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ABSTRACT

The RNA-Seq technology has revolutionized tran-
scriptome characterization not only by accurately
quantifying gene expression, but also by the identifi-
cation of novel transcripts like chimeric fusion tran-
scripts. The ‘fusion’ or ‘chimeric’ transcripts have
improved the diagnosis and prognosis of several
tumors, and have led to the development of novel
therapeutic regimen. The fusion transcript detection
is currently accomplished by several software pack-
ages, primarily relying on sequence alignment algo-
rithms. The alignment of sequencing reads from fu-
sion transcript loci in cancer genomes can be highly
challenging due to the incorrect mapping induced
by genomic alterations, thereby limiting the perfor-
mance of alignment-based fusion transcript detec-
tion methods. Here, we developed a novel alignment-
free method, ChimeRScope that accurately predicts
fusion transcripts based on the gene fingerprint (as
k-mers) profiles of the RNA-Seq paired-end reads.
Results on published datasets and in-house cancer
cell line datasets followed by experimental valida-
tions demonstrate that ChimeRScope consistently
outperforms other popular methods irrespective of
the read lengths and sequencing depth. More im-
portantly, results on our in-house datasets show
that ChimeRScope is a better tool that is capable
of identifying novel fusion transcripts with poten-
tial oncogenic functions. ChimeRScope is accessi-
ble as a standalone software at (https://github.com/

ChimeRScope/ChimeRScope/wiki) or via the Galaxy
web-interface at (https://galaxy.unmc.edu/).

INTRODUCTION

A major characteristic of many neoplasias is the presence
of chromosomal re-arrangements often leading to higher
chances of abnormal fusion of two separate genes (1). These
fusion products are considered to be present at DNA level;
and are therefore considered unique to cancer. However
deep-sequencing technology revealed many more fusion
transcripts, without detectable rearrangement at the DNA
level and are partly generated via intergenic splicing (2).
Over the last decade, an increasing number of fusion tran-
scripts have been identified in major malignancies (3–5). A
fusion transcript can contribute to oncogenicity by promot-
ing the expression of a proto-oncogene (6); by deregulat-
ing a tumor suppressor gene (7); or by modifying the orig-
inal structure/function of a protein to form a novel abnor-
mal protein that stimulates tumorigenesis (8). Since onco-
genic chimeric transcripts are cancer-specific (9), they offer
a unique opportunity to be identified as cancer biomark-
ers for diagnostic (10,11), prognostic (12) and therapeu-
tic (13,14) purposes to provide targeted cancer treatment.
For instance, the first reported fusion gene, known as BCR-
ABL1, was discovered in chronic myeloid leukemia (CML)
in the early 1970s (15). This fusion gene was found to be
associated with the Philadelphia chromosome (16), a recur-
rent translocation event found in more than 90% of CML
patients. BCR-ABL1 encodes a constantly active tyrosine
kinase that promotes leukemogenesis (17). Imatinib (18),
one of the first drugs that target fusion genes, significantly
improves the overall survival rate of CML patients (19) by
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inhibiting the tyrosine kinase activity of the BCR-ABL1 fu-
sion protein.

High-throughput transcriptome sequencing, or RNA-
Seq, has been widely used for fusion transcript detection,
where the whole transcriptome from tumor cells, along
with the chimeric fusion transcripts, are extracted and se-
quenced. To date, more than 20 tools have been developed
for fusion transcript detection using RNA-Seq data, ma-
jority of which are alignment-based (20). Alignment-based
methods in general report the optimal alignment results be-
tween short reads and the reference transcript sequences,
and only achieve better performance when the compared
sequences show high levels of homology (21). However, due
to the highly perturbed nature of cancer genomes, align-
ing short reads generated from cancer genomes against the
normal reference genome limits these methods from achiev-
ing good alignment. This is especially true for the reads de-
rived from complex rearranged regions where fusion events
often occur, thereby resulting in low prediction accuracies
for these alignment-based methods (20). Moreover, identi-
fication of fusion transcripts by the majority of alignment-
based methods depends heavily on the number of detected
fusion reads. This lead to a bias toward identifying fusion
transcripts with moderate to high expression (20) and could
potentially leave novel, low expressed fusions undetected.

In order to address issues mentioned above, we devel-
oped a novel alignment-free method named ChimeRScope.
Alignment-free approaches generally employ a broad col-
lection of methods, including those based on k-mer frequen-
cies or substrings, information theory, graphical represen-
tation or sequence clustering. ChimeRScope, interpreted as
Chimeric RNA Scope or Chi(k)-meR Scope, predicts fusion
transcripts by assessing the gene fingerprint sequences (in
the form of k-mers) from RNA-Seq paired-end reads. In this
method, reads containing two sets of gene fingerprints from
two different genes will be scored based on the quality and
the quantity of the fingerprint sequences. Such reads will
be marked as fusion event supporting reads (FESRs) for
downstream analysis. Using this approach, ChimeRScope
eliminates the issues associated with using poorly aligned
reads when predicting fusion candidates, thereby avoiding
the issues often encountered with alignment-based meth-
ods. While the scoring algorithm uses an alignment-free ap-
proach, ChimeRScope can take advantage of the discordant
reads from the pre-aligned datasets by third-party tools
such as TopHat, as it only needs the discordant reads as in-
put for fusion transcript prediction. Also, to identify the ex-
act fusion junctions of the predicted fusion transcripts, to-
ward the end, ChimeRScope also uses a targeted alignment
step to visualize the fusion transcripts by aligning the iden-
tified FESRs against corresponding fusion partners. The fi-
nal output from the ChimeRScope pipeline comprises of a
list of predicted fusion transcripts with confidence scores
and detailed information of the fusion events, fusion orien-
tations and predicted fusion junction sequences, presented
as text files and vector-based images.

ChimeRScope, implemented in JAVA, is a platform-
independent software that can be installed and config-
ured with minimal effort. It can be run as a command-
line application, or integrated into online tools such as
Galaxy server (22) for accessing the user-friendly Graph-

ical User Interfaces. For demonstration purpose, we in-
stalled ChimeRScope on our local Galaxy server. The
ChimeRScope suite, manuals and instructions (including
Galaxy server configuration files for ChimeRScope) are
available for downloading at ChimeRScope wiki site.

MATERIALS AND METHODS

ChimeRScope method overview

ChimeRScope is a novel alignment-free method that iden-
tifies fusion transcript candidates based on k-mer frequen-
cies. It uses each k-mer as an independent unit and a poten-
tial gene fingerprint assigned with a weightage score that
is negatively correlated with its frequency. ChimeRScope
stores all k-mers in the transcriptome into a huge hash ta-
ble (Gene-Fingerprint library, GF-library or k-mer library;
Figure 1 A and B). Each hash key in the table represents
a unique k-mer with the corresponding hash value repre-
senting the list of transcripts that contain the k-mer. When
determining the origins of discordant reads, k-mers with
low frequencies across different transcripts are considered
as valuable gene fingerprints because they are more discrim-
inative in the scoring function. Using this idea, a paired-
end read will be classified as an FESR by ChimeRScope
if this read embeds two sets of fingerprint sequences from
two different genes with high confidence, which suggests a
potential fusion event between these two genes (Figure 1 C–
F). ChimeRScope summarizes the confidence scores of all
FESRs and outputs a list of high-quality fusion transcripts
after processing the entire discordant reads. To further in-
vestigate the reported fusion candidates, we also developed
a module that performs targeted alignment between FESRs
and the associated fusion transcript partners. This module
outputs detailed information on fusion partners (e.g. chro-
mosomal locations, orientations, fusion junction sequences
and coordinates), all of which aids in downstream experi-
mental validation and functional analysis. This information
is also transformed into vector-based (i.e. Scalable Vector
Graphics, or SVG) images to understand the fusion events
better.

