
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports

Documenting research software
in engineering science
Sibylle Hermann1,2* & Jörg Fehr1

The reuse of research software needs good documentation, however, the documentation in particular
is often criticized. Especially in non-IT specific disciplines, the lack of documentation is attributed to
the lack of training, the lack of time or missing rewards. This article addresses the hypothesis that
scientists do document but do not know exactly what they need to document, why, and for whom.
In order to evaluate the actual documentation practice of research software, we examined existing
recommendations, and we evaluated their implementation in everyday practice using a concrete
example from the engineering sciences and compared the findings with best practice examples. To
get a broad overview of what documentation of research software entailed, we defined categories
and used them to conduct the research. Our results show that the big picture of what documentation
of research software means is missing. Recommendations do not consider the important role
of researchers, who write research software, whose documentation takes mainly place in their
research articles. Moreover, we show that research software always has a history that influences the
documentation.

Documentation of research software1 in engineering science is inadequate2. Nevertheless, researchers–particu-
larly within the FAIR (Findable, Accessible, Interoperable, Reusable) movement–state that documentation of
research software as a major prerequisite for reuse3. Although, research data and software play a central role in
the Cluster of Excellence “Data-Integrated Simulation Science (SimTech)”4, documentation is also lacking here.

But why is research software documented poorly? And what does good documentation actually imply? Pre-
vious approaches provide rather explanatory models why documentation is not done; they explain the missing
documentation with lack of time5 or insufficient training6. But is this really the case? Is it even clearly defined what
documentation entails? Until now, incentives and rewards are missing for well documented research software.
But, the scientific environment is changing, Gil et al.7 observe a shift in the scientific environment in different
areas: scientific publishing, scientists, public interest and funding. In recent years, these developments are gain-
ing momentum with initiatives like EOSC (European Open Science Cloud)8 and NFDI (National Research Data
Infrastructure, Germany)9. Moreover, research funding agencies demand reusability; the guidelines for good
scientific practices, for example, require documentation of research software explicitly10. Surprisingly, it remains
rather unclear what good documentation of research software involves. We illustrate that there are recommenda-
tions on how to document (research) software. But are the recommendations actually applied?

The hypothesis of this paper is, that it is still unclear what good documentation actually involves. The approach
intends to examine how documentation takes place in everyday work in a research environment in engineer-
ing science within the Cluster of Excellence, SimTech. We also examine if and how given recommendations are
implemented. We defined categories to represent different documentation purposes. Based on these categories,
we examined three different aspects:

•	 Given recommendations on how research software should be documented.
•	 An actual documentation workflow of a specific research software project from engineering science within

SimTech.
•	 Given documentation of two best practice examples within SimTech.

Previous approaches have been concerned with reasons why research software is poorly documented, but not
with what good documentation actually entails. Also, it has not been investigated what and how documentation
must be implemented in order to be perceived as good. It’s the intention of this approach to show what is missing
and give an overview on who has to document for whom what, where, when, and how.

OPEN

1Institute of Engineering and Computational Mechanics, University of Stuttgart, 70569 Stuttgart,
Germany. 2Cluster of Excellence SimTech, University of Stuttgart, 70569 Stuttgart, Germany. *email:
sibylle.hermann@itm.uni-stuttgart.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10376-9&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

Methods
We want to investigate how research software is documented in a field where scientists usually don’t have a
computer science background. Due to the highly disciplinary nature of research software, we focused on our
discipline, Engineering Science. We conducted a multi-case study with a case-based approach11. To see how the
documentation is implemented, one specific research software was chosen: Neweul-M212, a research software
that has been developed over years in an institute by engineers without formal software development training.
Neweul-M2 continues to be actively developed and is often used to address specific research questions. We
cross-case synthesis with two other research software’s documentation habits, to compare the gained insights.
We selected these best practice examples because they received funding from the DFG (German Research Foun-
dation) sustainable software funding call to improve their documentation13. In contrast to Neweul-M2, both
best practice examples are open source. DuMux14 is a research software from engineering sciences, which is also
programmed by Research Software Developers with an engineering background. The other example preCICE15
is a research software developed from more experienced Research Software Developers working in an informat-
ics institute; their users are mainly engineers. The central rival hypotheses we considered are the lack of time to
document and the lack of training of researchers in software engineering2,6.

Two main research questions structure the investigation.

Research questions. 

RQ1	 What are the recommendations for documenting research software? Which rules and best practices
exist? Do the given recommendations cover the defined categories?

RQ2	 What is the practice of documenting research software? How is research software documented in the
daily life of researchers? Which workflows are implemented? What are the obstacles to document research
software?

Data collection.  For collecting data, we choose different sources of evidence:

•	 Documentation: An evaluation of literature was conducted to assess what recommendations are given (RQ1).
Furthermore, the three research software documentation were evaluated (RQ2).

•	 Participant observation: Both authors are familiar with Neweul-M2, one author from a new Research Soft-
ware Developer perspective, and the other from years of experience. One author is part of the project from the
sustainable software funding call and has thus witnessed the discussions about the possibilities for improve-
ment and shortcomings of the documentation of DuMux (RQ2).

•	 Direct observations: The concepts, thoughts, and insights were further discussed with the old and later
the new Research Software Engineer from Neweul-M2 and with DuMux and preCICE Researcher Software
Engineers (RQ2).

