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MicroRNA (miRNA) plays an important role in the degradation and inhibition of mRNAs and is a kind of essential drug
targets for cancer therapy. To facilitate the clinical cancer research, we proposed a network-based strategy to identify the
cancer-related miRNAs and to predict their targeted genes based on the gene expression profiles. The strategy was
validated by using the data sets of acute myeloid leukemia (AML), breast invasive carcinoma (BRCA), and kidney renal
clear cell carcinoma (KIRC). The results showed that in the top 20 miRNAs ranked by their degrees, 90.0% (18/20),
70.0% (14/20), and 70.0% (14/20) miRNAs were found to be associated with the cancers for AML, BRCA, and KIRC,
respectively. The KEGG pathways and GO terms enriched with the genes that were predicted as the targets of the
cancer-related miRNAs were significantly associated with the biological processes of cancers. In addition, several genes,
which were predicted to be regulated by more than three miRNAs, were identified to be the potential drug targets
annotated by using the human protein atlas database. Our results demonstrated that the proposed strategy can be
helpful for predicting the miRNA-mRNA interactions in tumorigenesis and identifying the cancer-related miRNAs as the
potential drug targets.

1. Introduction

MicroRNAs (miRNAs) are a class of endogenous small non-
coding RNA molecule with a length of ~22 nucleotides,
which regulate gene expression posttranscriptionally [1].
miRNAs can combine with mRNAs to form the RNA-
induced silencing complex (RISC) and degrade the mRNAs
or inhibit the translation of the target genes [2]. The “seed
sequence” with a length of 2~ 8nt at the 5′end of the miRNA
plays an important role in target recognition by binding to
the complementary sequences in the untranslated regions
(3′-UTRs) of mRNAs [3]. A single miRNA may have the
capability to target multiple mRNAs [4, 5] and partici-
pates in multiple signaling pathways and biological pro-
cesses in mammals. It has been reported that miRNAs
are involved in numerous cancer-relevant processes such
as cell growth, proliferation, apoptosis, migration, and
metabolism [6, 7]. The aberrant expression of miRNAs is
related to different types of diseases and cancers, such as

coronary artery disease [8], gastric cancer [9], lung cancer
[10], and breast cancer [11].

Based on the increasing number of studies, miRNAs are
being explored as the diagnostic and prognostic biomarkers
and as the therapeutic targets for cancer treatment [12]. Pre-
vious studies revealed that miRNAs mainly acted as the
oncogenic targets or tumor suppressors in the gene regula-
tory networks [13]. Therefore, two miRNA-based therapeu-
tic strategies were proposed to restore or inhibit miRNA
function through miRNA mimics and inhibitors (anti-miRs)
[14]. As reported, numerous tumor-suppressive miRNAs
and oncogenic miRNAs are promising drug candidates for
the treatment of cancers and other diseases [15]. Although
most of the miRNA-targeted drugs are still in the preclinical
trials, antimiR-122, which is a LNA- (locked nucleic acid-)
modified antisense inhibitor, has reached phase II trials for
treating hepatitis [16] and the mimics of miR-34, which were
encapsulated in lipid nanoparticles, have reached phase I
clinical trials for the cancer treatment [17, 18]. Therefore, it
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is essential to identify the key miRNA candidates for the
development of miRNA-based therapeutics of the cancers.
In recent years, numerous databases, such as miRBase [19],
miRanda [20], DIANA-TarBase [21], and HMDD v2.0
[22], have been developed to investigate the key role of miR-
NAs in the biological processes and reveal the miRNA-
mRNA interaction mechanisms. However, considering the
fact that a single miRNA will simultaneously target multiple
genes, the miRNA-based therapeutics, which were designed

to modulate miRNA expression levels, will affect hundreds
of genes. It would be harmful for the patient to randomly reg-
ulate the hundreds of transcripts [23]. Thus, it is important to
provide an exhaustive analysis of the key miRNAs and the
miRNA-mRNA interactions before applying the miRNA-
based therapeutics to the clinical trials.

In our study, we proposed a strategy by using the graph-
ical lasso algorithm [24] to discover the key miRNAs and the
miRNA-mRNA interaction in tumorigenesis based on the
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Figure 1: The overview of the study design.

Table 1: The annotation of the top 20 miRNAs in AML.