We designed the ChimeRScope algorithm into four dis-
tinct modules (Figure 2). The first module, ChimeRScope
Builder, constructs a GF-library that serves as a reference
library for searching against the k-mers from the sample
reads. This is a one-time step that is carried out prior to
processing the sample reads for each reference transcrip-
tome. Next, the ChimeRScope Scanner module identifies
an FESR based on the k-mer content of the read using a
complete graph network model. This is the most memory
and compute-intensive step because of the enormous num-
ber of search queries against the GF-library. The third mod-
ule, ChimeRScope Sweeper, summarizes all the FESRs for
each fusion candidate and predicts high quality fusion tran-
scripts. The last module, ChimeRScore Examiner, performs
targeted alignment of the FESRs against the reference tran-
scripts of the fusion partners for better visualization of the
fusion event to define the fusion junctions. ChimeRScope
can use the total raw reads or the unmapped reads from pre-
vious alignments as input. However, as it only needs the un-
mapped reads for fusion transcript prediction, using the un-
aligned raw reads adds extensive computational burden to
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Figure 1. ChimeRScope strategy for identifying FESRs: an example. A k-mer library is created by first, (A) generating all the k-mer profiles for all the genes.
Next, we compare all k-mer profiles so that for each possible k-mer, the list of genes that contains that k-mer can be quickly identified. (B) A snapshot of a
hypothetical example of the k-mer library. (C) The Circos map on the right illustrates an example of how ChimeRScope determine an FESR. A discordant
paired-end read (100 bp × 2) that fails the stringent alignment against the reference genome is plotted in a circular layout with each nucleobase type
represented by a unique color. (D) Four different variations of each k-mer in the read (e.g. highlighted region shows the 11th 17-mer for read 1 from base 11
to 27) will be created and searched against the k-mer library in order to obtain (E) a list of gene IDs that uses the corresponding k-mer as fingerprint. Each
block represents a k-mer and each color here represents a unique gene ID. For example, four genes (G1: red, G2: green, G3: yellow and G4: orange) are
related to the 11th 17-mer (from the 11th nucleotide to 27th nucleotide, as highlighted in gray region) and two genes (G1 and G4) are associated with the
29th 17-mer (highlighted in light yellow). (F) A complete graph is drawn for all eight matched genes. Each vertex in the complete graph represents a unique
gene with the size of the vertex proportional to the overall fingerprint score for that gene. The edge value between two genes is defined by the distance
(denoted as d) of two closest fingerprints of the gene pair (only listed several values). Gene pairs with small distance values tend to be false positives due to
the similar sequences (See ‘Discussion’ and ‘Materials and Methods’ sections). If we consider only those gene pairs with an overlap of <5 bp (or with the
distance more than 17 − 5 = 12) are valid fusion candidates, this read will be classified as a FESR that supports the fusion between G1 and G6 because
G1 and G6 are two of the largest vertices (suggesting the most possible origins of the read based on the fingerprint sequences) with the distance value >12.

the program resulting in slow processing. Hence, we recom-
mend the use of discordantly-aligned or unmapped reads
as input for this program for expedited processing. Since the
alignment step is a part of the standard RNA-Seq data anal-
ysis protocol, the input reads for ChimeRScope Scanner
can be extracted directly from the sequence alignment files
generated from these standard protocols such as TopHat.
Therefore, ChimeRScope pipeline for fusion transcript de-
tection can be integrated with popular RNA-Seq data anal-
ysis pipelines like the Tuxedo pipeline (23) for simultaneous
analysis of the RNA-Seq datasets for both gene expression
and fusion transcript detection.

ChimeRScope Builder. To generate the gene fingerprint
library, we extracted all mRNA sequences (Figure 1A)
by combining RefSeq human genome and gene model
(GRCh38/hg38) using gtf to fasta from Tophat (24) pack-
age. For each mRNA sequence, ChimeRScope Builder

poses a sliding window of size k, in order to generate
the complete k-mer profile for each mRNA sequence.
ChimeRScope Builder then compares all the k-mers profiles
to obtain a huge hash table that uses each existing k-mer as
a hash key, and the list of genes that contains that k-mer
as the hash value (Figure 1B). All the hash keys and hash
values were coded into binaries to reduce memory usage.

ChimeRScope Scanner. ChimeRScope Scanner takes the
discordant paired-end reads (in forward-reverse orienta-
tion) in fastq format as inputs. We used the TopHat aligner
from the Tuxedo pipeline as the example here since it is one
of the most popular pipelines for RNA-Seq data analysis.
However, other aligners (e.g. STAR (25) and bowtie (26))
that work well on transcriptome sequencing data can also
be used with ChimeRScope for fusion transcript prediction.
Samtools (27) was used to combine unmapped.bam (TopHat
output file) with all the reads that are not properly mapped
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Figure 2. The flowchart of the ChimeRScope pipeline for fusion transcript
prediction. ChimeRScope can be used completely independently (Option
1) or as an add-on module in the standard RNA-Seq analysis pipeline
by using the unmapped reads as input (Option 2) from third-party align-
ment tools. Four different modules are integrated into the ChimeRScope
repository. ChimeRScope builder is a one-time step for GF-library cre-
ation and it is often carried out before the analysis. ChimeRScope Scan-
ner identifies FESRs from input reads by using the k-mer library gener-
ated by ChimeRScope Builder. ChimeRScope Sweeper then summarizes
the FESRs and outputs the list of identified fusion transcripts. Lastly,
ChimeRScope Examiner will analyze fusion transcript pairs and the cor-
responding FESRs for fusion transcript junctions with graphical represen-
tations.

as read pairs (27) (SAM flag not equal to 2) from the ac-
cepted hits.bam (TopHat output file). Next, all the discor-
dant reads were extracted from the merged bam file using
bamToFastq application from BEDTools (28).

For each discordant paired-end read of length 2L (length
L for each end), 2(L − k + 1) k-mers were generated (Fig-
ure 1C) and four different k-mer variations (original, re-
verse, complementary and reverse-complementary k-mer)
for each k-mer were created and searched against the k-
mer library (Figure 1D and E) in order to cover all possi-
ble orientations of a fusion event. Next, for each k-mer, a
list of transcripts that are associated with the k-mer and its
variations were obtained. ChimeRScope Scanner then as-
signs a normalized weightage score that is negatively corre-
lated with the size of that transcript list. Additionally, to
avoid computational costs on common k-mers like poly-
A sequence, k-mers associated with more than 100 tran-
scripts was given zero weightage. The normalized weightage

score for each k-mer is calculated using w = 101− Min(N,100)
100 −1

10−1 ,
where w is the weightage score and N is the size of the
gene list. After processing the k-mers, ChimeRScope Scan-
ner constructs a complete graph (in the form of 2D ma-
trix) where each vertex represents a unique gene that ex-
isted in the k-mer profile of that read (total of n genes).

The magnitude of the vertex {Mi | i ∈ n} is calculated by
summarizing all the weightage scores of the associated k-
mers. The edge value {di, j | i ∈ n, j ∈ n, i �= j} for each
gene pair in the graph is calculated by the distance of the
two closest gene fingerprints of that pair (Figure 1F). A
small distance between two genes indicates that these two
genes share high similar gene fingerprint profiles (e.g. dis-
tance = 1 means these two genes have k-1 number of nu-
cleotides overlap near the fusion junction) in this read and
are more likely to be false positives introduced by point
mutations or sequencing errors. If there are several ver-
tices {vax | ax ∈ {ax | dax,m〉c}} connected with the biggest
vertex/vertices {vm | m ∈ arg max

i
{Mi | i ∈ n}} with the edge

value more than the distance cut-off c, this read will be
classified as a FESR that supports the fusion event be-
tween {vm } and {vbx | bx ∈ arg max

ax
{Max}}, which should

be two of the most evident origins for a FESR (Figure
1F). The weightage score for each FESR is calculated us-
ing wF ESR = 4Mm×Mbx

(K f +Kr )2 , wF ESR∈(0, 1), where Kf and Kr are

the maximum number of k-mers each end can have for the
read. A FESR will achieve its largest weightage score only
when Mm = Mbx ≈ K f +Kr

2 , which shows a perfect fusion
transcript event where the k-mer profile for each end of the
read is the unique gene fingerprint set for each gene in the
pair. Here, FESRs with very low scores (default cut-off is
0.1) are filtered out to prevent false positives.

ChimeRScope Sweeper. The final confidence score for
each fusion transcript is calculated based on the overall
distribution of the related FESRs’ weightage scores using
an iteration function (Supplementary File 1). This function
takes the FESR with the smallest weightage score from the
FESR stack and updated it to the confidence score. There-
fore, the updated confidence score is always larger than
the current FESR weightage score. This guarantees that
the final score is always higher than the score of the best
FESR. Therefore, fusion transcripts with only a few FESRs
can have high confidence scores if they have high quality
FESRs. On the other hand, the confidence score accumu-
lates at a slower rate when processing a subset of FESRs
with the same level of weightage scores. Using this strat-
egy, it prevents false positives from having high confidence
scores when only large amounts of low quality FESRs were
present. The final confidence score for a fusion transcript
is ranges from 0 to 1. Any fusion transcript with a score of
more than 0.5 is considered as a true fusion transcript candi-
date. The cut-off score indicates that a fusion transcript will
be classified as true when it receives, for example, 70% sup-
port in average from each fusion partner (0.7*0.7 = 0.49).