•	 Interviews: The two best practice examples were evaluated with semi-structured interviews (RQ1, RQ2).

Data analysis.  Our first idea was to evaluate the research software using given recommendations from the
literature. As we soon noticed, the recommendations for research software do not give a complete picture of what
documentation should actually contain. Therefore, we switched to an inductive strategy and formed categories
that we consider necessary from everyday work with research software, supplemented with categories from lit-
erature and internet resources like blogs and wikis. Moreover, we decided to include the best practice examples
to answer the research questions. We defined four documentation categories for research software, intending
to picture possible documentation forms. Based on the defined categories, we evaluated the recommendations
given for, Neweul-M2, DuMux, and preCICE. In the following, we introduce the categories, followed by the rec-
ommendations and conclude with the analyzed research software examples.

Categories.  Domain Research software can belong to different domains16: private, shared and open. Usually,
research software is developed in the private domain with one main Research Software Developer. The shared
domain varies from a few users at an institute to many users all over the world, nevertheless the research software
is unavailable to the broader public. Published research software in the open domain is accessible for everyone.
Where open can have two different meanings: only the source code is available open source or the software is
developed openly. The domains may change over time and require more documentation, as more people need
to understand the research software.

Role As we noticed, it is essential who documents for whom; we differentiate between three roles: Research
Software Engineer (RSE), Research Software Developer (RSD) and user. One person can have multiple roles, mul-
tiple people can share the role and the role of a person can change. As the roles in classical software engineering
are conceptualized17, we defined the roles from our perspective—which is biased from our education as engineers
and work in an interdisciplinary research cluster. When we speak about engineers, we think of the classic engi-
neering fields such as mechanical engineering, civil engineering or chemical engineering. We explicitly neglect
software engineers—due to their formal education in software development and maintenance, which is mostly
missing in the other fields.

* Research Software Engineers are responsible (i) for the infrastructure and maintenance of the software,
(ii) they give the rules of how research software should be written, (iii) but are often not part of the active fea-
ture development. The problems of funding, education and missing credit of Research Software Engineers are
discussed in the RSE movement18.

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

* Users are (i) research software users who want to do either computer-aided engineering or computer-based
experiments without writing code.

* Research Software Developers are (i) the link between Research Software Engineers and users, (ii) they
develop new features, mainly to answer–with the research software–specific new research questions (iii) in
engineering without education in software development and are often less experienced than Research Software
Engineers. They typically need a specific answer for their research question, for which they need to imple-
ment a specific new or missing feature in existing research software. A typical example in Neweul-M2: A RSD
implemented the calculation of reaction forces. This new feature can be reused for other research questions
from other researchers and, therefore, need to be documented. RSDs are an essential part of the documentation
process; they mainly know their developed features but are usually not deeply involved in the maintenance and
documentation process.

Purpose The purposes describe the content of the documentation: why, what and how. The documentation of
the problem should describe why the research software or a feature is written–similar to describing the research
question, i.e. the RSE Manuscript/Dev docs row from Table 3. The feature’s documentation should describe what
is needed to be done to solve the research question. How the feature is implemented should be documented in
a technical documentation, i.e. the Help/Handbook/User Docs row from Table 3.

Type The type describes the characteristics of the documentation19: problem, product and technology. The
three above introduced categories can be expressed in different types of documentation: The documentation of
the problem can involve how the problem is implemented and why a solution was preferred. The product docu-
mentation contains the list of all features provided by the software and how they work together. The technical
documentation should help the RSD and RSE to understand the code, how the research software is engineered
and how to build over the existing source code. It should contain different schemas about the used model, the
logical, and physical architecture. The types are intended to be umbrella terms for different forms of documenta-
tion types. For example, code comments are a form of technical documentation or tutorials as a type of product
description.

We assume that each of these categories requires a different type of documentation. In each domain, research-
ers can document purposes in their role as RSE or RSD for different roles. The combination leads to several types
of content, which then appear in a variety of forms. For example, a RSD can describe why they solved what and
how in a problem description such as an article. Or a RSE describes how to solve a problem for the user in a
product description as a how-to-guide.

Recommendations.  Aspects of good research software, and its documentation, has also been addressed in vari-
ous recommendations. In order to find recommendations for documenting (research) software, we conducted
a literature review in Web of Science using the terms “research software” and “documentation” or “reusability”.
Most articles refer to the whole process of developing research software, and not only to documentation. Often
just one small paragraph is dedicated to documentation. The selection of the articles was limited to those that
include rules or best practices for documenting research software in at least one paragraph. Ten articles with
interdisciplinary and different disciplinary focus were found. As described above, the evaluation of the rec-
ommendations did not provide a complete picture of what the documentation in our opinion should contain.
Therefore, we also analysed the recommendations according to the categories we defined (Fig. 1).

Analysis of research software.  Neweul-M2 Neweul-M2 is a software package that allows the dynamic analysis of
mechanical systems in calculating multibody systems with symbolical equations20. The first version of Neweul
was written in FORTRAN with an own symbolic formula manipulator engine in the mid 1970s and was rewrit-
ten in 2003 using MATLAB. The new version is called Neweul-M2. In Kurz et al.12, the history and changes are
documented until the year 2010 (for further information see Table 1). Neweul-M2 is used from:

•	 external people (user)
•	 PhD students (RSD and user)
•	 students (user)

Figure 1.   Different aspects of documentation.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

The source code is developed and administrated by PhD students within the developing institute, they aim
for a degree in mechanical engineering and usually don’t have a formal software development education. One
experienced RSD is the RSE, a new colleague is briefed as RSE from the previous one.