Cancer type Number of genes Disease

AML

hsa-mir-556 170 —

hsa-mir-217∗ 163 B-cell chronic lymphocytic leukemia, pancreatic neoplasms, nasopharyngeal carcinoma

hsa-mir-636 159 Myelodysplastic syndromes, multiple myeloma

hsa-mir-320c-1 147 Hepatocellular carcinoma, interstitial cystitis

hsa-mir-639 145 Lung cancer, gastric cancer, breast cancer

hsa-mir-873 145 Glioblastoma, endometriosis

hsa-mir-573 138 Pancreatic cancer, esophageal cancer, breast cancer

hsa-mir-216b 116 Lung neoplasms, nasopharyngeal neoplasms, colorectal neoplasms

hsa-mir-605 109 Stomach neoplasms, ovarian cancer

hsa-mir-188∗ 103 B-cell chronic lymphocytic leukemia, salivary gland neoplasms, rectal neoplasms

hsa-mir-1468 89 —

hsa-mir-296 52 Glioma, prostate cancer, urinary bladder neoplasms

hsa-mir-488 49 Melanoma, ovarian neoplasms, prostatic neoplasms

hsa-mir-125b-1∗ 40 Acute myeloid leukemia, breast neoplasms, hepatocellular carcinoma

hsa-mir-502 36 Colonic neoplasms, ovarian neoplasms, hepatocellular carcinoma

hsa-mir-551a 32 Stomach neoplasms, ovarian cancer

hsa-mir-100∗ 30
Acute myeloid leukemia, precursor cell lymphoblastic leukemia-lymphoma,

endometrial neoplasms

hsa-mir-501 29 Melanoma, atrophic muscular disorders

hsa-mir-520a 26 Hodgkin’s lymphoma, stomach neoplasms, colorectal neoplasms

hsa-mir-181d∗ 25 Acute myeloid leukemia, acute promyelocytic leukemia, glioblastoma
∗The miRNA was directly associated with AML. —No description of the miRNA was found in the disease-related miRNA database.
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expression levels of miRNAs and mRNAs. A bipartite net-
work with the miRNAs as hubs was constructed to explore
the interactions between the miRNAs and mRNAs, and the
top 20 miRNAs ranked by their degrees in the network were
verified by using three miRNA disease association databases,
namely, miRCancer [25], miR2Disease [26], and HMDD
v2.0 [22]. Moreover, the gene set enrichment analysis was
conducted for the genes that were predicted as the targets
in the network by using Database for the Annotation, Visual-
ization, and Integrated Discovery (DAVID) v6.7 [27]. The
proposed strategy was validated by using three cancer data
sets. Our results showed that for both three data sets, most
of the top 20 miRNAs as well as their targeted genes in the
network were highly associated with cancers. In addition,
the genes, which were predicted to be regulated by more than
three cancer-related miRNAs in our study, had been reported
as the potential drug targets in previous studies, indicating

the satisfactory performance of our proposed strategy on pre-
dicting the cancer-related miRNAs and the interactions
between miRNAs and their targeted genes.

2. Materials and Methods

2.1. Datasets. The miRNA expression data, the mRNA
expression data, and the clinical data of three types of can-
cers, namely, acute myeloid leukemia (AML) [28], breast
invasive carcinoma (BRCA) [29], and kidney renal clear cell
carcinoma (KIRC) [30], were downloaded from the Cancer
Genome Atlas (TCGA, https://cancergenome.nih.gov/)
data portal. The miRNA-seq data in three data sets were
generated by an Illumina Genome Analyzer in the Baylor
College Human Genome Sequencing Center (BCGSC).
The mRNA-seq data of AML (downloaded on November
7, 2016) were generated by an Illumina Genome Analyzer
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Figure 2: The miRNA-mRNA interaction subnetwork in AML. The five miRNAs in the network were reported to be associated with AML. In
the figure, 14 mRNAs (cyan dots) and 3 mRNAs (red dots) were predicted to be connected with three and four miRNAs, respectively. The
genes correlated with cancers were marked with their gene symbols.
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in the Baylor College Human Genome Sequencing Center
(BCGSC). The mRNA-seq data of the BRCA (downloaded
on December 15, 2014) and KIRC (downloaded on
November 6, 2016) were produced by an Illumina HiSeq
2000 sequencer of the University of North Carolina (UNC).
For the three data sets, the read counts for each miRNA
and mRNA (data in level 3) were considered the expression
level of the miRNA and the mRNA, respectively. In total,
we collected 149, 829, and 253 samples for the data sets of
AML, BRCA, and KIRC, respectively.

