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Abstract: The endothelium plays an important role in the transcytosis of lipoproteins. According to
one of the theories, endothelial injury is a triggering factor for the development of atherosclerosis,
and intracellular structures, including components of the endotheliocyte cytoskeleton (microtubules,
actin, and intermediate filaments), are involved in its development. In contrast to the proteins
of tubulin-based microtubules and actin microfilaments, intermediate filaments are comprised of
various tissue-specific protein members. Vimentin, the main protein of endothelial intermediate
filaments, is one of the most well-studied of these and belongs to type-III intermediate filaments,
commonly found in cells of mesenchymal origin. Vimentin filaments are linked mechanically or by
signaling molecules to microfilaments and microtubules by which coordinated cell polarisation and
migration are carried out, as well as control over several endotheliocyte functions. Moreover, the
soluble vimentin acts as an indicator of the state of the cardiovascular system, and the involvement
of vimentin in the development and course of atherosclerosis has been demonstrated. Here we
discuss current concepts of the participation of vimentin filaments in the vital activity and functioning
of endothelial cells, as well as the role of vimentin in the development of inflammatory processes
and atherosclerosis.

Keywords: intermediate filaments; vimentin filaments; soluble vimentin; microtubules; actin; plectin;
cell contacts; extracellular matrix; inflammation; atherosclerosis

1. Introduction

The development of atherosclerosis and its associated intracellular pathologies have
been the focus of attention of numerous researchers over the past hundred years. During
this time, the mechanisms of atherogenesis, the processes of endothelial transport, direct
and receptor-mediated transcytosis of lipoproteins through the endothelial barrier have
been described in detail. The history of atherogenesis research has elicited significant dis-
coveries about the development of the pathological processes involving the vasculature and
of the endotheliocyte lining layer. Several theories of pathogenesis have been formulated,
one of which proposes that endothelial injury serves as a trigger for the development of
atherosclerosis, leading to disruption of lipoprotein transcytosis. After this endothelial
impairment, an inflammatory reaction begins resulting in cholesterol accumulation within
the disturbed region.

Since the endothelium intracellular structures are directly involved with atherosclero-
sis, our interest is with components of the tensegrity cytoskeleton (microtubule, actin, and
intermediate filaments), which are actively involved with development and progression.
Recent research has demonstrated evidence for the functional involvement of vimentin in-
termediate filaments in the physiological functions of endotheliocyte and the development
of inflammatory processes and atherosclerosis.

Biomedicines 2022, 10, 828. https://doi.org/10.3390/biomedicines10040828 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10040828
https://doi.org/10.3390/biomedicines10040828
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-9778-2656
https://doi.org/10.3390/biomedicines10040828
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10040828?type=check_update&version=1


Biomedicines 2022, 10, 828 2 of 13

2. Features of Intermediate Filaments—The Third Component of the Cytoskeleton

Historically, during the last 50 years, when the emergence of new molecular-cell ap-
proaches and microscopic techniques, marked by the explosive growth of studies on the
dynamics and functionality of microtubules and actin filaments, intermediate filaments
remained the least studied component of the cell cytoskeleton. The classical concept of
the third component of the cytoskeleton [1,2] is as follows: (1) intermediate filaments are
located in the form of three-dimensional networks in different parts of the cell cytoplasm,
surround the nucleus, participate in the formation of intercellular contacts, and maintain
the shape of processes; (2) the main function of intermediate filaments, based on their
mechanical properties and self-assembly ability, is to maintain cellular and tissue integrity;
(3) intermediate filaments consisting of different proteins are expressed in different types of
cells. The latter property distinguishes intermediate filaments from microtubules (polymer-
ized from tubulin) and microfilaments (composed of actin). Indeed, intermediate filaments
have a different protein composition, both in different tissues and at different stages of
embryonic development and at different stages of differentiation. Moreover, some types
of cells simultaneously contain several different intermediate filaments. In total, about
70 genes have been found in the human genome, encoding various proteins of intermediate
filaments, which form one of the most numerous protein families. However, since the begin-
ning of the nineties of the last century, interest in the study of intermediate filaments began
to actively grow since it turned out that mutations in these proteins are associated with
severe skin (keratins), nervous (neurofilaments) human pathologies, including muscular
dystrophies (desmin) and cardiomyopathies (desmin and vimentin) [3–6].