For the external people and students, a content-obscure (P-code) version of Neweul-M2 is provided. One
part of the documentation is in an integrated help within MATLAB. The help includes a product description,
tutorials and examples and a function reference, automatically generated from the code. For PhD students
from the developing institute, the full source code is accessible. The source code is managed via a Git repository
hosted at an institutional GitLab instance. Bug fixes and support are the responsibility of the RSE. Another part
of the documentation is done in a local wiki with information on how to get started and how to document with
coding guidelines, tests and checklists. Decisions and discussions are documented via GitLab. For the RSE, an
additional document gives information on how everything is organized. PhD students, who use Neweul-M2
for their research, develop new features in Neweul-M2 that they need for their research. They document these
features mainly in publications.

DuMux The research code for the free and open-source simulator is written in C++ and is based on DUNE
(Distributed and Unified Numerics Environment). DuMux stands for “DUNE for Multi-{Phase, Component,
Scale, Physics, ...} flow and transport in porous media21. The main intention is to provide a sustainable and con-
sistent framework for implementing and applying of porous media model concepts and constitutive relations (for
further information see Table 1). All documentation is linked on the Website. The documentation consists of a
collection of documented code examples within the institute’s publicly accessible GitLab instance, a manual in
PDF format, code documentation within Doxygen, a reference to the most important publications and a wiki that
is still under construction. The software is written by PhD candidates in civil engineering with a predominantly
engineering background, who have taught themselves to program.

preCICE The research software preCICE22 is an open-source coupling library for partitioned multi-physics
simulations, including fluid-structure interaction and conjugate heat transfer simulations. The research is about
methods how two systems can be coupled (for further information see Table 1). In preCICE the research ques-
tion is not solved with the software, rather the research results are provided to users of the software. For this
reason, there are only RSEs and users. The software is written by PhD candidates with different backgrounds,
who are aiming for a degree in computer science. The documentation is bundled in a website. By using GitHub
pages, pull requests can be made to all the documentation. The website is divided in quick start, docs, tutorials,
community and blog. The section docs start with a user documentation with fundamentals, installation, con-
figuration, tooling and provided adapters. The API is described in the category “couple your code”. Followed by a
developer documentation, with a link to the source code documentation in Doxygen, and a description of coding
conventions, tooling, workflow and testing. Even a description, how the documentation is build, exists. For the
users–in addition to the conventional documentation–a community page gives insights on workshops, other
contributors and publications. Furthermore, there is a blog where there is also the possibility to ask questions.

Validity analysis.  We have deliberately chosen projects in which we can gain a more in-depth insight. These
projects are in the engineering field to establish comparability of the training background of RSEs, RSDs and
users. The interview partners are based on personal relationships and recommendations, which could lead to a
specific research bias due to the small sample size and the personal connection. More extensive studies based on
the research hypothesis of this study should be conducted in the future, e.g. at research software conferences. In
order to validate our conclusions, we presented and discussed our results and methods with the RSEs and RSDs
of the three software projects. We also presented a poster at the internal SimTech conference to receive feedback
on our method and conclusions from other researchers. The feedback received confirmed our approach. The
poster and other material is published in the case study database23. The selection of the case studies initially
limits the generalizability of the results. However, the feedback received confirmed that our approach could be
transferable to other research software projects. For example, PhD students at the conference confirmed that our
approach is similar to their experiences with research software. The generalizability of the findings obtained in
this study will be tested in another larger interview study with more extensive surveys in the future.

Results
We present three main observations from the recommendations and the documentation of three research soft-
ware examples, based on the categories that are presented in the method section.

Observation 1: A big picture is missing.  A big picture is missing on what documentation of research
software should contain and how it should be done. The examined recommendations focus only on specific
aspects of research software documentation (see Fig. 1).

Table 1.   Information about examined research software projects.

Research software Neweul-M2 DuMux preCICE

Team size 1 RSE, 3 RSD 2 RSE, 22 RSD 7 RSE

Estimated number of users 40 35 > 100

Year of release 2007 2009 2009

Language MATLAB C++ C++

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

Observation 1.1: Problem and decision are undocumented.  The recommendations rarely mention
that the why should be documented and seldom take the underlying problem into account (see Table 2). They
refer–according to our categories–mainly to the technology of the research software. Their focus is on techniques
(like version control systems and programs that generate a documentation out of comments in the code) not on
content. Lee6 state for example to “use automated documentation tools” and that “the best type of documenta-
tion is documentation that writes itself ”, but do not explain what have to be the content of the automated docu-
mentation. Looking into the practice, all three examples use these automated documentation tools.

In Neweul-M2 (see Table 3) the function reference within the help is created with a given template, including:
short description, syntax, long description, parameters, examples and references. In DuMux (see Table 3) the
modules are documented with Doxygen24. In comparison to Neweul-M2 the description involves the underly-
ing concept, mostly explaining the formula behind the code. In preCICE (see Table 3) as well, Doxygen is used
with a generic documentation template: the parameters and a one line description is needed and an optional
elaborate description. Here, the description do not contain the underlying concept. These tools are intended
to document the code not the decisions and problems: RSDs document the problem and decision in research
articles or thesis, which are not linked to the documentation; they implement new features to solve a specific
task for a thesis; and they describe the problem only in the thesis referring to a specific version of the software.
Eventually, the description of the problem and the feature differ from the software solution. Once the feature is
included in the main branch, the dependencies are further maintained.

