to avoid that the formation
of ice crystals affect the extracellular matrix ultrastructure. However, physical methods
are not enough to extract all the cell content and additional chemical and enzymatic
methods are necessary. It is common the use of chemical treatments with detergents
and/or enzymatic digestion-based approaches, or a combination of salt solution rinses
with enzyme digestion/detergent rinses. Sodium dodecyl sulfate (SDS) was commonly
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used to complete the decellularization especially in larger tissue, where other milder
detergents were not effective. However, Flynn et al. pointed out that the use of SDS
damage the vascular architecture of the tissue, complete removal is problematic and
its use interfere with subsequent enzymatic digestion of DNA and RNA [105]. Another
study also suggested that use of detergents in the decellularization process affect the
biomechanical characteristics of the scaffold [106]. Several recent methods are achieving
successful decellularization without the use of detergents [18,106,107].

Our group developed a bone marrow decellularized scaffold (DeBM) using a freeze-
thaw-based method excluding the use detergents to prevent degradation of the ECM and
the presence of potentially cytotoxic chemical residues. Brief description of the main steps
of the method in Figure 2, details of the protocol in reference [18].

Figure 2. Graphical summary of the decellularization process. More details of the protocol in Bianco et al. [18].

We demonstrated that the decellularized scaffold is cell-free and is capable of support-
ing HSCs adhesion and proliferation [18]. To our knowledge, only two decellularized bone
marrow scaffolds have been described in the literature [18,64]. Hashimoto et al. used high
hydrostatic pressure for decellularization of a porcine bone/bone marrow. This scaffold
was tested as platform of MSC culture and osteogenic differentiation. The applicability of
this scaffold for in vitro HSC culture was not assessed; however, recruitment of HSCs was
observed in vivo after subcutaneous implantation [64]. The focus of the study was to de-
velop a platform for osteogenic differentiation, and probably that is why most microscopic
evaluations of the integrity of the natural structures of the scaffold were focused on the
cancellous bone rather than the delicate architecture of the bone marrow soft tissue.

On the other hand, the decellularization method implemented by Bianco et al. achieved
detailed preservation to the level of individual cellular niches and intact vascular structures
throughout bone marrow soft tissue, as seen in Figure 3. We previously reported the
biocompatibility of this scaffold as culture platform for human HSCs, and immortalized
HS5 mesenchymal stem cell line [18].

In recent, not published evaluation of the scaffold, we observed that primary human
non-hematopoietic niche cells (CD34- cells) also adhere to specific anatomic regions of the
bone marrow scaffold as seen in Figure 4. Culture of non-hematopoietic stromal niche cells
may functionalize the scaffold for HSC culture in future experiments.
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Figure 3. Scanning electron microscopy imaging of the bovine decellularized bone marrow. (A) Intact vascular structure,
(B) Reticular fibers in connective tissue, (C) Adipose tissue ECM, preserved cellular niches, (D) Individual cell niche. The
images are part of the Hematology and Hemotherapy Center archive of the characterization of the decellularized bone
marrow (DeBM) [18]; however, these images have not been published elsewhere.

Figure 4. Non-hematopoietic niche cells (CD34− cells) from a human donor adhered to specific regions
of the bone marrow niche model and proliferated in the decellularized scaffold (panels A,B). Lower
panels (C,D) showed the CD90+ cells (marker of mesenchymal cells). The images are part of recent
characterization of the decellularized bone marrow (DeBM) and have not been published elsewhere.
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There are several clear advantages of a decellularized bone marrow scaffold: availabil-
ity of the raw material, no need for a priori knowledge of all relevant elements of the niche,
no need for specialized equipment, and of course the preservation of the natural chemical
and physical characteristics of the tissue. However, due to the large variability of ECM
ultrastructure and composition through the bone marrow, experimental scaling up and
reproducibility of cellular assays may be problematic. For instance, cellular adhesion and
proliferation signals in the ECM might be different in the endosteal and the central region
of the natural scaffold. Natural anatomical elements of the bone marrow may interfere with
uniform seeding of cells in the scaffold, and particularly complicate automated approaches
of quantification.

4.2. Other Models
4.2.1. Synthetic Scaffolds

The advancement in design and fabrication of biocompatible materials for bioengi-
neering applications, allowed the use of matrices or scaffolds in 3D culture. In general, even
simple approaches of 3D culture using synthetic and natural polymers already showed su-
perior performance than 2D culture in preserving the characteristics of HSCs ex vivo [58,59],
see Table 1. The study by Ventura et al. compared Polycaprolactone (PCL), poly-lactic-co-
glycolic acid (PLGA), fibrin and collagen as scaffolding materials for HSC expansion [58].
This study used umbilical cord (UC) CD34+ HSCs in co-culture with UC-MSC, as a result,
all but PLGA scaffolds were able to support HSC expansion. The greater HSC expansion
and most primitive phenotype was obtained in the fibrin scaffold [58]. Porous polyurethane
(PU) was also used as scaffold to culture CD34+ HSCs. This model was able to maintain
stemness and some degree of homeostasis demonstrated by the constant egress of differen-
tiated cells from the system [59].

Since then, more sophisticated systems have been devised. Enhancements include
addition of integrin anchorage peptides [48], cleavable site for biodegradation [90], use of
newer biocompatible zwitterionic hydrogels [90]. Zwitterionic hydrogels have attracted
great attention for a wide range of biomedical applications. A unique characteristic of
zwitterionic materials is the resistance to non-specific protein adsorption (nonfouling) [108].
The nonfouling capability of this type of materials make them particularly biocompatible
and suitable for clinical use, since protein adsorption in vivo could lead to coagulation or
trigger inflammatory responses.