2.2. Study Design. In our study, the graphical lasso algorithm
was proposed to construct the miRNA-mRNA interaction
network. Figure 1 showed the overview of our study design.
Three cancer data sets, namely, AML, BRCA, and KIRC,
were downloaded from the TCGA database, and the differen-
tially expressed miRNA and mRNAs were separately identi-
fied for each of the data sets by using the fold change
ranking combined with a nonstringent P value cutoff. Based
on the expression profiles of the differentially expressed miR-
NAs and mRNAs, the interaction network was constructed
by the graphical lasso algorithm, including the connections
among the miRNAs and the mRNAs, as well as the connec-
tions between miRNAs and mRNAs. The miRNAs and their
connected mRNAs in the network were extracted and
regrouped into subnetworks, representing the interactions
between miRNAs and mRNAs.

To validate whether the cancer-related miRNAs and their
key targeted genes can be well characterized by our miRNA-
mRNA interaction network or not, we annotated the top 20

miRNAs, which were ranked by their degrees (the number
of connections), by using three disease-related miRNA
databases, namely, miRCancer [25], miR2Disease [26],
and HMDD v2.0 [22], for each of the data sets. Mean-
while, the gene set enrichment analysis was conducted
with the targeted genes of the cancer-specific miRNAs by
using DAVID v6.7. We checked whether or not the signifi-
cantly enriched Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and Gene Ontology (GO) terms were
associated with cancers. In addition, we mainly discussed
the functions of those genes that were predicted as the targets
of more than three miRNAs.

2.3. Identification of Differentially Expressed mRNAs and
miRNAs. To identify the differentially expressed mRNAs
and miRNAs, we firstly divided the samples into two groups
for each of the cancer types according to the clinical end-
points. For AML data set, the patients were subdivided into
high-risk and low-risk groups according to their survival
time. The patients with the survival days longer than one year
were assigned to the low-risk group, and the patients with the
survival days less than or equal to one year were assigned to
the high-risk group. For BRCA data set, the patients were
divided into the estrogen receptor- (ER-) positive group
and the ER-negative group according to their estrogen recep-
tor status [29]. As to the KIRC data set, the patients in the
pathological stages I and II were assigned into the low-risk
group and the patients in stages III and IV were assigned into
the high-risk group. Then, for all the data sets, Student’s t-test
P value was calculated for each of the miRNAs and mRNAs

Table 2: The annotation of the top 20 miRNAs in BRCA.

Cancer type Number of genes Disease

BRCA

hsa-mir-1269 381 Lung cancer, colorectal cancer, hepatocellular carcinoma

hsa-mir-934 368 —

hsa-mir-2115 325 —

hsa-mir-618 305 —

hsa-mir-1251 286 —

hsa-mir-9-3∗ 282 Breast neoplasms, stomach neoplasms, glioblastoma

hsa-mir-105-2 268 Biliary tract neoplasms, hepatocellular carcinoma

hsa-mir-767 268 Melanoma, rhinitis, allergy, perennial

hsa-mir-449a∗ 264 Breast cancer, adenocarcinoma, colonic neoplasms, ovarian neoplasms

hsa-mir-885 261 Leukemia

hsa-mir-105-1 253 Biliary tract neoplasms, hepatocellular carcinoma

hsa-mir-135a-1∗ 251 Breast neoplasms, colorectal neoplasms, non-small-cell lung carcinoma

hsa-mir-3662 246 Gastric cancer, head and neck cancer

hsa-mir-138-1 242 Oral squamous cell carcinoma, renal cell carcinoma, urinary bladder neoplasms

hsa-mir-376a-2 234 Adrenocortical carcinoma, glioblastoma, lung neoplasms

hsa-mir-137∗ 233 Breast neoplasms, malignant melanoma, glioblastoma multiforme

hsa-mir-3190 232 —

hsa-mir-138-2 231 Papillary thyroid carcinoma, oral squamous cell carcinoma, pituitary adenoma

hsa-mir-372 231 Colorectal cancer, acute myeloid leukemia, stomach neoplasms

hsa-mir-3926-2 231 —
∗The miRNA was directly associated with BRCA. —No description of the miRNA was found in the disease-related miRNA database.
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by comparing the expression profiles of the miRNAs and
mRNAs between the patient groups. We kept the miRNAs
and mRNAs with P < 0 05 and calculated the fold changes
of them between the compared patient groups, respectively.
Finally, the miRNAs and the mRNAs with fold change
greater than 1.5 (FC> 1.5) or less than 0.667 (FC< 0.667)
were considered the differentially expressed miRNAs and
mRNAs, respectively.