3. Classification of Intermediate Filaments and Its Types Found in Endothelial Cells

The homology of protein sequences of intermediate filaments is sometimes no more
than 20%; nevertheless, based on biochemical, immunological, and structural similarities,
six different types of intermediate filaments are distinguished. According to the modern
classification [7], intermediate filaments are divided into keratins type-I (acidic keratins) and
keratins type-II (basic keratins) proteins. For the assembly of keratin intermediate filaments,
proteins of both types are required, which form heteropolymers. Type-III intermediate
filament proteins are comprised of desmin, vimentin, peripherin, and glial acidic proteins.
These proteins can form both homopolymers and also heteropolymers with other type-
III protein members as well as with the neurofilament light (NF-L) protein. Type-IV
intermediate filament proteins are expressed predominantly in nerve cells. This type
represents α-internexin and a triplet of neurofilament proteins: NF-L, NF-M, and NF-H
(neurofilament light, medium, and heavy proteins, respectively). The protein nestin, first
discovered in the precursors of nerve cells, is sometimes referred to as a special type of
intermediate filament protein. However, based on its structural features, nestin can be
classified as type IV. Type-V intermediate filament proteins include nuclear lamins, and
type-VI proteins include two proteins found in the lens of the eye (filensin (CP115) and
phakinin (CP49)). Keratin intermediate filaments (53–55 kDa) are characteristic of epithelial
cells. Desmin intermediate filaments of muscle tissue (with the exception of vascular
myocytes) are composed of desmin protein (53–55 kDa). Vimentin filaments, characteristic
of various cells of mesenchymal origin (fibroblasts, macrophages, osteoblasts, endothelium,
and vascular smooth myocytes), consist of the protein vimentin (54–58 kDa). Peripherin
(57 kDa) is present in peripheral neurons, participating in the assembly of intermediate
filaments in place with neurofilament proteins. Neurofilaments are intermediate filaments
of neurons that play an important role in maintaining the shape of the processes of nerve
cells. They consist of at least three high molecular weight polypeptides (68, 140, and
210 kDa). Glial filaments contain glial fibrillar acidic protein (56–58 kDa) and are found
only in glial cells (astrocytes, oligodendrocytes).

Proteins, which are also referred to as proteins of intermediate filaments, are present
not only in the cytoplasm (as listed above) but also in the cell nucleus. The dense envelope
located under the nuclear membrane, imparting rigidity to the nucleus (lamina), consists of



Biomedicines 2022, 10, 828 3 of 13

lamina proteins. Lamins are intermediate filaments of nuclei of various types of cells that
form an intranuclear skeleton (karyoskeleton). Unlike other intermediate filament proteins,
laminae do not form filaments but rather a reticular structure. Even with the destruction of
cell membranes (for example, treatment with detergents), the nucleus retains its integrity
due to the lamina.

There are several types of intermediate filaments present in endothelial cells. The main
protein of intermediate filaments in the endothelium is vimentin [8,9]. The structure of
vimentin is conserved in mammals and shows dynamic expression profiles in various cell
types and different developmental stages. Additionally, nestin was found in endothelio-
cytes [10–12] as well as neurofilaments [13]. Nestin has been found in cardiac endothelial
cells and is generally considered a marker of revascularization [10–12]. In addition, nestin
expression is specific not only for proliferating endothelial cells (bovine aortic endothelial
cells (BAEC) in vitro), but in the vascular endothelium of brain tumors in the stage of rapid
growth [14]. Furthermore, the rate of nestin expression is one of the important criteria
for prognosis in breast cancer [15]. After studying nestin-positive microvascular density
in breast cancer patients, Nowak and her colleagues [15] concluded that a high level of
nestin expression is characteristic of newly formed tumor vessels. In addition, a high
level of nestin expression may be related to an aggressive course of the disease and a
poorer prognosis. In contrast, it is necessary to mention another nestin-related research
work [16], which included body-wide transcriptome and protein-profiling analysis. Dusart
and colleagues demonstrated, that nestin is constitutively expressed in human endothelial
cells; its expression does not depend on cell proliferative status and is not specific to tumor
endothelium. Nestin co-localizes with vimentin in different types of endothelia in vitro
(umbilical vein (HUVEC), dermal microvessels (HDMEC), the coronary artery (HCAEC),
and the pulmonary artery (HPAEC) under static conditions and laminar shear stress [16].
Especially interesting is that nestin expression is lower in regions of atherosclerotic plaques
than in normal vessels [16].