Before ChimeRScope reports the final list of fusion tran-
scripts, several filters were applied to remove false posi-
tives. These include the homology, sequence similarity, oc-
currences and genomic-distance filters. ChimeRScope can
introduce false positives if the reported fusion transcript
pair shares homologous fingerprint profiles (Figure 3A).
Therefore, fusion pairs that comes from the same gene fam-
ily (29) are filtered out. Moreover, ChimeRScope also uses
Smith–Waterman algorithm (30) to further exclude those
fusion transcripts with similar sequences within the fusion



PAGE 5 OF 18 Nucleic Acids Research, 2017, Vol. 45, No. 13 e120

Figure 3. False positive fusion reads caused by genes with similar sequences and adapter contaminations. (A) An example of the false positives caused by
similar sequence region. The reference sequences of G1 and G2 (regions were filled with different patterns) share a similar sequence (illustrated using the
same pattern) near the 5′ region. There are only a few nucleotides that are different (highlighted in red in G2). A paired-end read sequenced from the subject
G1 cDNA contains a mutation that changes the fingerprint sequences in the region identical to the sequence of G2. This paired-end read, originated only
from G1, will now be classified as a fusion read because it supports the fusion between G1 and G2 due to the above mentioned specific mutation contained
in this read. We filtered out this type of false positives by screening for such similar regions in the reported fusion partners. (B) An example of the false
positives caused by adapter sequences. Genes and adapters (including the reversed adapter sequence) were filled using different patterns to represent the
differences of these sequences. Paired-end reads can have adapter contaminations when the template is smaller than the length of the read or due to other
technical issues. ChimeRScope checks four different variations of the k-mers, including the reversed sequence. Although adapter sequences are designed
not to significantly match any of the gene sequences, the reverse of the adapter sequences can match to certain genes (G4 matches the reverse adapter
sequence in this example). All the paired-end reads sequenced from a cDNA library with adapter contaminations could be classified as fusion reads by
ChimeRScope. We filter out this class of false positives by removing fusion transcripts involving partners with high counts because this kind of fusion
partners tend to pair with a large number of genes.

pairs. Adapter contaminations can also introduce false pos-
itives (Figure 3B). Although adapter sequences in RNA-Seq
are designed not to match any gene sequences, the reversed
adapter sequences can be part of the fingerprints for a sub-
set of genes. Reads with adapter contamination sequenced
from any expressed genes would exhibit a fusion-like pat-
tern between the expressed gene and genes from that subset.
To remove such false positives, ChimeRScope calculates the
number of occurrences where one gene has been reported

to be fused with other genes among the same dataset. Fu-
sion transcripts involved with such genes with high counts
(The default cut-off value is 200. The selection of this value
is based on the results from the tested simulated datasets)
should be false positives. This is because if the adapter se-
quences are included in the paired-end reads, they can pair
with any associated genes, creating fusion-like patterns be-
tween the adapter sequences and these genes. Furthermore,
the genomic-distance filter is also used to filter out read-
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throughs, a class of chimeric transcripts with true fusion-
like patterns but are not biologically significant for tumori-
genesis (31). At last, for fusion transcript analysis on real
RNA-Seq datasets, an alignment search for the fusion se-
quences against non-coding genes (NCBI BLAST against
NR) is recommended for filtering out potential false posi-
tives because the regular k-mer library only includes coding
mRNAs. This step will filter out false positives caused by
non-coding RNAs with fusion-like patterns.

ChimeRScope examiner. The Examiner module is de-
signed as a post-analysis module that outputs the models
of the fusion transcripts as both text files and SVG im-
ages. It performs target alignment using Smith–Waterman
algorithm between each fusion transcript reported from
the previous module and the corresponding FESRs.
ChimeRScope Examiner calculates the estimated fusion
junction from each FESR and reports the consensus fusion
coordinates for the fusion transcript from the alignment re-
sults. In addition, ChimeRScope Examiner also reports the
orientations and the strands of the fusion partners, along
with the resolved fusion sequences near the fusion junction
(+/− 100 bp to the fusion junction). These results were also
automatically transformed into vector objects for improved
interpretation of the fusion events (Figure 4). The SVG fig-
ure is automatically generated for each fusion and can be
converted to publication-quality images without changing
the aspect ratio. Moreover, most of the elements in the SVG
image have their unique name attributes (e.g. transcript ID,
exon number, paired-end read name). The name attributes
are incorporated at the bottom of the image when users per-
form mouse-over action on these elements for enhanced un-
derstanding of the fusion event.

Shannon Index for k-mer size optimization

Shannon Index, also known as Shannon’s entropy, was orig-
inally described in ecology (32) to quantify the uncertainty
in predicting the identity of a species that is taken at random
from the dataset. Similarly, k-mer libraries with larger Shan-
non index values indicate higher uncertainties of predicting
the correct origins of randomly sequenced reads (shotgun
sequencing). The Shannon index of a k-mer library is calcu-
lated using H′ = −∑R

i = 1 pi ln pi . Here, R is a collection of
k-mer classes that have been identified in less than 100 tran-
scripts in a library and pi is the probability of each k-mer
class in R. Those k-mers associated with 100 transcripts or
more are not included in the k-mer library due to their low
specificities; thus they were excluded from the Shannon in-
dex calculation.

Local Galaxy server implementation

Apart from the standalone ChimeRScope package, we also
developed a web-based application of ChimeRScope using
Galaxy server (22). The Galaxy server instance was installed
on our local data analysis server following the instruc-
tions provided by Galaxy group (https://wiki.galaxyproject.
org/). We changed our local Galaxy server into a pro-
duction data analysis server using the recommended con-
figurations. We also implemented Galaxy-specific options

for ChimeRScope for enhanced compatibility with Galaxy
server data management system. All the wrapper scripts
used for ChimeRScope applications were implemented in
XML (eXtensible Markup Language).

RNA-Seq datasets and data analysis procedures

Simulated datasets. We used two different simu-
lated datasets to test the prediction performance of
ChimeRScope against other popular methods. The first
simulated datasets, namely 50 pos set, was included in the
FusionMap (33) package. It consists of 50 simulated fusion
transcripts with the fusion reads ranging from only 2 read
pairs to 1587 read pairs. In total, it contains 57 209 75 bp
paired-end reads, with only 4300 reads that spans the fusion
junctions. Another simulated dataset we used contains
15 different combinatorial subsets with 3 different read
lengths (50, 75 and 100 bp) and 5 different coverage levels
(5×, 20×, 50×, 100× and 200×). This dataset, namely
comp sim set, was obtained from GC. Tseng’s group (34).
Those 15 datasets contain the same 150 artificial fusion
events, all of which were simulated using sequences from
Ensembl annotation.

Published RNA-Seq datasets. To evaluate the perfor-
mance of ChimeRScope in real tumor samples, we
tested ChimeRScope on transcriptome data from four
breast cancer cell lines (BT-474, MCF-7, KPL-4, skBR-
3) (35) with 26 experimentally validated fusion tran-
scripts reported by the original study (The fusion CSE1L-
ENSG00000236127 was removed from the list due to the
deprecation of ENSG00000236127). The breast cancer cell
line datasets were downloaded from NCBI Sequence Read
Archive (SRA. http://www.ncbi.nlm.nih.gov/sra) with ac-
cession number SRP003186. Additionally, we also tested
ChimeRScope on a subset of 272 patient samples from a
large glioma study (36) (accession number SRP027383).
This validation list consists of 13 RNA-Seq datasets with
31 validated fusion transcripts and it was also used by the
JAFFA study (37).

In-house natural killer (NK) cell lines datasets. To further
demonstrate the utility of ChimeRScope in vivo, we exam-
ined three natural killer (NK) cell lines for experimental val-
idation. Here, four different NK cell line datasets (KHYG1,
NKYS, NK92-PMIG, NK92-PRDM1) were downloaded
from NCBI SRA database (SRP049695), which can be di-
vided into three different cell lines (KHYG1, NKYS and
NK92). The original NK92 cell line samples used for se-
quencing were transduced with either PMIG, a control
vector, or a vector to knock-down PRDM1, a known tu-
mor suppressor. We only used the normal/non-transduced
NK92 RNA in the experimental validation step for those
fusion transcripts predicted from NK92 samples since the
original vector treated NK92 RNA used in the transcrip-
tome sequencing was not available.

Data analysis. We installed ChimeRScope, SOAPfuse
(V1.26), FusionCatcher (version 0.99.4d beta), JAFFA (ver-
sion 1.06), EricScript (version 0.5.5) and MapSplice (ver-
sion 2.2.1) on a local Linux-based data analysis server (160

https://wiki.galaxyproject.org/
http://www.ncbi.nlm.nih.gov/sra
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Figure 4. A screenshot of the graphical output for fusion transcript DAB2&FRYL. Four different tracks are plotted to illustrate the fusion event. The first
track of the SVG image lists the name of the fusion partners with their original orientations and the second track shows the transcripts that might be
involved in the fusion event. Each rectangle in the second track represents a coding exon with the size of the box proportional to that exon. The third track,
along with the highlighted region between track two and track three, show the amplified region near the fusion junction from each fusion partner. The
last track of the image plots a maximum of 71 (determined by the dimension of the forth track) paired-end reads to show the alignment results of selected
FESRs against the fusion junction. This figure shows that DAB2 are fused with FRYL near the second exon (5′ end) of DAB2 and the second exon (3′ end)
of FRYL.

cores and 512 GB memory). We processed all simulated
datasets and cell lines RNA-Seq datasets mostly using the
default settings. Results on NK cell lines were further fil-
tered using awk command. All the settings and the reference
database versions can be found in Supplementary File 2.