Observation 1.2: Shared and private domain are neglected.  The recommendations focus on the
open domain (see Table 4). Especially, the documentation for the shared domain is rarely mentioned. Neweul-
M2 is a research software from the shared domain, the different documentation types live in different domains
(see Table 5). RSDs document mainly for their successors at the own institute. But the knowledge is not only
transported by documentation: students of the institute learn about the software in their lectures and later on
from their supervisor and fellow students or colleagues. In the best practice examples, the documentation is
openly available.

Observation 2: Research software has a history.  In engineering science, PhD candidates usually stay
round about six years, become experts in a very specific field and then leave. Successors–interested in the same
topic–often do not have the chance to talk to them. So the experts omit feedback on their documentation and
are ignorant of which questions they have to address in their documentation.

Table 2.   Purpose mentioned in the recommendations.

Article Problem Feature Implementation

Stodden and Miguez25 x

Fehr and Heiland26 x

Wilson et al.27 x x x

Wilson et al.28 x

Hastings et al.29 x x

Lee6 x x

Taschuk and Wilson2 x x

Sandve et al.5 x x x

Karimzadeh and Hoffman30 x

Gil et al.7 x x

Table 3.   Purpose of the different documentations. P—Problem, F—Feature, I—Implementation.

Documentation Neweul-M2 DuMux preCICE

Wiki F, I I

Help/Handbook/User Docs F, I F, I F, I

GitLab/GitHub P, F, I F, I F, I

RSE Manuscript/Dev docs I F, I

Publications P, F P,F, I P,F, I

Examples F F F

Code I

API I

Community F, I

Blog F, I

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

Figure 2 describes the observed effect in Neweul-M2, showing the quality of the research software documen-
tation over the different phases of research software development. The quality of the documentation behaves
similarly to Kondratiev waves31: prosperity, recession, depression, and improvement. In the case of Neweul-M2
one researcher developed the research software to solve a specific problem in the initiation phase. In the matu-
ration phase, other researchers adopt the research software and more people get involved in the project. At the
beginning, the documentation was good (enough) for the people who use the software (prosperity). Eventually,
the initial RSD left, and new researchers added new features and modified the code. The quality of the documen-
tation decreased (recession) in the saturation phase because modifications were not documented (depression);
until a point was reached where the research software needed a refactoring. A new documentation is needed,
usually written with a new tool (improvement). But the old documentation is still used because some aspects
are important in there: different documentations exist for different roles in different places with different up-to-
dateness. The descriptions of the implemented features in the articles referring to the research software before
the refactoring are now more difficult or even impossible to reproduce. A new researcher inherits this history.
Comparing this conceptual model with the other research software projects confirms the principle progression;
the cycles are more or less pronounced depending on the dynamics of the research software and happen more or
less rapidly. New RSEs do not necessarily contribute to the documentation quality. The funding received made
it possible to solve many problems in the documentation, which were mainly pointed out by external RSDs and
users. They both best practice examples benefit of being open source, receive more feedback from users outside
the institute, and spend more effort and money to improve the documentation. So the effect of unconscious
knowledge can be minimized.

Observation 2.1: Unconscious knowledge.  In Neweul-M2 new users and RSDs are inducted to the
software with the help of an more experienced RSD or the RSE. The knowledge of experienced RSDs is often
unconscious, that means that they are not aware of their own knowledge and therefore do not explain important
steps to the new RSD32. The effect shows up for example in the description of the workflow. It is described in
the help theoretically but not concretely how and where information is stored and called. Relevant information
about what is written in which files are presupposed. Usually, the RSE or experienced RSDs compensates this
divergence. For example, where and how storing files is explained in a lecture about Neweul-M2, but this infor-
mation is totally missing in the documentation. In the best practice examples the problem is less pronounced,
because users from outside ask questions and draw attention to the problem, and especially in preCICE there is a

Table 4.   Domains mentioned in the recommendations.

Article Private Shared Open

Stodden and Miguez25 x x

Fehr and Heiland26 x

Wilson et al.27 x x

Wilson et al.28 x

Hastings et al.29 x

Lee6 x

Taschuk and Wilson2 x x

Sandve et al.5 x x

Karimzadeh and Hoffman30 x

Gil et al.7 x

Table 5.   Domains of the different documentations. P—Private, S—Shared, O—Open.

Documentation Neweul-M2 DuMux preCICE

Wiki S O

Help/Handbook/User Doc S O O

GitLab/GitHub S O O

RSE Manuscript/Dev Docs P O

Publications S, O O O

Examples S O O

Code O

API O

Community O

Blog O

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

workflow to update the help, according to the asked questions. Both projects have improved user-friendliness of
the documentation through third-party funding. The recommendations do not address this problem.