As noted earlier, neurofilaments are the type-IV family of intermediate filaments
and are usually associated with neural tissues. Nestin (member of type-VI intermediate
filament), is a well-known marker of endothelial cells in newly formed blood vessels
and is developmentally and structurally related to type-IV intermediate filaments. Based
on this similarity, Rusu and colleagues [13] noted the neurofilament positive labeling of
endothelial cells may be due to interactions of nestin and neurofilaments within cadaver
samples (sinoatrial nodes/right atrial walls) of both normal and diabetic donors [11].
Positive labeling of endothelial cells leads to the question if neurofilaments may qualify as
markers of angiogenesis [13].

4. Molecular Structure of Vimentin Filaments as the Basis of Their Remarkable
Mechanical Properties

The most conservative representation of type-III filaments is with vimentin. The
outstanding mechanical properties of vimentin filaments are explained by the subunit
packing geometry making up the filament. The vimentin monomer is subdivided into three
domains: N-terminal (“head”), C-terminal (“tail”), and a highly conserved central domain,
which includes four coiled domains and three linker non-coiled regions [17]. The central
domain contains tandem repeats of amino acids (heptade repeats), which are capable of
forming a supercoiled dimer. The vimentin dimer, the basic structural element of the
vimentin filament, consists of 466 amino acid residues [18]. The two dimers bind anti-
parallel and stepwise, forming a tetramer, the fundamental unit of intermediate filaments
(ULF) [16].

As a result, intermediate filaments have unique stability against applied forces and
mechanical rupture. This property depends on the formation of many simultaneous bonds
along the filament diameter, many of which are electrostatic or hydrogen bonds. In actin
(microfilaments) or tubulin polymers (microtubules), the binding sites between subunits
are largely hydrophobic. In contrast, the bonds between vimentin dimers in the tetramer
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(and amongst tetramer filaments) involve the overlap of local regions of opposing charge.
These interactions occur not only in regions within the filament core, but the alpha helices,
and around the N-terminus of the proteins [19,20].

5. Vimentin Filaments: The Role of Post-Translational Modifications in the Regulation
of Depolymerization and Stabilization of Vimentin Filaments

After synthesis, intermediate filaments can undergo various chemical modifications [21].
Regulation of the vimentin network is highly complex and is driven by post-translational
modifications, such as phosphorylation and cleavage by intracellular proteases. The re-
organization of the network of vimentin filaments occurs through phosphorylation, a
post-translational modification, due to which the assembly and disassembly of filaments
occur during the cell cycle [22]. The first evidence of the dependence of vimentin organiza-
tion on phosphorylation was obtained in in vitro experiments on complete disassembly of
vimentin filaments using purified protein kinase C or cAMP-dependent protein kinase [23].
Analysis of vimentin mutants with deletions at the N-terminus (“head”) revealed that it
is the N-terminal domain that is critical for the assembly of vimentin filaments, as well
as for the formation of the network [24]. Of the many found vimentin phosphorylation
sites (serine residues), those responsible for filament disassembly are located precisely
on the vimentin head domain and are phosphorylated by a number of protein kinases.
Phosphorylation of the N-terminal domain increases the distance between the two head
domains of the dimer, which makes it impossible to form a complete filament from vi-
mentin tetramers [7]. Vimentin also undergoes other post-translational modifications,
such as sumoylation, citrullination, and glycosylation by O-linked N-acetylglucosamine
(O-GlcNAcylation) [7]. In the process of apoptosis, arginine deamination (citrullination)
of vimentin occurs [25], and citrullination sites are located in the “head” domain [22].
This modification occurs in the presence of calcium ions and causes depolymerization of
vimentin filaments. O-N-acetylglucosamine glycosylation (O-GlcNAcylation) of vimentin
in neurons can prevent excessive phosphorylation of filaments and their depolymeriza-
tion [26]. Vimentin sumoylation is triggered by STAT inhibition in glioblastoma cells [27].
All this indicates the importance of post-translational modifications in the regulation of
depolymerization and stabilization of vimentin filaments.