Experimental validation

The NK cell lines used for fusion detection were KHYG1,
NKYS and NK92, which were cultured under standard
conditions and total RNA was extracted as per standard
protocol. The RNA extracted from these cells lines was re-
verse transcribed into cDNA using ProtoScript First Strand
cDNA Synthesis Kit (New England BioLabs) as per manu-
facturer’s protocol, followed by polymerase chain reaction
(PCR) using the oligonucleotide primers designed using
Vector NTI Advance (version 11.5.4) and Primer3Plus (38).
NCBI primer blast (39) was used to check the off-target am-
plicons to ensure the binding site specificity of the primers.
PCR was performed for each primer set using either the
standard Taq PCR kit (New England BioLabs) or the One
Taq PCR kit with GC buffer (New England BioLabs) de-
pending on the GC content of the target sequences. All PCR
products were analyzed by agarose gel electrophoresis. The
PCR products of the approximate expected amplicon size
were extracted from the agarose gel using the GeneJET Gel
Extraction Kit (ThermoScientific). All the amplicons ex-
tracted from the agarose gel were Sanger sequenced using

Applied Biosystems (ABI) 3730 DNA Analyzer as per man-
ufacturer’s protocol.

RESULTS

Optimization of k-mer size

It is expected that the choice of the k-mer size affects many
factors such as the distribution of k-mer frequencies and the
computational speed, while it is also restricted by factors
like the read length; hence determining the optimal size of
k in k-mers is crucial to achieve optimal accuracy and per-
formance of ChimeRScope. Our choice of k-mer size for the
ChimeRScope GF-library is based on three criteria. First, k
should not be too small, because a small k will always yield
less unique gene fingerprint sequences. Second, k should not
be too large since sequence variations within a string can af-
fect higher percentage of the k-mers when k is large (e.g. the
maximum proportion of k-mers affected by a SNP is calcu-
lated by k/(L − k + 1), where L is the length of the read;
larger k increases the proportion of the affected k-mers).
Last, k should be an odd number because ChimeRScope
tracks each k-mer using the index of the middle nucleotide;
hence reversing a k-mer (see ‘Materials and Methods’ sec-
tion) when k is an odd value will not alter the index. To
decide the optimal k value for human reference genome
GRCh38/hg38 (38 834 mRNA transcripts in RefSeq anno-
tation), we plot the percentages of all k-mer classes (catego-
rized by the occurrences in unique transcripts) for all k-mer
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libraries using the odd k values ranged from 13 to 29 (Figure
5A). We believe that GF-libraries with a higher level of dis-
criminative k-mers (or lower Shannon Index (40)) are gen-
erally more advantageous when evaluating fingerprint se-
quences (41). Our results (Figure 5 and Supplementary Ta-
ble S1 in Supplementary File 3) show that k = 17 is the opti-
mal k-mer size for human reference model (GRCh38/hg38)
as it is the smallest k size that gives highest levels of discrim-
inative fingerprints (or low Shannon Index) compared with
those of the GF-libraries with larger k values.

In total, the 17-mer GF-library for GRCh38/hg38 con-
sists of ∼62.7 million k-mers (Supplementary Table S2 in
Supplementary File 3). Out of which, 52.8% (∼33.1 mil-
lion) are unique fingerprint sequences (identified in only
one transcript) and 23.5% (∼14.5 million) are observed in
only two different transcripts (Supplementary Table S3 in
Supplementary File 3). Additionally, more than 99% of the
k-mer sequences in 17-mer GF-library are associated with
no more than eight transcripts indicating the significance
of 17-mers across the human transcriptome. Notably, com-
mon fingerprints like poly-A sequences can drastically slow
down the computational time due to their occurrences in
a large number of transcripts. Therefore, we defined that
k-mers associated with more than 100 transcripts (531 k-
mers. See Supplementary Table S2 in Supplementary File 3)
were assigned a weightage score of zero and thus excluded
from the scoring step. Furthermore, we also calculated the
number of the most discriminative 17-mers in the human
transcriptome (Supplementary Table S4 in Supplementary
File 4) and ranked all the transcripts by the numbers of the
unique 17-mers (Supplementary File 4). Results have shown
that 82% of all the transcripts (32001/38834, Supplemen-
tary File 4) have at least 10 unique fingerprint sequences.
Supplementary Table S4 also shows that more than 99.4%
(38587/38834) of the transcripts have at least one of these
high-quality k-mers (k-mers found in no more than 10 tran-
scripts). The rest of the transcripts (0.6%) can be grouped
into 34 genes (Supplementary Table S4), most of which
can be further classified into only four different gene fami-
lies (Cancer/Testis antigen family, Ubiquitin Specific Pepti-
dase 17-like family, GAGE cancer/testis antigen family and
PRoline-Rich protein gene family). Overall, these statistics
suggest that the 17-mer GF-library contains sufficient fin-
gerprint sequences for most of the transcripts/genes.

Optimization of time and memory usage

Memory utilization is a common problem often encoun-
tered by alignment-free algorithms (42). ChimeRScope
Scanner also consumes a lot of computational resources due
to the huge hash table (the GF-library containing millions
of k-mers) and the large search space (millions of reads). To
overcome this issue, we optimized the algorithm by trans-
forming all the k-mers into binaries, reducing the number
of iterations and optimizing data structures (Supplemen-
tary methods in Supplementary File 5). These modifica-
tions led to a 6-fold improvement on the RAM usage for
ChimeRScope Builder, while also reducing the run time by
60-fold compared with our first version of ChimeRScope
prior to optimization (Table 1). The improved version takes
only 6 GB RAM and 12 min for ChimeRScope Scanner to

load the GF-library into the memory. The processing speed
for ChimeRScope Scanner was enhanced by at least eight
times with only 10% of the original memory cost in the im-
proved version. This enables the use of ChimeRScope on
projects with a large number of samples. For example, anal-
ysis on RNA-Seq datasets with several million discordant
reads took more than 10 h using 10 threads with more than
100 GB RAM usage in the original ChimeRScope version.
In comparison, the optimized version can analyze the same
datasets within 2 h with the same number of threads and 20
GB RAM.

Performance evaluation using simulated datasets

Results from a recently published paper (34) along with
other studies (20,37,43–45) suggest that SOAPfuse (43), Fu-
sionCatcher (44), JAFFA (37), EricScript (46) and Map-
Splice (47) are generally the best-performing fusion tran-
script prediction methods. Therefore, we compared the pre-
diction performance of ChimeRScope with these five meth-
ods (results reported either from this study or from previ-
ously published studies, if available). We used two different
simulated datasets to evaluate the sensitivities and false dis-
covery rates (FDRs). The first simulated dataset was pub-
lished by FusionMap group with 50 positive fusion events
(50 pos set). The second set of simulated datasets was ob-
tained from a recent study (34) that comprehensively eval-
uated the performance of 15 different fusion transcript pre-
diction algorithms. These datasets, namely comp sim set,
are comprised of 15 different combinatorial subsets with
3 different read lengths (50, 75 and 100 bp) and 5 differ-
ent coverage levels (5×, 20×, 50×, 100× and 200×). Each
dataset contains the same 150 artificial fusion events that
were simulated based on the Ensembl (48) annotation. We
analyzed these datasets and carried out head-to-head com-
parisons of ChimeRScope against other five methods us-
ing the same F-scores (34) for performance assessment. The
complete list of fusion transcripts predicted by these six
methods on simulated datasets can be found in Supplemen-
tary File 6.

The comparative performance of the selected methods on
50 pos set is shown in Table 2. Because some of the sim-
ulated fusion transcripts can be classified as biologically
insignificant (e.g. runaway transcripts between neighbor-
ing genes) by some filters implemented in ChimeRScope
and in other methods like FusionCatcher, we ran our tests
both with and without applying these filters on the sim-
ulated datasets. We were unable to run JAFFA locally on
the 50 pos set in this study; hence, we used the statistics re-
ported in the original JAFFA publication (37) in Table 2
and we took the best results from the JAFFA hybrid mode
output. Overall, ChimeRScope demonstrates the highest F-
score (0.97) by predicting 47 true positives out of 50 with-
out reporting any false positives (with all filters disabled).
Even with all filters applied, ChimeRScope still reports a
higher F-score than other tested methods. The second best-
performing method on this dataset, FusionCatcher, also re-
ports 47 true positives but with three false positives in its
preliminary result (Supplementary File 6). The filters used
by FusionCatcher removed these three false positives at
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Figure 5. k-mer percentages for nine selected k-mer libraries for GRCh38/hg38 (mRNAs only). (A) The k-mer percentages for nine selected k-mer libraries
(k = 13, 15, 17, 19, 21, 23, 25, 27, 29) are plotted using 3D line chart, where each line in this chart represents a unique k-mer library. Libraries with larger
k values are plotted to the further side of the figure. The x-axis lists all k-mer classes (characterized by the number of transcripts that use the k-mer as
a fingerprint) and y-axis shows the corresponding percentages of the k-mer class in the certain k-mer library. For instance, ∼48% of the k-mers in the
15-mer library are unique fingerprint sequences (y = 48% when x = 1 and k = 15). For each k-mer library, the majority of the k-mer classes (∼99%) are
discriminative k-mers with <10 associated genes. Overall, larger k often gives better k-mer library because it contains more discriminative k-mers (higher
value toward left part of the x-axis). (B) Shannon Indices for all nine GF-libraries. GF-libraries for k = 17 or larger have similar low levels of Shannon
Indices (∼1.4, highlighted in the red box). Consequently, k = 17 is the optimal k-mer size for GRCh38/hg38 because k = 17 is the smallest k-mer size that
gives highest levels of discriminative k-mers (or low Shannon Index).