Observation 2.2: Missing consistency.  In Neweul-M2 the documentation lives in different places: An
integrated MATLAB help, mainly intended for users; an internal Wiki with more information, mainly intended
for RSDs; and an internal document for the RSE with storage locations, workflows and pieces of the history. Not
all the documentation is updated with changes in the code. RSDs usually archive their documentation with their
thesis in a zip-file. This kind of documentation often refers to an obsolete version, inherited from the history.
Moreover, outdated dependencies, which are not documented, invalidate the function or a lot of effort must be
spent to fix the dependencies. Looking at the best practice examples: one of the first issues was to have all in one
place. Through feedback from external users, the best practice examples are more consistent. Moreover, they
spend money and effort to meet these challenges. In DuMux all the documentation is linked on the homepage,
an overview where to find which information is missing. In preCICE the documentation is directly on the home-
page, with an overview where to find what. Additionally, there is even meta information about the documenta-
tion itself. The recommendations give hints about documentation tools, which can be used–how to structure this
information is mentioned in30.

Observation 3: Research software has different purposes.  Researchers write research software for
different purposes. Therefore, the focus of the documentation can differ as well. The purpose of Neweul-M2 is
to implement a physical model to evaluate the same effects that occur in or beyond experiments. Engineers use
already developed algorithms to solve their research question using research software. Here, in addition to docu-
mentation for the users, documentation for the RSDs is also necessary, because the scientists at the institute need
to understand the results of their predecessors and want to be able to adapt them to their own needs.

The purpose of DuMux is similar. However, there is a larger community outside the own institute, which uses
the software and develops it accordingly.

The purpose of preCICE is to implement new algorithms and to show that these algorithms work. In preCICE
the role of RSDs is not specifically taken into account. Users do couple their software with the help of preCICE
but do not contribute to the code with features. So the documentation is mainly intended and improved for
scientific users (see Table 6).

Observation 3.1: Research Software Developers are neglected.  RSDs are often neglected as
authors and as audience. As authors of the documentation, the recommendations consider mainly RSEs; the
audience are RSEs and users (see Table 7). The documentation requirements for RSDs are unclear. While in
practice some requirements are given, the documentation reality often differs. In Neweul-M2 the RSE has for-
malized the documentation of and for the RSDs through a given template. RSDs document directly in the code,
which is automatically transferred to the help. The description often remains very short and are sometimes
insufficient to be understood by others. No feedback from the successors is given about the quality of the docu-
mentation, because the Research Software Developers leave the institute and no longer notice possible problems
(see Table 6).

In DuMux RSDs have as well a guideline how and what they have to document. Experience shows that instead
of following the guidelines, RSDs tend to keep the effort as small as possible and do not describe as expected,
especially if the requirement is considered unnecessary (see Table 6).

Figure 2.   Quality of research software documentation over time. The research software undergoes
different phases, from first implementation to continuous application. During these phases, the quality of
the documentation varies accordingly. In particular, the change of RSE involves risks, but can also lead to
improvements.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

Discussion
The results undoubtedly show that research software is documented. We found out that a literature review could
not answer RQ1. One hypothesis why we were not able to answer RQ1 from a literature review is Observation 1:
The big picture is missing. Who documents what for whom in which domain and for what purpose. The primary
hypothesis was that researchers document their software, but that this is not perceived as sufficiently documented.
The data collected should provide information about who documents how and why the documentation is not
sufficient. The already described rival hypotheses of lack of time and training seemed to be insufficient due to
the existing documentation and software knowledge. Our study shows that not necessarily the motivation or
missing skills lead to the opinion that software is not documented; rather, research software is not documented
as expected.

Often the main problem is that documentation is seen as an event and not a process. Observation 2 shows
that the RSEs do not necessarily contribute to documentation quality. Possible reasons for this are different
perceptions among the RSEs about what good documentation is, and that old documentation is not discarded.
However, funding can improve documentation because they can transform the event character of documenta-
tion into a process. The path dependency described in the results as well as the missing consistency and missing
framework can be mitigated by setting uniform standards. This will always be a balancing act between freedom
of research and predefined framework. However, the movement in given structures allows a more efficient work.
Also, writing and documenting are not in itself the actual research work, but only the framework in which the
research takes place. Researchers have other goals in writing and documenting code than professional software
developers. Software developers aim to achieve the objectives defined in the product requirements: Specifying
these requirements can be seen as a part of the documentation. Research software, on the other hand, is a means
to an end and is not documented in product requirements. Researchers aim to answer research questions with the
help of software33. Consequently, one part of the documentation happens in research articles, doctoral, master
and bachelor theses. Those can be seen as delayed product requirements. Nevertheless, this kind of documen-
tation is focused on the research question and not on the research software. Moreover, research papers discuss
scientific results based on research software; but the research software behind the results is quickly outdated and
developed further. Above all, the precise implementation of physic into code in the research software is not
specified34, but particularly this point is essential for reusing the research software. Besides, articles document

Table 6.   Authors and audience of the different documentations. RSE—Research Software Engineer, RSD—
Research Software Developer.

Documentation

Neweul-M2 DuMux preCICE

Author Audience Author Audience Author Audience

Wiki RSE RSE RSD

Help/Handbook/User Doc RSE, RSD User RSE RSD, User RSE User

GitLab/GitHub RSE, RSD RSE, RSD RSE, RSD RSD,User RSE RSE, User

RSE Manuscript/Dev Docs RSE RSE RSE RSE

Publications RSE, RSD RSE, RSD, (User) RSE, RSD RSE, RSD, (User) RSE RSE ,(User)

Examples RSE RSD, User RSE RSD, User RSE User

Code RSE RSD

API RSE RSE, User

Community RSE User

Blog RSE User

Table 7.   Authors and audience of documentation mentioned in the recommendations.