6. Features of Intracellular Functions in the Endothelium and Dynamics of
Vimentin Filaments

While the functions of microtubules and actin filaments were studied by changing
their dynamics or in disruption/recovery experiments, any drugs/small molecules for the
selective targeting of vimentin (or any other intermediate filaments) were not available until
now. Hereby, the mechanistic understanding of this cytoskeletal component is strongly
limited. From the other side, the first global vimentin knockout mouse generated more
then 25 years ago was described as having no phenotype [28], which contradicted the fact
of extreme evolutionary conservation of vimentin in vertebrates [29], leading to the false
conclusion of its little physiological significance. However, defects in the Vim −/−mice
on the cellular-level cause impairments in normal physiological processes, including organ
development [30], angiogenesis [31], vascular stiffness [32], and many others. Summarizing
the results of global Vim −/− mice studies, the real function of vimentin lays at the
organismal level of cells and is important under both physiological and pathophysiological
stress conditions.

However, since it was shown that vimentin filaments are the main intermediate fila-
ments in endothelial cells [8], these components of the cytoskeleton have been extensively
studied in endothelial cells of various vessels. It turned out that the amount of vimentin in
endotheliocytes of different parts of the circulatory system varies greatly depending on the
hemodynamic load upon the cell; in the endotheliocytes of the left ventricle of the heart
and aorta there is more vimentin compared to the superior vena cava, atrium, and right
ventricle [33]. At the same time, it turned out that vimentin in the endothelium in vitro is
always significantly higher than in endotheliocytes isolated from any organ [31]. The data
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obtained indicate that one of the main functions of vimentin filaments in the endothelial cell
is mechanical. Vimentin preserves cell morphology and resists stretching and compression
of the vessel under the influence of blood flow; thus, it is an important factor in maintaining
tissue integrity [7,33–35].

For a long time, intermediate filaments were considered stable structures due to their
insoluble nature [34,36]. Then, using GFP-vimentin, information was obtained that vi-
mentin filaments are capable of rearrangements and can elongate and shorten even with
a relatively stable cell shape [37]. As a result, the vimentin filament network, originally
described as a stable “skeletal” element of cells, was revealed by live-cell-imaging studies
to be a very dynamic system—FRAP (fluorescence recovery after photobleaching) studies
demonstrated active recovery of vimentin fluorescence in fibroblast cytoplasm after pho-
tobleaching [37]. It turned out that vimentin had a recovery half-time of 5 ± 3 min [37],
exhibiting dynamic properties similar to those of microtubules [38] and actin filaments [39].