2.4. Construction of the miRNA-mRNA Interaction Network.
As reported, Gaussian graphical models (GGMs) have
been widely used to identify the dependent relationship

among the variables and to be applied on the biological
network inference [31, 32]. In GGMs, the conditional
dependence of the two nodes was estimated by an inverse
covariance matrix. A nonzero number in the inverse
covariance matrix indicates a connection between two
nodes [33]. The network inference actually is the estima-
tion of the inverse covariance matrix, and numerous algo-
rithms have been proposed to solve this problem [34].
Notably, based on the GGMs, a more reasonable approach
named graphical lasso was proposed to directly estimate a
sparse inverse covariance matrix by using the L1 (lasso)
penalty [24, 35].
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Figure 3: The miRNA-mRNA interaction subnetwork in BRCA. The four miRNAs in the network were reported to be associated with AML.
In the figure, 13 mRNAs (cyan dots) and 2 mRNAs (red dots) were predicted to be connected with three and four miRNAs, respectively. The
genes correlated with cancers were marked with their gene symbols.
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We assume a designed n×mmatrix where n indicates the
number of samples andm is the number of genes or miRNAs.
Let θ=Σ−1 and let S be the empirical covariance matrix; the
problem of estimating θ is converted to maximize the penal-
ized log-likelihood:

log detθ − tr Sθ − ρ θ 1, 1

where tr indicates the trace. ||θ||1 is the L1 norm of the
matrix, which is the maximum value of the sum of the abso-
lute values of the elements in each of the columns in θ, and ρ
is a nonnegative tuning parameter, which controls the
sparseness of the network.

In fact, the graphical lasso gets a θm×m matrix to con-
struct the network by using an n×m matrix as an input.
We have two matrices Xn×j (j miRNA expression profiles of
n samples) and Yn×k (k mRNA expression profiles of n sam-
ples). Therefore, we integrated these two matrices into the
matrix Zn×(j+k), which were used to construct an interaction
network including the connections among the miRNAs and
the mRNAs, as well as the connections between the miRNAs
and mRNAs. In our study, only the differentially expressed
miRNAs and the mRNAs were used to construct the interac-
tion network and the penalty parameter ρ was set to 2.0 for
all the data sets. We mainly concentrated on the interactions
between the miRNAs and the mRNA in the network.

3. Results

3.1. Most of the Top 20 miRNAs Were Highly Associated with
Cancers. For AML data set, 34 differentially expressed

miRNAs and798differentially expressedmRNAswere identi-
fied from706miRNAs and 20,319mRNAs, respectively. Con-
sidering the miRNAs as the hubs of the miRNA-mRNA
interaction network, we selected the top 20 miRNAs ranked
by their degrees and listed them in Table 1. It can be seen from
the table that 90% (18/20) miRNAs were associated with the
cancers after being annotated by the three disease-related
miRNA databases. Among the cancer-related miRNAs, five
miRNAs, namely, hsa-mir-217, hsa-mir-188, hsa-mir-125b-
1, hsa-mir-100, and hsa-mir-181d, were reported to be associ-
ated with the acute myeloid leukemia. Figure 2 showed the
subnetworks including these five miRNAs as hubs and their
targeted mRNAs.

For the data sets of BRCA and KIRC, we identified 266
and 54 differentially expressed miRNAs from 1043 and
1046 miRNAs, respectively, and identified 6021 and 1647 dif-
ferentially expressed mRNAs from 20,502 and 20,503
mRNAs, respectively. The top 20 miRNAs ranked by their
degrees in the miRNA-mRNA interaction network of the
BRCA data set were listed in Table 2. It can be seen that
70% (14/20) miRNAs were annotated to be associated with
cancers and four out of them, namely, hsa-mir-9-3, hsa-
mir-449a, hsa-mir-135a-1, and hsa-mir-137, were breast
cancer-specific miRNAs. Table 3 showed the top 20 miRNAs
that were obtained from the interaction network of KIRC. 14
out of 20 (70%) miRNAs were reported to be associated with
cancers, and four out of them, namely, hsa-mir-1291, hsa-
mir-200b, hsa-mir-134, and hsa-mir-218-2 were directly
associated with the renal cell carcinoma. The subnetworks