Article

Research software
engineer

Research software
developer User

Author Audience Author Audience Audience

Stodden and Miguez25 x x x

Fehr and Heiland26 x x x

Wilson et al.27 x x

Wilson et al.28 x x

Hastings et al.29 x x x x

Lee6 x x x

Taschuk and Wilson2 x x x

Sandve et al.5 x x x

Karimzadeh and Hoffman30 x x x

Gil et al.7 x x x

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

research results, not software. Sometimes the material is also not accessible or difficult to find. Certainly the lack
of time to document is critical, but at a later stage much more time needs to be invested to support the users30
and to understand the research software as a RSD. Some papers argue with the lack of training of researchers in
software engineering2,6. But even in professional software development, documentation is neglected. Ludewig and
Lichter35 see two reasons for this neglection: Firstly, documentation is not necessarily learned even in software
developer training and secondly, although it is said that documentation is important, other aspects usually have
priority. Websites like “write the docs”36 and The blog “I’d Rather be Writing”37 gives advice for technical writers
how to document code. Some approaches can certainly be adopted, though not everything can be transferred
one-to-one to research software. Initiatives like “Better Scientific Software”38 and the “Software Sustainability
Institute”39 draw attention to the problem and provide assistance. Although these sites are certainly helpful, you
need to know them. They give only possible assistance and are not in themselves a standard. Nevertheless, a
generally applicable standardization of documenting research software is difficult to find. Existing standards from
software engineering40 are complex, in parts not relevant for research software and difficult to access. Even if a
standardization will be helpful to share results openly, it needs a clear guideline to document results for oneself
and in a group. Therefore, all three examined research software have some forms of standardized templates,
testing strategies and checklists provided by the RSE. However, compliance must also be checked, which in turn
costs time. Especially, in engineering science several points add to the described difficulties:

•	 use of other funding possibilities
•	 existence of confidentiality reasons
•	 fear of sabotaging the business model
•	 modification of existing software, which is unclear how to document

But working together with industry demands good documented results–independent from publishing the soft-
ware. Moreover, other RSDs need the documentation in order to understand the work from their predecessors.
In Neweul-M2 RSDs contribute to code and documentation. They have to understand the code, and they have
to develop new features, which have to be documented. This part of the documentation can not be written but
be controlled by a RSE. RSDs depend on the documentation of their predecessors and the existing structure.
This experience happens as well in DuMux. It can also be discussed whether some problems described could be
avoided by making the software open source. There are good reasons, such as confidentiality obligations and also
often a business model, that make these steps undesirable. Nevertheless, from our point of view, some investigated
methods can be transferred to the shared domain.

Conclusion
All in all, it can be said that it should be clear who documents what and where. Hence, adopting best practices
and principles from technical documentation and professional software development can help to improve the
documentation of research software. Nevertheless, the study shows that all three case studies struggle with similar
problems in the documentation and in part also decided on similar solution strategies, making transferability to
other research software projects conceivable. Future research should explore how principles from the best prac-
tices examples can be transferred into the shared domain. A possible standardization of content would certainly
be helpful here, but this cannot be solved by the individual scientist. The national and international initiatives
certainly contribute to improving the situation here. One limitation of the current research is that the findings are
not evaluated with more examples. This obstacle can be overcome in evaluating more software documentations.
It can be expected that other research software in engineering science has similar problems. Moreover, there is
a personal bias when trying to solve the problem with a given documentation. The experience showed that it
was totally clear for the Research Software Engineer of the help where they can find the information and how
the documentation is structured. But for inexperienced users, it is not obvious, they have to ask the Research
Software Engineer. The effort to write documentation should be taken into account. Will the benefit exceed the
effort that must be used for documentation? This can be an area for future research. As long as people are there
who can help, it is just inefficient but not impossible to solve the given task without a sufficient documentation.
But in the current discussion about FAIR, research software documentation plays an important role. The pay-off
for Research Software Developers is may be marginal at the moment, but the importance is increasing. Good
documentation pays off in the long run.

We discovered that researchers are often not aware for whom and why they document. A big picture what
documentation for research software means is missing. The new approach in this paper is to define for what pur-
pose and what appearance the documentation is intended and who has to document what for whom depending
on the domain. The paper shows that even in recommendations, the objective of the documentation of research
software is unclear. Until now the focus lies on Research Software Engineers and user, the researcher who devel-
ops features to an existing research software is here brought into focus. While essentially only the open domain
has been considered so far, a substantial part of research software does not take place publicly in the first place;
here, too, documentation is needed in order to ensure sustainable research.

Received: 7 January 2022; Accepted: 5 April 2022

References
	 1.	 FAIR for Research Software (FAIR4RS) WG. Research Data Alliance Working Group. https://​www.​rd-​allia​nce.​org/​group/​fair-​resea​

rch-​softw​are-​fair4​rs-​wg/​outco​mes/​fair-​princ​iples-​resea​rch-​softw​are-​fair4​rs. Accessed January 7th 2022.

https://www.rd-alliance.org/group/fair-research-software-fair4rs-wg/outcomes/fair-principles-research-software-fair4rs
https://www.rd-alliance.org/group/fair-research-software-fair4rs-wg/outcomes/fair-principles-research-software-fair4rs

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

	 2.	 Taschuk, M. & Wilson, G. Ten simple rules for making research software more robust. PLoS Comput. Biol. 13, e1005412. https://​
doi.​org/​10.​1371/​journ​al.​pcbi.​10054​12 (2017).