Vimentin filaments are highly dynamic in endothelial cells. In experiments on bovine
endothelium, Helmke and colleagues [40] found that when exposed to a fluid flow, vi-
mentin filaments undergo rapid changes—a change in the position of some parts of the
vimentin network was observed. However, at the same time, a sharp restructuring of the
vimentin network in the endotheliocyte does not occur [40]. Subsequently, it was demon-
strated in vitro on the endothelial monolayer that a more pronounced rearrangement of the
network of vimentin filaments occurs above the nucleus as well as behind it (in relation to
the fluid flow acting on the cell) [41]. It was also found that similar changes in the network
of vimentin filaments occurred in the marginal regions of neighboring (contacting) cells [41].
As a result, to date, a high dynamism of vimentin filaments and their association with
the molecular motors of dynein and kinesin have been demonstrated [42,43]. Assembly,
stabilization, and disassembly of vimentin filaments immediately occur under the influence
of various exogenous stimuli [7]. Sharp changes in the structure of vimentin filaments
occur when the endothelium is exposed to hypoxia; after an hour of hypoxia, an elongation
of the vimentin network was observed, and the proportion of insoluble vimentin also
increased [9]. Moreover, hypoxia induces changes in the phosphorylation of vimentin
and affects the activity of PAK1 kinase, which is responsible for the assembly of vimentin
filaments. It turned out that the dynamics of vimentin filaments is directly involved in the
implementation of the main barrier function of the endothelium—inhibition of vimentin
polymerization increases the permeability of the endothelial monolayer [9].

7. Linker Proteins—The Connection of Vimentin Filaments with Other
Cellular Structures

Proteins of particular interest which can bind to vimentin are plectin and nesprin-3. In
the animal cell, the network of vimentin filaments is actively reorganized using plectin [44].
It has also been shown that vimentin is able to directly bind to nesprin-3 [45]. Nesprin-
3 is actively expressed in HAEC cells and is localized in the nuclear envelope [45]. It
is believed that nesprin-3 is the link between the nuclear membrane and the plasma
membrane. Nesprin-3 regulates the shape of the cell; knockdown of the nesprin-3 gene
causes a noticeable elongation of the cell. Nesprin-3 not only affects the perinuclear
organization of the cytoskeleton, it is required to attract the centrosome to the region of
the nuclear envelope. It is possible that nesprin-3 is a scaffold for plectin, providing its
perinuclear organization; it is also necessary for the connection of the centrosome with
the nucleus. Nesprin-3 is also required for centrosome polarization caused by fluid flow
and flow-induced migration of endothelial cells. The cell center is located in a network
of vimentin intermediate filaments, held together by plectin stitches. In the absence of
nesprin-3, the perinuclear network disappears, and the centrosome in this state can be
associated with elements of the cytoskeleton far from the nucleus. Thus, nesprin-3 regulates
the perinuclear architecture of the endothelial cytoskeleton, cell shape, and is also involved
in the mechanism of flow-induced mechanotransduction.
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Fragmentary information, suggesting a possible connection between intermediate
filaments and the centrosome, appeared at the end of the last century. It was shown that
after treatment with nocodazole, the rearrangement of vimentin intermediate filaments
in the pericentrosomal region occurred, but, at the same time, their direct interaction
was not found [46]. Later, using electron microscopy, foci of convergence of intermediate
filaments, representing dense granules with a diameter of about 0.25 µm, were found
in fibroblasts near the centrosome [47]. These data suggested that the centrosome can
serve as a center for the organization of intermediate filaments and be responsible for their
distribution over the cytoplasm [47]. Then, a hypothesis was put forward, according to
which the sites of attachment of vimentin filaments may be located in the pericentriolar
material [48]. These sites were located in the centrosome independently of microtubules;
disturbances in the organization of microtubules did not affect the location of the foci of
convergence of vimentin filaments [48]. Later it became known that the plectin protein
might be involved in the interaction of vimentin filaments and the positioning of the
centrosome in endothelial cells [45]. Plectin is able to interact with the BRCA1 protein
and form a complex that controls the position of the centrosome [49]. According to the
model [45], there is a network of vimentin filaments around the centrosome connected to
each other by plectin, the perinuclear localization of which is mediated by the nesprin-3
ligament protein. This network is dynamic—under the action of fluid flow, the centrosome
can be detached from the nucleus and its displacement [45].