Table 1. Run time for ChimeRScope Scanner, before and after code optimization

Memory usage (in GigaByte)* Time cost/speed

Before After Before After

Construct 17-mer GF-library >100 17.4 25 h 25 min
Loading 17-mer GF-library 42 6 1 h 12 min
Parsing reads (per thread) 10 1 ∼400/min >5000/min**

* Memory usage was estimated using TotalMem()-freeMem() functions during the run time. The actual memory usage may vary.
** The processing speed for parsing reads was estimated using the 50 pos set, simulated with different volumes (10×, 100× and 1000×).

the cost of losing 16 true positives, suggesting that Fusion-
Catcher is very conservative in predicting fusion transcripts.

Next, we analyzed a more extensively simulated dataset,
comp sim set (with 15 subsets) and compared our results
(Supplementary Table S5 in Supplementary File 7) with
the original study for this dataset (34). The initial results
showed that ChimeRScope was only able to identify a max-
imum of 135 true fusion transcripts (Supplementary File
6). A closer inspection of these 15 fusion transcripts not
predicted by ChimeRScope reveals that they were unde-
tected due to the sequence differences between Ensembl and
RefSeq annotation. Specifically, the 15 fusion transcripts
in the comp sim set are simulated from the Ensembl se-
quences and fused at non-coding regions defined by RefSeq
annotation (Supplementary File 8). Since ChimeRScope
GF-library is built entirely based on RefSeq annotation,
ChimeRScope could not detect any of these true fusion
transcripts. Therefore, we removed these 15 fusion tran-
scripts for all the methods from the final analysis (Table
3). We were unable to run JAFFA successfully on datasets

with read lengths of 50 and 75 bps due to the computa-
tional issues caused by JAFFA assembly mode; and hence
these results were not reported for these datasets in Table
3. Overall, ChimeRScope displays the best F-scores for 13
out of 15 datasets tested. Notably, ChimeRScope has signif-
icantly higher F-scores especially on the datasets with low
coverage depth (5×), suggesting its unique advantage in de-
tecting fusion transcripts with low expression levels or from
datasets with low coverage depth in general. Furthermore,
the variation of the F-scores reported by ChimeRScope is
subtle (max = 0.957 and min = 0.905) across all the datasets
with different read lengths and depth of coverage, indicat-
ing that our method is very robust and it generates con-
sistently accurate results irrespective of the read length or
sequencing coverage. On the other hand, the F-scores re-
ported by alignment-based methods depend on longer read
lengths and larger coverage depths, suggesting that the per-
formances of the alignment-based methods are extremely
sensitive to the technical variations in the Next-generation
sequencing (NGS) data.
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Table 2. Fusion transcript prediction on the 50 pos set

50 pos set Study TP* FP Precision Recall FDR F-score Note Best score

ChimeRScope Current study 47 0 1.00 0.94 0.00 0.97 Without filters 0.97
Current study 45 0 1.00 0.90 0.00 0.95 With all filters**

SOAPfuse Current study 38 1 0.97 0.76 0.03 0.85 0.90
PMID:26862001 41 0 1.00 0.82 0.00 0.90

JAFFA PMID:26019724 44 0 1.00 0.88 0.00 0.94 JAFFA-hybrid 0.94
FusionCatcher Current study 31 0 1.00 0.62 0.00 0.77 Final result 0.94

Current study 47 3 0.94 0.94 0.06 0.94 Raw result
EricScript Current study 14 0 1.00 0.28 0.00 0.44 0.88

PMID:26862001 39 0 1.00 0.78 0.00 0.88
MapSplice Current study 42 0 1.00 0.84 0.00 0.91 0.92

PMID:26862001 43 0 1.00 0.86 0.00 0.92

*TP: true positive; FP: false positive; Recall: sensitivity; FDR: false discovery rate.
**Two fusion transcripts were filtered out by the similarity filter (PRKCA&USP49 score: 384; FKTN&SCAI score: 367). However, the F-score was still
higher compared with others methods even with these two fusion transcripts removed.
ChimeRScope predicts 47 true positives (out of 50 true fusion transcripts) without reporting any false positives. Our method achieved the highest F-score
with highest sensitivity (recall = 94%) and lowest FDR (0%). In comparison, JAFFA predicts in total 44 true positives and 0 false negatives, reporting the
second highest F-score as FusionCatcher (47 true positives and 3 false positives in the raw result).

Table 3. F-scores for six major methods on comp sim set with 15 incompatible fusion transcripts removed

comp sim set (TP =
135) 50 bp 75bp 100 bp

5× 20× 50× 100× 200× 5× 20× 50× 100× 200× 5× 20× 50× 100× 200×
ChimeRScope 0.948 0.954 0.947 0.908 0.905 0.948 0.949 0.957 0.954 0.947 0.940 0.957 0.957 0.957 0.957
SOAPfuse 0.807 0.922 0.935 0.913 0.943 0.836 0.921 0.921 0.929 0.925 0.840 0.942 0.928 0.932 0.929
FusionCatcher 0.357 0.856 0.894 0.895 0.899 0.692 0.855 0.878 0.888 0.896 0.707 0.884 0.891 0.891 0.891
JAFFA 0.609 0.849 0.856 0.856 0.856
EricScript 0.234 0.256 0.296 0.317 0.298 0.331 0.425 0.434 0.432 0.429 0.361 0.461 0.458 0.458 0.464
MapSplice 0.235 0.514 0.548 0.579 0.594 0.381 0.525 0.586 0.591 0.598 0.383 0.541 0.568 0.583 0.577

The results were calculated from 135 effective fusion transcripts. ChimerRScope achieved the highest F-scores in 13 out of the 15 datasets. SOAPfuse alone reported higher
F-scores in 100× 50 bp and 200× 50 bp, with marginal increase of 0.005 and 0.038 in F-scores, respectively.

Performance evaluation using cancer transcriptome data

To evaluate the performance of ChimeRScope in real tu-
mor samples, we tested ChimeRScope on the transcrip-
tome data from four breast cancer cell lines (Table 4) and
13 glioma patient samples (Table 5). We analyzed these
datasets using other five methods for comparative analy-
sis (the complete prediction results for both datasets can
be found in Supplementary File 6). Results on four breast
cancer cell lines have shown that ChimeRScope identi-
fies the highest number of validated fusion transcripts (22
out of 26). Furthermore, ChimeRScope also reports higher
FESRs for fusion transcripts with low coverages or ex-
pression levels (Supplementary Table S6 in Supplementary
File 9), suggesting that the sensitivity of ChimeRScope to
identify such fusion transcripts is higher. Results on the
glioma samples have also demonstrated that ChimeRScope
performed better than other methods. ChimeRScope re-
ports an F-score of 0.210, which is better than SOAPfuse
(0.178), FusionCatcher (0.152), JAFFA (0.106), MapSplice
(0.080) and EricScript (0.015). Moreover, ChimeRScope is
the only method that identifies FESRs for all 31 fusion tran-
scripts (Three fusion genes, AP2A2&SBF2, CD81&SPAG6
and TPM3&ADAR were filtered out by the similarity filter
and the adapter filter. See Supplementary Table S7 in Sup-
plementary File 9). Consequently, these results also demon-
strate that ChimeRScope is a better fusion transcript pre-
diction method for cancer transcriptome datasets.