	 3.	 Chue Hong, N. P. et al. Fair principles for research software (fair4rs principles). https://​doi.​org/​10.​15497/​RDA00​065 (2021).
	 4.	 SimTech. The Cluster of Excellence SimTech. https://​www.​simte​ch.​uni-​stutt​gart.​de. Accessed January 7th 2022.
	 5.	 Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules for reproducible computational research. PLoS Comput. Biol.

9, https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10032​85 (2013).
	 6.	 Lee, B. D. Ten simple rules for documenting scientific software. PLoS Comput. Biol. 14, e1006561. https://​doi.​org/​10.​1371/​journ​

al.​pcbi.​10065​61 (2018).
	 7.	 Gil, Y. et al. Toward the geoscience paper of the future: Best practices for documenting and sharing research from data to software

to provenance. Earth Space Sci. 3, 388–415. https://​doi.​org/​10.​1002/​2015e​a0001​36 (2016).
	 8.	 EOSC. European Open Science Cloud. https://​eosc.​eu/. Accessed January 7th 2022.
	 9.	 NFDI. National Research Data Infrastructure Germany. https://​nfdi.​de. Accessed January 7th 2022.
	10.	 Deutsche Forschungsgemeinschaft. Guidelines for Safeguarding Good Research Practice. Code of Conduct. https://​doi.​org/​10.​

5281/​zenodo.​39236​02 (2019). Available in German and in English.
	11.	 Yin, R. K. Case Study Research and Applications (Sage, 2018).
	12.	 Kurz, T., Eberhard, P., Henninger, C. & Schiehlen, W. From neweul to neweul-m2: Symbolical equations of motion for multibody

system analysis and synthesis. Multibody Syst. Dyn. 24, 25–41. https://​doi.​org/​10.​1007/​s11044-​010-​9187-x (2010).
	13.	 DFG. Sustainability of Research Software. https://​www.​dfg.​de/​foerd​erung/​info_​wisse​nscha​ft/​2016/​info_​wisse​nscha​ft_​16_​71/.

Accessed January 7th 2022.
	14.	 Koch, T. et al. DuMux 3—An open-source simulator for solving flow and transport problems in porous media with a focus on

model coupling. Comput. Math. Appl. 81, 423–443. https://​doi.​org/​10.​1016/j.​camwa.​2020.​02.​012 (2021).
	15.	 Bungartz, H.-J. et al. preCICE—A fully parallel library for multi-physics surface coupling. Comput. Fluids 141, 250–258. https://​

doi.​org/​10.​1016/j.​compf​luid.​2016.​04.​003 (2016).
	16.	 Treloar, A., Groenewegen, D. & Harboe-Ree, C. The data curation continuum. D-Lib Magazine 13. https://​doi.​org/​10.​1045/​septe​

mber2​007-​trelo​ar (2007).
	17.	 Bourque, P. SWEBOK: Guide to the Software Engineering Body of Knowledge (IEEE Computer Society, 2014).
	18.	 Anzt, H. et al. An environment for sustainable research software in Germany and beyond: Current state, open challenges, and call

for action. F1000Research 9, 295. https://​doi.​org/​10.​12688/​f1000​resea​rch.​23224.1 (2020).
	19.	 Oliveira, V. How to write good software technical documentation.Medium. https://​medium.​com/@​Vince​ntOli​veira/​how-​to-​write-​

good-​softw​are-​techn​ical-​docum​entat​ion-​41880​a0e78​14. Accessed January 7th 2022.
	20.	 Neweul-M2. Software Package for the Dynamic Analysis of Mechanical Systems in MATLAB. https://​www.​itm.​uni-​stutt​gart.​de/​en/​

softw​are/​neweul-​m/. Accessed January 7th 2022.
	21.	 DuMux. DUNE for Multi-Phase, Component, Scale, Physics,.... https://​dumux.​org/. Accessed January 7th 2022.
	22.	 preCICE. The Coupling Library for Partitioned Multi-Physics Simulations. https://​preci​ce.​org. Accessed January 7th 2022.
	23.	 Hermann, S. Case study database for: Documenting research software in engineering science. https://​doi.​org/​10.​18419/​darus-​2681

(2022).
	24.	 Doxygen. Generate Documentation from Source Code. https://​www.​doxyg​en.​nl. Accessed January 7th 2022.
	25.	 Stodden, V. & Miguez, S. Best practices for computational science: Software infrastructure and environments for reproducible and

extensible research. J. Open Res. Softw. 2. https://​doi.​org/​10.​5334/​jors.​ay (2014).
	26.	 Fehr, J., Heiland, J., Himpe, C. & Saak, J. Best practices for replicability, reproducibility and reusability of computer-based experi-

ments exemplified by model reduction software. AIMS Math. 1, 261–281. https://​doi.​org/​10.​3934/​math.​2016.3.​261 (2016).
	27.	 Wilson, G. et al. Best practices for scientific computing. PLoS Biol. 12, e1001745. https://​doi.​org/​10.​1371/​journ​al.​pbio.​10017​45

(2014).
	28.	 Wilson, G. et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13, e1005510. https://​doi.​org/​10.​1371/​journ​

al.​pcbi.​10055​10 (2017).
	29.	 Hastings, J., Haug, K. & Steinbeck, C. Ten recommendations for software engineering in research. GigaScience 3. https://​doi.​org/​

10.​1186/​2047-​217x-3-​31 (2014).
	30.	 Karimzadeh, M. & Hoffman, M. M. Top considerations for creating bioinformatics software documentation. Brief. Bioinform. 19,

693–699. https://​doi.​org/​10.​1093/​bib/​bbw134 (2017).
	31.	 Barnett, V. Kondratiev and the Dynamics of Economic Development : Long Cycles and Industrial Growth in Historical Context (St.