Another approach is the deposition of ECM onto the scaffold by stromal cells (i.e., MSCs,
osteoblasts, endothelial cells) [61,62,68] as a preparation for culture of HSCs. Culture of
stromal cells in some scaffolds induce the production of ECM elements that mimic the
natural niche matrix [18,61,62,68,91], and this functionalization contribute to adhesion and
natural responses in HSCs. In an example of this type of system, a ceramic scaffold was
functionalized by deposition of ECM from osteoblasts and stromal cells in a bioreactor
culture. After functionalization, HSCs were able to adhere specifically to the scaffold,
maintain pluripotency and differentiate [61]. Interestingly, differentiated cells were released
to the medium while more primitive cells were retained in the scaffold, resembling the
natural cellular behavior in the bone marrow.

4.2.2. Microspheroids/Organoids

Spheroid culture methods have been used with success to expand several adult stem
cells [109,110]. In the case of HSCs, some microsphere methods have been reported. MSC-
laden collagen microspheres were osteogenically differentiated, to induce deposition of
natural ECM components, and subsequently decellularized, to use as scaffold [91]. The
scaffold developed using this approach was superior to collagen-only microspheres to in-
duce proliferation of HSCs and MSCs [91]. Cellular microspheres also form spontaneously
without the use of scaffolds in non-adherent surfaces, and this type of culture systems
have also been developed as alternative for HSCs culture [55,63]. Mononuclear cells from
peripheral blood containing negligeable number of primitive HSCs were able to sponta-
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neously self-organize in ‘hematospheres’ when cultured in non-adherent plates [55]. In
these hematospheres, primitive HSCs increased dramatically in number, appearing as a very
attractive method to expand transplantable HSCs from blood [55].

Another method used a nestin+ subpopulation of MSCs to produce cellular spheres
(mesenspheres) [63]. Nestin+ cells, besides their self-renewal capacity and multipotency,
support HSC maintenance. In fact, co-culture of HSCs with these mesenspheres expanded
transplantable HSCs and increased in vivo engraftment of HSCs [63].

Pievani et al. took the spheroid culture a step further, developing a functional organoid
from chondroid pellets. Pellet culture of cord blood fibroblasts were differentiated into
cartilaginous tissue in vitro. After subcutaneous implantation in mice, the chondroid rudi-
ments remodeled into ossicles with resemblance of the bone/bone marrow architecture [92].
Vascular structures recreating sinusoids and hematopoietic tissue of erythroid, myeloid
and megakaryocytic lineages were detected after 8 weeks. Remarkable, these organoids
supported the engraftment of human HSCs and hematopoiesis in vivo [92].

4.2.3. 3D Printing

Recent advancements in three-dimensional (3D) bioprinting technology and develop-
ment of biomimetic materials, allow the deposition of a combination of biomaterials and
cells to produce complex tridimensional living tissue-like constructs.

Recently developed methods in 3D bioprinting have produced astounding reconstruc-
tion of complex tissue structures using hydrogels, collagen and other materials [111–113].
3D bioprinting is probably the most promising technology for 3D stem cell culture, tissue
engineering and clinical applications. However, some major technical challenges need to
be overcome such as resolution to recreate microscopic structures, limited capacity to repro-
duce intricated vascular networks, gelation issues, cellular viability, among others [114].

Some 3D culture approaches for HSCs have used 3D printing to mimic the bone mar-
row niche. A 3D printed hydrogel mesh loaded with MSCs was able to support proliferation
of HSCs and proved to be a feasible co-culture scaffold. This mesh was superior than con-
ventional 2D co-culture to support expansion of HSCs [93]. However, this 3D scaffold did
not reproduce any anatomical structure of the bone marrow niche.

Another more sophisticated attempt to mimic the bone marrow niche used a two-
compartment approach [94]. A 3D printed calcium phosphate cement (CPC) scaffold was
seeded with MSCs and subsequently differentiated to osteoblasts to mimic the endosteal
niche. A Matrigel loaded with endothelial and MSCs aiming to emulate the perivascular
niche was incorporated into the rigid CPC scaffold to allow interaction and migration
of cells between compartments. This system supported CD138+ primary myeloma cells
proliferation and was used to model myeloma pathophysiology [94]. Applicability of this
3D model for HSC culture was not assessed.

5. Conclusions

In the previous sections we have discussed the complexity of the bone marrow niches
and the relevance of several elements of the niche in HSC physiology. The reconstruction
of all these elements artificially into a functional bone marrow remains elusive with current
technologies. However, decellularization of tissues and organs may provide an alternative
to bypass these shortcomings. We presented a decellularized bone marrow model devel-
oped in our laboratory as a promising scaffolding material for HSC culture, expansion, and
drug testing platform. In addition, we revised several tridimensional models, materials and
strategies used to emulate some important characteristics of the HSC microenvironment.

The final objective of these models would be to provide the necessary signals to cells
in order to recapitulate the bone marrow niche. A model that successfully mimics the bone
marrow microenvironment would have various applications in the research, clinical and
pharmaceutical fields. It would be a tremendous tool to study hematologic diseases and
normal hematopoiesis in a realistic environment; for expansion of HSCs for transplantation,
and as platform for drug screening approaches.
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