However, the question of whether the centrosome is capable of organizing intermedi-
ate filaments similarly to microtubules remains open. Relatively recently, it was shown that
not only microtubules and actin filaments interact with each other, but also vimentin fila-
ments are able to bind to both microtubules and actin filaments [49]. Communication can be
carried out at the regulatory level—transport of precursors of vimentin filaments is under
the control of actin filaments and regulatory kinases p21 and Rho [50] and occurs along
microtubules, while the process does not depend on the dynamics of microtubules [51].
It turned out that the aforementioned linker protein, plectin, plays an important role in
creating an ordered vimentin network in the cell [52]. The link between vimentin and
actin filaments, mediated by plectin, is extremely important for cellular morphogene-
sis [53]. Apparently, plectin also contributes to maintaining the integrity of the endothelial
monolayer—it is able to regulate the interaction of the vimentin network and actin fila-
ments [54]. During the cultivation of plectin-deficient cells, large breaks in the endothelial
monolayer were observed, which could probably be associated with a disruption in the
connection of actin filaments with VE-cadherin contacts [54]. It was shown that plectin
deficiency leads to the (1) vimentin breaking; (2) severe distortions of adherens junctions
and tight junctions; (3) upregulation of actin stress fibers. As a result, cellular contractility of
endothelial cells cytoskeleton increased, and plectin-deficient endothelial cell monolayers
were leakier and demonstrated reduction of mechanical resilience in fluid-shear stress and
mechanical stretch conditions. Summarizing their results, the authors put forward an idea
that adherens junctions defects and actin stress fibers upregulation in plectin-deficient
cells are rooted in vimentin cytoskeleton perturbations, precisely because disruption of
vimentin filaments by itself could mimic very similar phenotypes in wild-type cells. Similar
effects were observed in vivo in the experiments with endothelium-restricted conditional
plectin-knockout mice [54]. Numerous studies support that vimentin can regulate focal
adhesions, and mature focal adhesions serve as docking sites for vimentin filaments [55].

Vimentin directly binds the tail of b3- [56] and a2b1-integrins [57], and GFAP and
vimentin interact with adhesion molecules, such as vinculin and talin [58].

Focal adhesions link integrins to vimentin intermediate filaments and actin micro-
filaments; these interactions are carried out through plectin, a protein that cross-links
microtubules, microfilaments, and intermediate filaments [59].

Although intermediate filaments have unique mechanical properties, they need to be
coupled with microtubules to maintain cell shape. During the experimental destruction of
microtubules, bundles of vimentin filaments are concentrated around the nucleus—their
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“collapse” occurs. Numerous studies of recent years have shown that vimentin filaments
pattern microtubules during directed migration [60] and template microtubule networks to
enhance persistence during cell polarization and directed migration [61]. It is supposed
now that vimentin promotes cell migration by modulating the dynamics of microtubules
and the actomyosin network [60].

Thus, all three components of the cytoskeleton work in the endothelial cell intercon-
nected [62], both at the structural (Figure 1) and functional levels, ensuring the normal vital
activity of the endothelium and the performance of the barrier function [63–66]. Possibly, in
the endothelial cells, vimentin can interact differently with β- and γ-isoforms of nonmuscle
actin [67].
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8. The Role of Vimentin in Angiogenesis, the Development of Inflammatory Processes
and Vascular Pathologies

For the first time, the involvement of vimentin in angiogenesis was shown by Eckes
et al., who reported that vimentin silencing in mice led to a lag in granulation tissue
formation, suggesting a link between vimentin and angiogenesis [68]. Later in a few in-
vestigations, the role of vimentin in angiogenesis was experimentally confirmed. Recent
research results suggest that vimentin is an integral regulator of endothelial sprouting;
vimentin complexed with focal adhesion kinase, regulate (1) focal adhesion kinase expres-
sion, (2) focal adhesion organization, and (3) adhesion in endothelial cells, which are key
events involved in angiogenic sprouting [7,69,70].

Vimentin is one of the most important links in the regulation of Notch ligands during
angiogenesis [31]. Vimentin interacts with the jagged ligand, which is necessary for Notch-
activating trans-endocytosis, receptor binding, and then Notch activation [31]. Moreover,
vimentin can regulate jagged recycling and levels of that ligand on the cell membrane [31].
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Vimentin deletion destabilizes sprouting angiogenesis and disrupts embryonic angiogene-
sis [31].