Martin’s Press, in association with Centre for Russian and East European Studies, University of Birmingham, New York, 1998).
	32.	 Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C. & Norman, M. K. How Learning Works: Seven Research-Based Principles

for Smart Teaching (Jossey-Bass, a Wiley Imprint, 2010).
	33.	 Segal, J. & Morris, C. Developing scientific software. IEEE Softw. 25, 18–20. https://​doi.​org/​10.​1109/​ms.​2008.​85 (2008).
	34.	 Hinsen, K. Verifiability in computer-aided research: The role of digital scientific notations at the human–computer interface. PeerJ

Comput. Sci. 4, e158. https://​doi.​org/​10.​7717/​peerj-​cs.​158 (2018).
	35.	 Ludewig, J. & Lichter, H. Software Engineering (Dpunkt.Verlag GmbH, 2013).
	36.	 Docs as Code. Write the Docs. https://​www.​write​thedo​cs.​org/​guide/​docs-​as-​code/. Accessed January 7th 2022.
	37.	 Johnson, T. I’d Rather Be Writing. Blog. https://​idrat​herbe​writi​ng.​com/. Accessed January 7th 2022.
	38.	 BSSw. Better Scientific Software. https://​bssw.​io/. Accessed January 7th 2022.
	39.	 Chue Hong, N. et. al. Software Sustainability Institute. https://​www.​softw​are.​ac.​uk/​about/. Accessed January 7th 2022.
	40.	 ISO/IEC JTC 1/SC 7 Software and Systems Engineering, ISO/IEC JTC 1/SC 7, ISO/CEI JTC 1/SC 7. Systems and software engi-

neering—systems and software quality requirements and evaluation (SQuaRE) - guide to SQuaRE. Standard (2014).

Acknowledgements
Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy - EXC 2075 - 390740016. We acknowledge the support by the Stuttgart Center for Simulation Science
(SimTech). We also want to thank the Research Software Engineers of the three examined research software
examples Bernd Flemisch, Georg Schneider and Benjamin Uekermann for their support and helpful inputs.

Author contributions
S.H. studied the research software documentation, developed the methodology, and wrote the article. J.F. con-
tributed to the writing process through valuable discussion and feedback, as well as his own experience in
documenting research software. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.15497/RDA00065
https://www.simtech.uni-stuttgart.de
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1371/journal.pcbi.1006561
https://doi.org/10.1371/journal.pcbi.1006561
https://doi.org/10.1002/2015ea000136
https://eosc.eu/
https://nfdi.de
https://doi.org/10.5281/zenodo.3923602
https://doi.org/10.5281/zenodo.3923602
https://doi.org/10.1007/s11044-010-9187-x
https://www.dfg.de/foerderung/info_wissenschaft/2016/info_wissenschaft_16_71/
https://doi.org/10.1016/j.camwa.2020.02.012
https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/10.1045/september2007-treloar
https://doi.org/10.1045/september2007-treloar
https://doi.org/10.12688/f1000research.23224.1
https://medium.com/%40VincentOliveira/how-to-write-good-software-technical-documentation-41880a0e7814
https://medium.com/%40VincentOliveira/how-to-write-good-software-technical-documentation-41880a0e7814
https://www.itm.uni-stuttgart.de/en/software/neweul-m/
https://www.itm.uni-stuttgart.de/en/software/neweul-m/
https://dumux.org/
https://precice.org
https://doi.org/10.18419/darus-2681
https://www.doxygen.nl
https://doi.org/10.5334/jors.ay
https://doi.org/10.3934/math.2016.3.261
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1186/2047-217x-3-31
https://doi.org/10.1186/2047-217x-3-31
https://doi.org/10.1093/bib/bbw134
https://doi.org/10.1109/ms.2008.85
https://doi.org/10.7717/peerj-cs.158
https://www.writethedocs.org/guide/docs-as-code/
https://idratherbewriting.com/
https://bssw.io/
https://www.software.ac.uk/about/

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:6567 | https://doi.org/10.1038/s41598-022-10376-9

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Documenting research software in engineering science
	Methods
	Research questions.
	Data collection.
	Data analysis.
	Categories.
	Recommendations.
	Analysis of research software.
	Validity analysis.

	Results
	Observation 1: A big picture is missing.
	Observation 1.1: Problem and decision are undocumented.
	Observation 1.2: Shared and private domain are neglected.
	Observation 2: Research software has a history.
	Observation 2.1: Unconscious knowledge.
	Observation 2.2: Missing consistency.
	Observation 3: Research software has different purposes.
	Observation 3.1: Research Software Developers are neglected.

	Discussion
	Conclusion
	References
	Acknowledgements