Experimental validation of ChimeRScope predictions

We used paired-end RNA-Seq datasets from three NK lym-
phoma cell lines that we have published earlier (49). We an-
alyzed these RNA-Seq datasets using all selected methods
(Supplementary File 2). In total, ChimeRScope predicted
10 unique fusion transcripts, compared with 25 unique fu-
sion transcripts by SOAPfuse, three by JAFFA and only
one by FusionCatcher (Supplementary File 6). On the other
hand, EricScript and MapSplice predicted unusually high
number (378 and 127 fusion transcripts, respectively) of fu-
sion transcripts compared to the other four methods. Con-
sidering that the total number of curated fusion transcripts
in all cancers were only around 1000 gene pairs (ChimerKB
from ChimerDB 3.0 at http://ercsb.ewha.ac.kr/fusiongene),
and the consistently superior performance of the first four
methods (ChimeRScope, SOAPfuse, JAFFA and Fusion-
Catcher) against multiple datasets tested, we have limited
the experimental validation of the predicted fusion genes to
these four methods. Among the four methods, 30 unique
fusion transcripts were predicted, including five that were
reported by at least two of the four methods (Figure 6). Fur-
ther analysis on fusion transcripts predicted by SOAPfuse
has shown that BOLA2B&SMG1P2, TVP23C&CDRT4
and DSCR4&DSCR4-IT1 are directly associated with well-
annotated read-through mRNAs (with NM IDs in NCBI
Five Reference Sequence database). This type of predic-
tions is classified as false fusion event by ChimeRScope
(see ‘Discussion’ section) and hence is filtered out. In ad-
dition, we failed to design primers for ORC6&PLEKG4B

http://ercsb.ewha.ac.kr/fusiongene
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Table 4. Fusion transcript prediction on breast cancer cell lines for selected methods

BT474(11) SKBR3(9)* MCF7(3) KPL4(3)
Total
TP

Total
prediction

TP**
Total
prediction TP

Total
prediction TP

Total
prediction TP

Total
prediction

ChimeRScope*** 10 24 6 24 3 14 3 4 22 66
SOAPfuse 9 35 6 19 2 6 3 8 20 68
SOAPfuse*** 7 26 6 11 3 7 3 4 19 48
FusionCatcher 9 31 6 24 2 7 2 5 19 67
FusionCatcher*** 4 11 4 5 2 2 2 2 12 20
JAFFA 8 15 5 9 2 6 2 2 17 32
JAFFA*** 7 16 4 7 3 8 1 2 15 33
EricScript 8 31 4 37 2 10 2 5 16 83
EricScript*** 2 21 3 22 0 8 0 7 5 58
MapSplice 8 27 4 15 2 6 2 5 16 53
MapSplice*** 8 28 5 11 3 8 2 5 18 52

*CSE1L-ENSG00000236127 was removed because ENSG00000236127 is no longer a valid gene in the latest Ensembl database.
**TP: true positive.
***Marked rows are the results reported by our study. Stats for other rows are reported from Liu etal. (34).
The numbers in parenthesis next to the cell line names (header line) are the total number of validated fusion transcripts in each cell line. ChimeRScope
reports the highest number of true positives across four different breast cancer cell lines. Overall, ChimeRScope identified 22 true fusion transcripts out of
26 validated fusion transcripts.

Table 5. Fusion transcript prediction on 13 glioma samples with a total of 31 validated fusion transcripts

Total prediction True positives
Recall
(sensitivity) Precision* F-score

ChimeRScope 236 28 0.903 0.119 0.210
SOAPfuse 183 19 0.613 0.104 0.178
JAFFA 478 27 0.871 0.056 0.106
FusionCatcher 245 21 0.677 0.086 0.152
EricScript 1464 11 0.355 0.008 0.015
MapSplice 567 24 0.774 0.042 0.080

* Precision for each method was calculated by dividing the number of true positives by the total prediction (considering that all the untested fusion
transcripts as false positives).
ChimeRScope successfully identifies the highest number (28 out of 31) of fusion transcripts, achieving the highest sensitivity, precision and F-score. SOAP-
fuse reports the second best precision while JAFFA reports the second best sensitivity.

Figure 6. Venn diagram of all fusion transcripts reported by
ChimeRScope, SOAPfuse, JAFFA and FusionCatcher on lymphoma cell
lines. In total, 30 unique fusion transcripts were reported. ChimeRScope
and SOAPfuse predicted the most number of common fusion transcripts
(five genes), with two of them exclusively reported by these two methods.
The results reported by FusionCatcher have the lowest overlaps with
other methods (only one gene).

and MAPK8&NMU due to low complexity regions. There-
fore, these five fusion transcripts predicted by SOAPfuse
were also excluded from our experimental validation (Sup-
plementary Table S8 in Supplementary File 10).

Of all the fusions predicted by different algorithms, we
designed primers for 25 unique fusion transcripts and con-
firmed 14 fusion transcripts (56%; 14 out of 25 tested fu-
sions) by RT-PCR and Sanger sequencing (Table 6; Supple-
mentary Tables S9 and 10 in Supplementary Files 10 and
11, respectively). Due to space limitations, we chose to show
validation results from only four fusion transcripts that are
predicted by ChimeRScope with relatively lower number of
fusion reads (five to seven FESRs, see Table 6). The Sanger
sequencing chromatograms for other validated fusions can
be found in Supplementary File 11. Figure 7 highlights the
PCR results, primer target regions, Sanger sequencing chro-
matograms, and the exact fusion junctions marked by red
lines (except for RPL14&SRP14 and LRRC37A3&NSF) for
these four fusion transcripts. In total, ChimeRScope pre-
dicted 10 fusion transcripts from the lymphoma cell lines
and we were able to experimentally validate all of these
predictions. Thus, there are no false positives predicted by
our method (FDR: 0%). However, our method missed four
true positives that were predicted by other methods, hence
the sensitivity of this method is at 71.4% (10 out of 14),
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Figure 7. PCR and Sanger sequencing results for four fusion transcripts with low number of FESRs from ChimeRScope predictions. For each fusion
transcript track, the left panel is the PCR panel and the right panel displays the predicted fusion sequence and the primer binding site, along with the
Sanger sequencing chromatogram. Specifically, each PCR image has four lanes for a 100-bp ladder marker, the fusion transcript amplicon with the band of
the matched product pointed by a red arrow, the positive control (actin beta, or ACTB) and negative control (water). The right panel shows the name of the
fusion partners, the predicted fusion junction sequence (100 bp upstream and downstream, separated by the wildcard ‘N’), the binding sites of the primer
pair used in the PCR panel, the chromatogram for the highlighted region (mostly the fusion junction, if applicable). The PCR experiments and the Sanger
sequencing results confirmed the existences of these four genes in the NK cell lines. We were unable to resolve the fusion junctions for RPL14&SRP14
and LRRC37A3&NSF due to the poor Sanger sequencing data quality. Therefore, the exact fusion junctions of these two fusions were not marked in the
chromatograms.

which is the highest among all methods tested. Compara-
tively, among the 20 tested fusion transcripts from SOAP-
fuse predictions, only nine fusion transcripts were experi-
mentally confirmed (sensitivity is 64.3% and FDR is 55%).
All the fusion transcripts reported by JAFFA (three fu-
sions) and FusionCatcher (one fusion) are also predicted by
ChimeRScope and SOAPfuse. Therefore, both JAFFA and
FusionCatcher achieve 100% precision rate, but with only
21.4 and 7.1% sensitivities, respectively. We also checked the
validated fusion transcripts against those predicted by Eric-
Script and MapSplice. EricScript and MapSplice have cor-

rectly predicted only six (sensitivity is 42.9%) and three (sen-
sitivity is 21.4%) of these validated fusion transcripts, re-
spectively. Overall, ChimeRScope reported the best F-score
(0.833) for this dataset, compared with 0.529 for SOAPfuse,
0.353 for JAFFA and 0.133 for FusionCatcher (Table 6).
We did not include EricScript and MapSplice in the exper-
imental validation; hence, the F-scores and other statistics
for these two methods are not available.

Literature searches for all experimentally validated fu-
sion transcripts have suggested that some of the chimeric
transcripts are potentially oncogenic. For instance, a
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Table 6. List of the fusion transcripts confirmed by both PCR and Sanger sequencing in NK cell lines

Cell line Fusion transcript Fusion read counts*

ChimeRScope JAFFA FusionCatcher SOAPfuse

KHYG1 PEX2&YWHAZ 34 22 (3) 49
KHYG1 ARIH2&PRKAR2A (3) (2) (2) 5
KHYG1 CTSC&RAB38 (2) (0) (5) 10
KHYG1 PRKCH&FLJ22447 (0) (0) (1) 6
NKYS LRRFIP1&RBM44 10 (0) (64) 192
NKYS RPL14&SRP14 7 (0) (0) (0)
NK92 C15orf57&CBX3 6 (6) (1) 10
NK92 DAB2&FRYL 48 33 30 59
NK92 LEP&SND1 92 51 (60) 121
NK92 LRRC37A3&NSF 5 (0) (0) (4)
NK92 MAST2&METTL21A 8 (0) (0) (0)
NK92 NCOR2&UBC 5 (3) (5) (4)
NK92 NPIPB5&SMG1 15 (0) (0) (0)
NK92 PTMA&NPM1 (9) (0) (0) 13

Tool Unique prediction Test size TP FP Sensitivity FDR F-score

ChimeRScope 10 10 10 0 0.714 0 0.833
SOAPfuse** 25 20 9 11 0.643 0.55 0.529
JAFFA 3 3 3 0 0.214 0 0.353
FusionCatcher 1 1 1 0 0.071 0 0.133
EricScript 378 6 0.429
MapSplice 127 3 0.214

*The number of identified fusion reads for each fusion transcript identified by each method is listed in the corresponding cells. Cells with parenthesis indicate that the fusion
transcripts were filtered out by the corresponding tools and thus not reported in their final results.
**Five fusion transcripts predicted by SOAPfuse were excluded from the validation list because either the complete fusion sequence were associated with well annotated read-
through mRNAs or the specific primer binding sites were not available due to repeated nucleotide sequences.
Fourteen fusion transcripts from the NK cell lines were validated by both PCR and Sanger sequencing. In total, ChimeRScope predicts all 10 positive fusion transcripts with no
false positive. Moreover, ChimeRScope reports fusion reads for 13 of the total 14 experimentally validated fusion transcripts, higher than SOAPfuse, JAFFA and FusionCatcher.
Overall, ChimeRScope reports the highest F-score (0.833) on the NK cell lines, compared with 0.529, 0.353 and 0.133 for SOAPfuse, JAFFA and FusionCatcher, respectively.
Fusion transcripts predicted by EricScript and MapSplice were not included in the experimental validation; thus, the FDRs and F-scores were not calculated for these two
methods.