A recent study has demonstrated the importance of protein linker Rudhira in the cy-
toskeleton crosstalk for cell motility and accurate performing of angiogenesis [71]. Rudhira
protein directly interacts and couples vimentin filaments and microtubules in endothelial
cells. BCAS3 domain of Rudhira is necessary for vimentin-microtubules association and
cell migration [71].

Initially, vimentin is known as an intracellular protein. In the early 2000s, it was
discovered [72] that the widely used vimentin marker PAL-E detects a secretory form of
vimentin (PAL-E-reactive vimentin) without binding to intermediate filament vimentin.
It turned out that PAL-E-reactive vimentin is found in the circulating blood as it is se-
creted extracellularly by endothelial cells of blood vessels and activated macrophages [72].
The authors of the study demonstrated that the secretory vimentin is not a translation
product of endothelium-specific mRNA, and, most likely, undergoes post-translational
modifications [72]. Today it is known that increased serum levels of secretory vimentin are
associated with the presence and severity of coronary artery disease; further, vimentin level
is an independent determinant of this disease [73]. In vitro secretory vimentin can play a
role of inflammatory trigger and promote macrophage-endothelial cell adhesion [73]. More-
over, secretory vimentin protein provokes atherogenesis in ApoE−/− mice in vivo [73].
The biological role of extracellular vimentin is currently unknown [71], especially detailed
aspects of its excretion and function [74].

An increased level of vimentin was observed in the sites of atherosclerotic lesions,
which, according to some data, directly leads to the endothelial-to-mesenchymal transition
in these areas [75]. Vimentin-null mice show a reduction of ability to remodeling arteries
and enlarged stiffness, contractility, and endothelial dysfunction [32]. Vimentin deficiency
in mice cause an increased expression of subendothelial basement membrane compo-
nents [32] and probably stimulate phenotypic alterations and endothelial-to-mesenchymal
transition [76]. In general, the role of vimentin in the endothelial-to-mesenchymal transition
is being studied, especially active in recent years precisely in connection with diseases of
the cardiovascular system [76]. A number of very interesting works have been devoted
to vimentin involvement in vascular diseases, including pulmonary arterial hyperten-
sion. It was especially shown that vimentin phosphorylation is one of the main stages of
endothelial-to-mesenchymal transition in pulmonary hypertension [77–79].

On the other hand, it is known that microRNA miR-144 may be a regulator of
atherosclerosis development via changes in vimentin signaling [80]. miR144 targets vi-
mentin in vitro and in vivo [80]. miR-144 mice display increased secretory vimentin and
are more sensitive to atherosclerotic processes, and accumulated vimentin in the knockout
mice aorta strengthen atherosclerotic plaque formation [80].

Vimentin, which expressed on the surface of endothelial cells, plays a crucial role in
lymphocyte adhesion and transmigration through the endothelium [81]. The integrity of the
endothelial monolayer was compromised in vimentin-null mice, and vimentin deficiency
resulted in the incorrect positioning of homing molecules [81].

It should be noted that the exact role of vimentin in inflammation is not entirely clear,
but the role of actin is revealed in much more detail [82]. However, vimentin can bind to
N-acetylglucosamine [83], a moiety on PSGL-1 (P-selectin glycoprotein ligand-1) on leuko-
cytes [84]. Moreover, vimentin, which is expressed on the cell surface of endothelium [85],
can bind to soluble CD44, the soluble form of E-selectin ligand found on neutrophils [86].
Lam, with colleagues [87], have managed to prevent the initial stage of acute inflammatory
response using recombinant human vimentin (rhVim). Leukocyte adhesion to endothelial
and platelet monolayers decreased after treatment of rhVim, which bind specifically to
P-selectin, not to PSGL-1 [87].

Da and colleagues [88] demonstrated that vimentin on the platelet surface binds to the
A2 domain within the activated form of von Willebrand Factor. Lately, it was shown that
extracellular vimentin essentially contributes to von Willebrand Factor string formation via
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A2 domain binding [89]. Pharmacologically targeting the vimentin/VWF von Willebrand
Factor interaction through the A2 domain can promote improved reperfusion after ischemic
stroke [89].