Table 3: The annotation of the top 20 miRNAs in KIRC.

miRNA Number of genes Disease

hsa-mir-1291∗ 344 Renal cell carcinoma, ovarian cancer, kidney cancer

hsa-mir-558 243 Pancreatic cancer, gastric cancer

hsa-mir-3924 237 —

hsa-mir-376a-1 233 Salivary gland neoplasms, lung neoplasms, adrenocortical carcinoma

hsa-mir-653 229 —

hsa-mir-485 227 Ependymoma, non-small-cell lung carcinoma, leukemia

hsa-mir-200b∗ 216 Renal cell carcinoma, diabetic nephropathies, pancreatic neoplasms

hsa-mir-134∗ 215 Renal cell carcinoma, lupus nephritis, glioblastoma

hsa-mir-1246 214 Colorectal neoplasms, esophageal neoplasms

hsa-mir-346 212 Lupus nephritis, hepatocellular carcinoma

hsa-mir-2110 210 Hepatocellular carcinoma, colorectal neoplasms

hsa-mir-365-2 210 —

hsa-mir-153-1 201 Endometrial neoplasms, glioblastoma, rectal neoplasms

‘hsa-mir-374c 191 —

hsa-mir-376b 190 Adrenocortical carcinoma, uterine leiomyoma, epithelial ovarian cancer

hsa-mir-218-2∗ 184 Renal cell carcinoma, lung cancer, urinary bladder neoplasms

hsa-mir-300 181 Urinary bladder neoplasms, ovarian neoplasms, heart failure

hsa-mir-1303 179 Colorectal neoplasms, hepatocellular carcinoma

hsa-mir-676 174 —

hsa-mir-1237 156 —
∗The miRNA was directly associated with KIRC. —No description of the miRNA was found in the disease-related miRNA database.
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Table 4: The top 5 KEGG pathways enriched with the genes connected with the cancer-specific miRNAs.

Cancer type KEGG pathways P value

AML

hsa00980: metabolism of xenobiotics by cytochrome 0.0241

hsa00982: drug metabolism 0.0263

hsa04740: olfactory transduction∗∗ 0.0407

BRCA

hsa04080: neuroactive ligand-receptor interaction∗ P < 0 0001
hsa00140: steroid hormone biosynthesis ∗∗ 0.0120

hsa03320: PPAR signaling pathway∗∗ 0.0176

hsa04610: complement and coagulation cascades∗ 0.0176

hsa00150: androgen and estrogen metabolism∗∗ 0.0246

KIRC

hsa05322: systemic lupus erythematosus 0.0003

hsa04060: cytokine-cytokine receptor interaction∗∗ 0.0021

hsa04740: olfactory transduction∗ 0.0122

hsa05034: alcoholism 0.0219

hsa00350: tyrosine metabolism 0.0224
∗∗The pathway was directly associated with the corresponding cancer type. ∗The pathway was associated with other cancers.
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of the specific cancer-related miRNAs and their targeted
mRNAs for the data sets of BRCA and KIRC were shown
in Figures 3 and 4, respectively.

3.2. The mRNAs Targeted by the Cancer-Specific miRNAs
Were Significantly Associated with the Biological Process of
Cancers. The gene set enrichment analysis was conducted
to investigate the gene functions by using the mRNAs, which
were predicted as the targets of the cancer-specific miRNAs.
For the data sets of AML, BRCA, and KIRC, 255, 853, and
670 targeted mRNAs were used for the gene set enrichment
analysis, respectively. The top 5 significantly enriched KEGG
pathways were listed in Table 4. For the data sets of AML,
BRCA, andKIRC, therewere one,five, and two signaling path-
ways, respectively, which were reported to be associated with
cancers. Likewise, the top 5 significantly enriched GO terms
related to the biological process and the molecular functions

were listed in Table 5. There were four, nine, and eight GO
terms for the data sets ofAML, BRCA, andKIRC, respectively,
which were associated with the tumorigenesis of the cancers.