fusion transcript that is predicted by ChimeRScope,
NCOR2&UBC, has also been reported previously in CLL
patients (50). NCOR2 is a nuclear receptor corepressor that
interacts with members of MAPK-signaling (51), Notch
and NF-kappa-B pathways (52). The altered expression
of this gene is associated with cell cycle progression and
apoptosis in multiple cancers (53,54). Figure 8 illustrates
the fusion model of NCOR2&UBC with the predicted
(55) functional domains in the resulting chimeric pro-
tein. This chimeric transcript combines the first exon of
NCOR2 and the second exon of UBC, creating a new tran-
script with the loss of the SANT (named after switching-
defective protein 3 or SWI3, adaptor 2 or ADA2, nu-
clear receptor co-repressor or N-CoR, transcription factor
IIIB or TFIIIB) domain that is responsible for chromatin-
remodeling and transcription regulation (56,57). Another
validated fusion transcript, LRRC37A3&NSF is predicted
only by ChimeRScope method. This fusion involves a
gene named N-ethylmaleimide sensitive factor (NSF). Stud-
ies have shown that NSF directly interacts with CD28
(58), a gene responsible for T-cell activation and sur-
vival. Although triggering of human NK cells by CD80
and CD86 (ligands of CD28) seems to be independent
of CD28 (59), the absence of CD28 expressions in NK
cell lines (59) could be the result of the LRRC37A3&NSF
fusion event. Other exclusive ChimeRScope’s predictions
like MAST2&METTL21A and NPIPB5&SMG1 are ki-
nase fusions (60) that are more likely to have onco-
genic functions in cancer because they involve kinases like
MAST2 (microtubule-associated serine/threonine kinase 2)
and SMG1 (nonsense-mediated mRNA decay associated
PI3K related kinase). At last, the only fusion transcript pre-

dicted by all four methods, DAB2&FRYL, includes a poten-
tial tumor suppressor gene named DAB2 (disabled homolog
2) which has been found to be associated with tumorigenesis
in different cancers (61–63). These fusion transcripts men-
tioned above warrants further investigation to confirm their
specific roles in tumorigenesis.

Computational cost

We compared the computational cost of ChimeRScope
against the other methods, in order to check the feasi-
bility of using ChimeRScope on large-scale data analysis.
Since each of these methods were developed in different
programming languages with different ways of analyzing
transcriptome data (Supplementary Table S11 in Supple-
mentary File 12), we chose to run the same four samples
from NK cell lines on each method by assigning similar
amount of resources and compared the run time of these
methods. We executed runs for one tool at a time on our
local data analysis server (with 160 cores and 512 GB mem-
ory) to prevent potential competition for computational re-
sources if the jobs were run simultaneously. We uniformly
assigned 20 threads for each tool with multithreading fea-
tures. The total run time for each method is listed in Table
7. On average, ChimeRScope pipeline only takes 1.67 h per
sample (if integrated with standard RNA-Seq data analy-
sis pipeline) outperforming the other five methods by far
with a large margin. EricScript reported the second fastest
time (5.21 h per sample). The Scanner and Sweeper modules
of ChimeRScope that identify the FESRs and fusion tran-
script candidates, respectively, took over 90% of the total
time due to the compute-intensive nature of these tasks. It
is worth mentioning that the search space for ChimeRScope
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Figure 8. The fusion model of NCOR2&UBC and the predicted functional domains. This fusion transcript is fused between the first exon of NCOR2
(3′ end) and the second exon of UBC (5′ end). The SANT domain from NCOR2 and the ubiquitin domains from UBC are plotted to the approximate
position of the corresponding exons. Because the exons with the SANT motif sequence are not included in NCOR2&UBC, the predicted domains of the
NCOR2&UBC fusion transcript only contain the ubiquitin domains from UBC.

is only around 10% of the total reads (unmapped and dis-
cordantly mapped reads), hence our method can be inte-
grated with the standard RNA-Seq data analysis pipeline
as an add-on module of post-alignment step using the un-
aligned read data as input. In contrast, the other five meth-
ods are alignment-based methods that independently pro-
cess the entire read data to predict fusion transcripts.

Software and web application development

To increase the ease of accessibility to the research com-
munity, we developed both the standalone software pack-
age and a web-based application of the ChimeRScope using
Galaxy server (22). The standalone package is distributed
in a single Java Archive (JAR) file and it can be easily inte-
grated with other third-party NGS data analysis software
packages. For demonstration purpose and better accessi-
bility, we also installed ChimeRScope on our local Galaxy
server. Additionally, we ensured that no differences exist be-
tween the web-based Galaxy server version and the com-
mand line version of ChimeRScope. The online Galaxy
server version of ChimeRScope will benefit the research
community, especially for researchers with limited program-
ming experiences. All the scripts and instructions to inte-
grate ChimeRScope into Galaxy server are incorporated in
the ChimeRScope wiki page.

DISCUSSION

ChimeRScope method development

ChimeRScope Builder. ChimeRScope predicts fusion
transcripts by searching the k-mers from discordant reads
against the fingerprint sequences of all known mRNA
sequences. These fingerprint sequences are identified by
the ChimeRScope Builder module. ChimeRScope Builder
takes all the mRNA sequences in fasta format as input,
and creates the GF-library with weighted k-mers by com-
paring the k-mer profiles of these mRNAs. For accurate
prediction of the fusion transcripts, we suggest using
only curated mRNA sequences because fusion candidates
involving mRNAs that are not yet validated can be false
positives. For example, the CSE1L-ENSG00000236127
was reported as a true fusion transcript in the breast cancer
cell lines (35), but was later deprecated due to the exclusion
of ENSG00000236127 in the latest Ensembl database.

Therefore, we recommend the use of well curated and
non-redundant databases such as the NCBI Reference
Sequence (RefSeq) annotation (64,65) for ChimeRScope
Builder.

ChimeRScope Scanner. The Scanner module classifies
FESRs from unmapped and discordantly mapped reads
and it does not allow any mismatches when comparing
the fingerprint sequences. Allowing at least one mismatch
when comparing k-mers may help improve the sensitivity
of the method, however it can increase the processing time
of each k-mer up to 3k times for each mismatch and may
also introduce more false positives. Nevertheless, hashing
algorithm like SimHash (66,67) might be useful to solve
this computational issue. SimHash is an efficient algorithm
that can be used to find similar fingerprints within a cer-
tain Hamming distance. We plan to explore the applicabil-
ity of using SimHash in the future releases of ChimeRScope
(ChimeRScope currently uses HashMap object as the GF-
library infrastructure).

ChimeRScope Scanner does not take quality scores into
consideration when analyzing the paired-end reads. We be-
lieve that low sequencing quality scores near the 3′ of the
reads (often observed in Illumina RNA-Seq datasets) have
little impact on the prediction results because only a few of
k-mers are affected. Removing reads with overall low qual-
ity scores (e.g. average score of all bases lower than 30) is
not a requirement for ChimeRScope because such reads
are more likely to occur near repetitive regions (GC-rich
or AT-rich regions) and polymer regions (68). As such, k-
mers generated from these repetitive regions are scored with
very low or even zero weightage by ChimeRScope; thus,
they are effectively removed by ChimeRScope from further
downstream analysis. Besides, low quality reads are often
excluded after the quality control step before alignment, as
it is a part of the standard NGS data analysis pipeline.