Thus, vimentin, both in the form of filaments and in a soluble form, is one of the most
important links in the molecular processes observed during the course of vascular diseases,
atherosclerosis, etc. (Table 1).

Table 1. Vimentin in the development of angiogenetic, inflammatory, and vascular pathologies.

Pathological Processes Role of Vimentin References

Disturbances of angiogenesis and
cell motility

Increased vimentin level in the sites of atherosclerotic
lesions leads to the endothelial-to-mesenchymal transition
Vimentin deletion destabilizes sprouting angiogenesis and

disrupts embryonic angiogenesis

Evrard et al., 2016 [75]

Antfolk et al., 2017 [31]

Importance of protein linker Rudhira for
vimentin-microtubules association and angiogenesis Joshi and Inamdar, 2019 [71]

Secretory vimentin provoke atherogenesis in
Apolipoprotein E (ApoE−/−) deficient mice in vivo Gong et al., 2019 [73]

Inflammation
Prevention of the initial stage of acute inflammatory

response using recombinant human vimentin Lam et al., 2018 [87]

Secretory vimentin as an inflammatory trigger (promotion
of macrophage-endothelial cell adhesion) Gong et al., 2019 [73]

Vascular diseases

Reduction of ability to remodeling arteries and enlarged
stiffness, contractility and endothelial dysfunction in

vimentin-null mice
Langlois et al., 2017 [32]

Targeting the vimentin/VWF von Willebrand Factor
interaction promote improved reperfusion after ischemic

stroke
Fasipe et al., 2018 [89]

Increased serum levels of secretory vimentin are associated
with the presence and severity of coronary artery disease Gong et al., 2019 [73]

Vimentin accumulation in the knockout (miR-144) mice
aorta strengthen atherosclerotic plaque formation He et al., 2020 [80]

9. Conclusions and Perspectives

Summarizing the data listed above, it should be concluded that over the past five years,
our knowledge about the involvement of vimentin into the vital activity and functioning of
endothelial cells, as well as in the development of angiogenetic, inflammatory, and vascular
pathologies has expanded significantly.

The main function of cell cytoskeleton intermediate filaments has long been considered
to be the maintenance of cellular and tissue integrity due to their mechanical properties. In
addition, intermediate filaments play an important role in the distribution of proteins and
organelles throughout the cell. There has been significant recent progress in understanding
the cellular function of intermediate filaments, including their role within the endothelial
cell. It has turned out that intermediate filaments are not static structures in their mechanical
support (as previously thought), but they interact functionally with other components of the
cytoskeleton and other cellular processes. In many experimental works, the involvement of
vimentin in plenty of cellular processes has been demonstrated. Vimentin is also involved
in the processes of intercellular exchange due to its connection with the extracellular matrix.
It has recently been found that extracellular vimentin plays a role of attachment factor
for SARS-CoV-2 on human endothelial cells; vimentin binds to the SARS-CoV-2 spike
protein [90]. shRNA-mediated knockdown of vimentin reduced SARS-CoV-2 infection of
human endothelial cells [90].

This review summarizes the experimental data related to the intracellular connections
and functions for vimentin in the endothelial cells as well as vimentin involvement in angio-
genesis. Vimentin equilibrates Notch-signaling activities and indirectly controls signaling
strength [31]. These facts may stimulate the research of Notch pathway components and
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vimentin in other cell systems in which these molecules may co-express. Another obvious
mainstream of research is finding out the role of vimentin in inflammation. The further
search for linker proteins and common signaling pathways that synchronize the interaction
of vimentin filaments with microtubules and actin microfilaments also looks promising.
Perspectives of future studies are connecting to determine how vimentin might control and
coordinate the mechanical, spatial, and biochemical properties of endothelial cells critical
for specific endothelial functions, including the maintenance of the endothelial barrier, nor-
mal and pathological angiogenesis, de novo vascularization, endothelial-to-mesenchymal
transition, and their involvement in the development of inflammation, ischemic stroke, and
coronary disease.
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