When focusing on the mRNAs that were predicted to be
the targets of multiple miRNAs, we found 14, 13, and 49
mRNAs targeted by three miRNAs in the miRNA-mRNA
interaction networks of AML, BRCA, and KIRC, respectively.
Moreover, three, two, and seven mRNAs were predicted to be
targeted by four miRNAs in the networks of AML, BRCA,
and KIRC, respectively. Figures 2, 3, and 4 showed the
mRNAs targeted by three miRNAs (cyan dots) and four miR-
NAs (red dots). We also annotated these genes by using the
GeneCards database v4.4.2 (http://www.genecards.org/) and
found four, three, and nine genes from the networks of
AML, BRCA, and KIRC, respectively, which were reported
to be associated with cancers. The HUGO gene symbols of
the cancer-related genes were marked in Figures 2, 3, and 4.

Table 5: The top 5 GO terms enriched with the genes connected with the cancer-specific miRNAs.

Cancer type Category Term P value

AML

GOTERM_BP_4 GO:0009887~ organ morphogenesis P < 0 0001
GO:0048705~ skeletal system morphogenesis P < 0 0001
GO:0001501~ skeletal system development P < 0 0001

GO:0003002~ regionalization∗∗ P < 0 0001
GO:0048704~ embryonic skeletal system morphogenesis∗∗ P < 0 0001

GOTERM_MF_4 GO:0043565~ sequence-specific DNA binding∗∗ 0.0055

GO:0003700~ transcription factor activity 0.0075

GO:0008236~ serine-type peptidase activity 0.0286

GO:0004888~ transmembrane receptor activity∗ 0.0301

BRCA

GOTERM_BP_4 GO:0019226~ transmission of nerve impulse P < 0 0001
GO:0007268~ synaptic transmission∗∗ P < 0 0001

GO:0007417~ central nervous system development∗∗ P < 0 0001
GO:0044057~ regulation of system process∗ P < 0 0001

GO:0009888~ tissue development∗ P < 0 0001
GOTERM_MF_4 GO:0030594~ neurotransmitter receptor activity∗∗ P < 0 0001

GO:0015267~ channel activity∗ P < 0 0001
GO:0015075~ ion transmembrane transporter activity∗ P < 0 0001

GO:0008188~ neuropeptide receptor activity∗∗ P < 0 0001
GO:0005179~ hormone activity∗ P < 0 0001

KIRC

GOTERM_BP_4 GO:0006954~ inflammatory response P < 0 0001
GO:0007186~G protein-coupled receptor signaling pathway∗∗ P < 0 0001

GO:0050707~ regulation of cytokine secretion∗ P < 0 0001
GO:0050663~ cytokine secretion∗ 0.0002

GO:0050715~ positive regulation of cytokine secretion 0.0003

GOTERM_MF_4 GO:0005125~ cytokine activity∗ 0.0002

GO:0004930~G protein-coupled receptor activity∗∗ 0.0002

GO:0001664~G protein-coupled receptor binding∗∗ 0.0004

GO:0005126~ cytokine receptor binding∗ 0.0007

GO:0004984~ olfactory receptor activity∗ 0.0013
∗∗The Go term was directly associated with the corresponding cancer type. ∗The Go term was associated with other cancers.
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4. Discussion

In this study, we proposed a new strategy to construct the
miRNA-mRNA interaction network based on the expression
profiles of miRNAs and mRNAs. The connections between
miRNAs and mRNAs were created by the graphical lasso
algorithm. We applied the strategy to the three cancer data
sets and successfully identified a number of cancer-related
miRNAs and their targeted mRNAs.

For the AML data set, 90% miRNAs in the top 20 miR-
NAs were found to be associated with cancers (Table 1).
Among these miRNAs, hsa-mir-100 was considered a poten-
tial tumor-related miRNA, which has been reported to regu-
late cell differentiation by targeting RBSP3 in acute myeloid
leukemia [36]. The pediatric AML patients with the upregu-
lation of miR-100 may have poor relapse-free and overall
survival [37]. Moreover, the downregulation of miR-181
family members including miR-181a, miR-181b, miR-181c,
and miR-181d was associated with poor prognosis in cyto-
genetically normal acute myeloid leukemia [38]. For the
BRCA data set, 70% miRNAs in Table 2 were associated
with cancers and four of them were specifically associated
with the breast cancer. has-miR-9 acted as a tumor
suppressor, which can inhibit the proliferation of breast
cancer cells [39]. miR-137 is a potential tumor suppressor
miRNA, which negatively regulates the gene ERRα (estro-
gen-related receptor alpha) by targeting the two functional
sites in the 3′-UTR of ERRα [40]. As to the KIRC data set,
70% miRNAs in Table 3 were associated with cancers and
four of them had been reported to be associated with the
development of the renal cell carcinoma. hsa-mir-134
had been reported as a tumor suppressor and can obstruct
the tumor growth and metastasis by inhibiting epithelial-
mesenchymal transition (EMT) in renal cell carcinoma
cells [41]. miR-218 can mediate the focal adhesion path-
way and inhibit the cell migration and invasion in renal
cell carcinoma [42].