ChimeRScope sweeper. We have implemented several fil-
ters in ChimeRScope Sweeper to improve its prediction ac-
curacy when reporting fusion candidates. However, it can
still report false positive fusion transcripts, some of which
are ChimeRScope-specific. One class of false positives that
are often detected by the Sweeper module is the non-
coding RNAs that exhibit fusion-like patterns. For instance,
the fusion transcript reported in the original SOAPfuse
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Table 7. The run time for fusion transcript prediction on NK cell lines using ChimeRScope and other five major methods

Total reads
Discordant
reads ChimeRScope SF* JF* FC* ES* MS*

Scanner Sweeper Examiner Total

SRR1648334 39 555 460 4 920 296 0.60 0.78 0.07 1.45 57.03 7.67 4.02 9.87
SRR1648335 64 685 980 7 584 282 0.63 1.17 0.10 1.90 90.75 12.28 7.40 15.07
SRR1648336 48 472 502 6 043 845 1.02 0.57 0.13 1.72 72.74 8.37 4.40 9.92
SRR1648337 49 849 026 6 297 921 0.98 0.53 0.10 1.61 66.63 8.67 5.00 10.05
Time 3.23 3.05 0.40 6.68 101.75 287.15 36.99 20.82 44.91
Time per
sample

0.81 0.76 0.10 1.67 25.44 71.79 9.25 5.21 11.23

* SF: SOAPfuse; JF: JAFFA; FC: FusionCatcher; ES: EricScript; MS: MapSplice.
The total number of reads for these four samples ranged from 39.6 to 64.7 million. Roughly 12% of the total reads in each sample are defined as discordant reads after TopHat
alignment. ChimeRScope only takes >7 h to analyze all discordant reads. The time cost for each step is also listed in this table. Comparatively, the other five methods take
significantly longer time to finish, possibly due to the time spent on alignment of the total reads. The run times for SOAPfuse on each individual samples are not available
because SOAPfuse analyzes all four different samples in a single run.

publication (43), GATSL1-GTF2I, can be aligned to sev-
eral non-coding RNAs (NR 002206.3 and NR 003580.2).
ChimeRScope also found a similar fusion transcript named
GATSL2-GTF2I in the breast cancer samples (Supplemen-
tary File 6). This class of false positives in the preliminary
result is later filtered out using BLAST searches (against
nucleotide collections). Another group of ChimeRScope-
specific false positive fusions include genes with common
variations (e.g. SNPs and INDELs). When k-mers gener-
ated from reads with common variations are identified as
fingerprint sequences of other genes (denoted as GeneX)
rather than the original gene (denoted as GeneA), these se-
quence variations can lead to false fusion events with fusion
models of GeneA-GeneX-GeneA. This class of false positives
can be identified from ChimeRScope graphical outputs. All
the false positives mentioned above tend to be seen repeat-
edly in real RNA-Seq datasets. We plan to catalogue the
common false positive fusion transcripts and programmat-
ically remove them in the future releases.

ChimeRScope examiner. The Examiner module is a post-
analysis module that identifies fusion junctions by align-
ing FESRs against corresponding fusion partner gene se-
quences. However, for fusion transcripts with only a few
FESRs, there might not be enough coverage over the fu-
sion junctions. In such cases, ChimeRScope Examiner will
not be able to report the accurate fusion junctions and the
SVG figures may not be created.

Performance assessments using published datasets

ChimeRScope performs better compared with five other
previously reported alignment-based methods when rigor-
ously tested on two simulated datasets and other cancer
transcriptome datasets. Moreover, results also demonstrate
that ChimeRScope is more sensitive to detect fusion reads.
For instance, ChimeRScope reports the fusion reads for 25
out of 26 validated fusion transcripts from the breast cancer
cell lines (Supplementary Table S6 in Supplementary File
9), compared with 23 by SOAPfuse, 16 by FusionCatcher,
17 by JAFFA, 7 by EricScript and 18 by MapSplice, sug-
gesting a better sensitivity of ChimeRScope than these
alignment-based methods when searching for fusion reads.
Of those validated fusion transcripts, ChimeRScope is the
only method that reports the fusion reads (Supplementary
Table S6 in Supplementary File 9) of CPNE1-PI3, though

CPNE1-PI3 (validated in BT474 cell lines (35)) was fur-
ther filtered out by ChimeRScope due to the low number of
FESRs. A closer inspection of one FESR has shown that an
unknown sequence of 23 nt (Supplementary File 13) sits in
between the potential fusion junction of CPNE1-PI3 (sim-
ilar to CPNE1-unknownSeq-PI3). A BLAST search of this
sequence against nc/nr collection has shown a 100% match
with PI3 gene in Macaca mulatta and Pan troglodytes but
the sequence was absent in the human reference transcrip-
tome. In this case, alignment-based methods could not gen-
erate reliable alignment results for the related fusion reads
using the current transcriptome model and consequently,
none of these reads would have been predicted as fusion
reads (Supplementary File 13). Comparatively, the analy-
sis on the k-mer content of the same read by ChimeRScope
revealed that CPNE1, RBM12 (RBM12 is overlapped with
CPNE1 with shared fingerprint sequences) and PI3 are the
only possible source of the reads due to the significant fin-
gerprint sequence match. Hence, this read is classified by
ChimeRScope as a FESR that supports CPNE1&PI3.

Experimental validation on NK cell lines

To further demonstrate the utility of ChimeRScope in vivo,
we examined three NK cell lines for experimental valida-
tion. These cell lines, rather than tumor specimens were cho-
sen, due to their derivation from single clones and ease of
reproducible validation in cell lines. We have successfully
amplified all the 10 predicted fusion products with the ex-
act amplicon size. We also confirmed the exact fusion junc-
tions from the Sanger sequencing for eight out of 10 pre-
dictions, but unable to do so for two of the fusion tran-
scripts (RPL14&SRP14 and LRRC37A3&NSF) that have
faint PCR bands (Figure 7). However, these two fusions
were still considered as true fusion events based on the spe-
cific amplicon size and the alignment evidences between the
predicted fusion sequences and the Sanger sequencing re-
sults (Supplementary File 14). Specifically, the fusion junc-
tion of the RPL14&SRP14 fusion contains CAG repeats,
which could also affect the Sanger sequencing quality near
the 3′ end of the repeat region. We were unable to resolve
the fusion junction due to the CAG repeats, thus the ex-
act fusion junction is not marked for this fusion in Figure
7. For LRRC37A3&NSF, we were only able to design the
primer pair with the forward primer spanning the fusion
junction (Supplementary Table S9 in Supplementary File
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10). Therefore, the Sanger sequencing result generated from
the forward primer does not span the fusion junction. Due
to the poor Sanger sequencing quality observed in the first
15–40 bases, the chromatogram of LRRC37A3&NSF (Fig-
ure 7) only shows the comparison between the predicted
fusion sequence roughly 40 bp downstream of the forward
primer binding site and the Sanger sequencing result. We
were not able to obtain high quality Sanger sequencing re-
sult from the reverse primer, thus the Sanger sequencing re-
sult that covers the fusion junction was not available for this
fusion transcript. Nevertheless, the PCR result shows the
band with the exact amplicon size. Additionally, the for-
ward and the reverse primer (Supplementary Table S9 in
Supplementary File 10) are very specific to LRRC37A3 and
NSF, respectively. Since the Sanger sequencing result shows
significant match with the 3′ gene (NSF), we believe that this
fusion transcript is also a true fusion event.

Among the four validated fusion transcripts that were
not reported by ChimeRScope, ChimeRScope still identi-
fied FESRs for three of those fusions, but filtered them out
due to the stringent filters it uses to remove false positives.
For example, the preliminary result from ChimeRScope
Scanner shows that ChimeRScope identified nine FESRs
for PTMA&NPM1. However, some of these FESRs have
very low weightage score and was not considered as valid
FESRs (see ‘Materials and Methods’ section) due to in-
sufficient fingerprint sequences (possibly caused by evenly
distributed sequence variations). Allowing a couple of mis-
matches when comparing the k-mers could potentially im-
prove the sensitivity of our method to detect such fusion
transcripts.

Applications of ChimeRScope

The standalone version of ChimeRScope is easy to con-
figure and install with minimum dependencies (only re-
quires Java Standard Edition Runtime Environment 7),
making this accessible to researchers even with minimal
programming skills. Additionally, the reference files for
ChimeRScope to execute properly can be easily prepared
compared with tools such as SOAPfuse, FusionCatcher and
JAFFA, which require more than 15 files from various pub-
lic databases. The GF-library used by ChimeRScope con-
tains only a few files which are automatically generated
using ChimeRScope Builder for any well-annotated refer-
ence genome. ChimeRScope is distributed as a single JAR
file, which is a platform-independent application that can
be executed on any operating system (Linux, MacOS or
Windows) that supports java with sufficient computational
power. Moreover, being a platform-independent tool with
minimum dependencies, ChimeRScope can be easily inte-
grated with other third-party genomic research platforms
like Galaxy server. As a consequence, ChimeRScope can in-
herit the advantages (such as the accessibility, reproducibil-
ity and transparency of Galaxy server) of these platforms.

CONCLUSION

We present an alignment-free method named
ChimeRScope that inspects the k-mer contents of the
RNA-Seq paired-end reads for fusion transcript detection.

Our results demonstrate that ChimeRScope is suitable for
large-scale fusion transcript data analysis with consistently
better prediction performance compared with other popu-
lar tools, irrespective of read length, sequencing depth and
expression levels of the fusion transcripts. The application
of this method against large-scale RNA-Seq datasets such
as cancer transcriptomes from TCGA resource could lead
to the discovery of potentially novel and physiologically
relevant drug targets for cancer treatment, or biomarkers
for effective diagnosis and prognosis in precision medicine.
ChimeRScope is a user-friendly software that can either be
set up as a standalone software or installed on genomic re-
search platforms such as Galaxy server. The ChimeRScope
software application, detailed manuals, instructions with
wrapper scripts for Galaxy server usage, and the pre-built
GF-libraries are made available for research community
use on our ChimeRScope wikipage at GitHub. An online
application of ChimeRScope can also be accessed from a
local Galaxy server at https://galaxy.unmc.edu.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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