We also inspected the gene functions of the mRNAs,
which were predicted to be the targets of the cancer-related
miRNAs. The results of gene set enrichment analysis showed

that the majority of the KEGG pathways (Table 4) and
GO terms (Table 5) were significantly associated with the
cancers. In the interaction subnetworks (Figures 2, 3, and
4), several mRNAs targeted by multiple cancer-specific
miRNAs were found to have key roles in cancers. For
example, the gene SOX17, which was predicted to be reg-
ulated by four miRNAs in the subnetwork of KIRC, was
considered an important tumor suppressor with aberrant
methylation for the cancers [43, 44]. In addition, the genes
targeted by more than three miRNAs in the subnetworks
were mapped to the Human Protein Atlas database v16.1
(http://www.proteinatlas.org), and 8 genes were annotated
as the potential drug targets (Table 6).

Note that compared to the conventional drug therapies,
the miRNA-targeting drugs have been regarded as a high-
value therapy because miRNA may modulate multiple bio-
logical processes and pathways. However, there are a lot of
challenges for utilizing miRNAs as potential therapeutic
targets [45]. The miRNAs regulate tens of thousands of genes
which could contribute to both efficacy and unexpected side
effects. Therefore, the downstream analysis of genes and
pathways regulated by miRNAs should be further elucidated
and explored. Due to the complex regulatory mechanisms of
the miRNAs, it is still challenging to successfully translate the
miRNA-based therapy to the clinics [46]. It is a crucial step in
miRNA drug discovery [47] to identify the specific miRNAs
as drug targets and clarify the mechanisms of the actions
for the key miRNAs. The network-based approach proposed
in our study can identify the key miRNAs as well as their
targeted mRNAs, which were also significantly associated
with the biological process of cancers. It would be helpful
for providing the complementary support to the miRNA-
targeting drug discovery. In addition, the potential mRNA
target could be enriched by integrating the protein structure
information and medicinal chemistry. Furthermore, the
accumulative information about the side effect and off target
relationship from available public resources, such as
PharmGKB [48] and the Comparative Toxicogenomics
Database (CTD) [49], could be utilized to prioritize the genes
regulated by miRNAs for therapeutic target discovery.

Table 6: The annotation of the key genes connected with more than three cancer-specific miRNAs in the miRNA-mRNA interaction
networks.

Cancer type Gene Gene description Protein class

AML ASPG Asparaginase Enzymes, predicted intracellular proteins

BRCA AQP2 Aquaporin 2 (collecting duct)
Disease-related genes, potential drug targets, predicted

membrane proteins, transporters

KIRC

CNOT8 CCR4-NOT transcription complex subunit 8 Enzymes, plasma proteins, predicted intracellular proteins

CTPS1 CTP synthase 1
Disease-related genes, enzymes, potential drug targets,

predicted intracellular proteins

IFNAR2 Interferon (alpha, beta, and omega) receptor 2
Cancer-related genes, FDA-approved drug targets,

predicted intracellular proteins, predicted membrane proteins

MOCS2 Molybdenum cofactor synthesis 2
Disease-related genes, enzymes, potential drug targets,

predicted intracellular proteins

PRSS37 Protease, serine 37 Enzymes, predicted secreted proteins

VCP Valosin-containing protein
Disease-related genes, enzymes, plasma proteins, potential
drug targets, predicted intracellular proteins, transporters
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5. Conclusions

The network-based strategy proposed in our study can effi-
ciently construct the miRNA-mRNA interaction network in
tumorigenesis, which included the important cancer-related
miRNAs and their targeted genes. The miRNAs and the
targeted genes predicted by using the interaction networks
may be considered the potential candidates of drug targets
in the cancer research.
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