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Abbreviations used

AU: Arbitrary unit

BMI: Body mass index

COVID-19: Coronavirus disease 2019

NELF: Nasal epithelial lining fluid

NTD: N-terminal domain

RBD: Receptor-binding domain

S1: Spike 1

S2: Spike 2

SARS-CoV-1: Severe acute respiratory syndrome coronavirus 1

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
Background: Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) mRNA vaccine-induced systemic antibody
profiles are well characterized; however, little is known about
whether intranasal mucosal antibodies are induced or can
neutralize virus in response to mRNA vaccination.
Objective: We sought to evaluate intranasal mucosal antibody
production with SARS-CoV-2 mRNA vaccination.
Methods: SARS-CoV-2–specific IgG and IgA concentrations
and neutralization activity from sera and nasal mucosa via nasal
epithelial lining fluid (NELF) collection were measured in
SARS-CoV-2 mRNA–vaccinated healthy volunteers (N 5 29) by
using multiplex immunoassays. Data were compared before and
after vaccination, between mRNA vaccine brands, and by sex.
Results: SARS-CoV-2 mRNA vaccination induced an intranasal
immune response characterized by neutralizing mucosal
antibodies. IgG antibodies displayed greater Spike 1 (S1)
binding specificity than did IgA in serum and nasal mucosa.
Nasal antibodies displayed greater neutralization activity
against the receptor-binding domain than serum. Spikevax
(Moderna)-vaccinated individuals displayed greater SARS-
CoV-2–specific IgG and IgA antibody concentrations than did
Comirnaty (BioNTech/Pfizer)-vaccinated individuals in their
serum and nasal epithelial lining fluid. Sex-dependent
differences in antibody response were not observed.
Conclusion: SARS-CoV-2 mRNA vaccination induces a robust
systemic and intranasal antibody production with neutralizing
capacity. Spikevax vaccinations elicit a greater antibody
response than does Comirnaty vaccination systemically and
intranasally. (J Allergy Clin Immunol Global 2023;2:nnn-nnn.)

Key words: SARS-CoV-2, mRNA vaccine, antigens, antibodies,
systemic immune response, mucosal immune response, serum,
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The nasal cavity acts as a primary site of infection and the first
line of defense against many respiratory pathogens, including the
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severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
virus. The nose provides a physical barrier against inhaled
particles, functions to trap and clear invading pathogens through
themucosal membrane andmucocilliary clearance, and is a site of
immune cell surveillance and signaling.1 In addition, the nasal
mucosa is a source of antiviral antibodies (immunoglobulin).
Prior studies have found that virus-specific antibodies, including
IgG and secretory IgA, are produced within the nasal cavity.2 IgG
is the most abundant antibody found in human serum and is
involved in opsonization for phagocytosis, neutralization, and
activation of the complement system.3 IgGs can also access the
nasal mucosal surface by passive diffusion across epithelium.4

IgA antibodies are found systemically and at mucosal surfaces,
and they can exist in both the monomeric and dimeric form.
Whereas monomeric IgA is found systemically and performs
opsonizing functions, dimeric secretory IgA is the primary
immunoglobulin subtype that mediates mucosal immunity
through neutralization and is secreted by plasma cells adjacent
to the mucosal epithelial layer in mucosal tissue, such as the nasal
cavity.5 Despite this, only the live attenuated influenza virus
vaccine uses the nasal cavity as a target for antibody development.
Furthermore, the nasal mucosa is not frequently utilized as a
sample site for biomarkers indicating immunologic change
against vaccination or respiratory virus infection.

With the sudden global emergence of the SARS-CoV-2 virus,
quick development of an effective vaccine was necessary, and the
novel mRNA-based vaccine was produced within 1 year.6

Whereas traditional attenuated vaccines rely on directly
introducing the target epitope, mRNA vaccines utilize modified
viral mRNA encapsulated in lipid nanoparticles encoding for
specific antigen targets of interest.7 On the basis of effectiveness
studies, we know that intramuscularly administered mRNA
vaccination exponentially increased the systemic production of
SARS-CoV-2–specific IgG and IgA antibodies.8,9 However,
whether and howmRNA-based vaccination translates to antibody
production within the nasal mucosa is unknown and presents a
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critical knowledge gap. Although initially boasted greater than
90% efficacy in preventing coronavirus disease 2019
(COVID-19) illness, continued viral evolution has resulted in
multiple SARS-CoV-2 variants with increasing prior
infection–induced immune evasiveness and transmissibility.10-12

Thus, ongoing research continues to pursue vaccination methods
that prevent SARS-CoV-2 infection and boost immune response
to infection. This research includes exploring the benefit of
heightened mucosal IgA, as it has been shown to be effective in
viral neutralization and priming of the immune response to
infection in response to other viruses, including influenza.13

This strategy may also prove beneficial in the fight against
SARS-CoV-2, as evidenced by a preclinical study examining
the effectiveness of targeting the nasal cavity as a primary site
of infection. That study found that unadjuvanted intranasal
vaccination following intramuscular mRNA vaccination elicits a
robust mucosal immune response within the respiratory tract in
mice, thereby providing complete protection and partial
immunity against lethal SARS-CoV-2 infection.14 The
importance of mucosal immunity has also been addressed in other
studies exploring potential protective roles of cell types, such as
CD81 T cells. Specifically, in a study of SARS-CoV-2–
challenged mice CD81 T-cell protection was found to be
redundant in the presence of respiratory mucosal neutralizing
antibodies. Furthermore, protection afforded by CD81 T cells
alone was insufficient in preventing infection within the lungs
of CD41 T-cell–depleted mice, emphasizing the critical role of
mRNA vaccine-induced neutralizing antibodies.15 Taken
together, these findings indicate that localized production of
virus-specific antibodies within primary sites of infection, such
as the nasal passages, may be crucial in preventing infection
and transmission of respiratory pathogens, such as SARS-CoV-2.

In the study presented here, we examined virus-specific
antibody profiles and neutralization activity of SARS-CoV-2
mRNA–vaccinated individuals at 2 different sites, in the nasal
mucosa and in circulating serum. We hypothesize that mRNA
vaccination against the SARS-CoV-2 virus induces virus-specific
antibody production within the nasal cavity. Through use of our
well-established nasal epithelial lining fluid (NELF) sampling
method, the study presented here compares virus-specific
antibody concentrations derived from the nasal cavity and serum
across vaccine status, sex, and vaccine brands.16
METHODS

Study protocol
Blood and NELF samples were collected from healthy human

volunteers from March 2021 to December 2021 to examine
changes in virus-specific antibody levels in response to the novel
mRNA-based SARS-CoV-2 vaccine. Subjects were recruited as a
convenience sample from the local area, including the university
campus and surrounding communities, through informational
campus-wide emails and listserv announcements. The exclusion
criteria called for excluding immunocompromised individuals or
those currently taking immunosuppressive medication, cigarette
smokers or those with significant smoking history, individuals
who refused vaccination, and vaccinated individuals who did not
receive either the Spikevax (Moderna, Cambrideg, Mass;
mRNA-1273) or Comirnaty (BioNTech/Pfizer (Mainz, Germany;
BNT162b2) vaccine. Subject visits were categorized as either
preimmunity or postimmunity visits. The participants in the
preimmunity group included those whose visit occurred before 2
weeks after the second SARS-CoV-2 vaccination, whereas the
postimmunity group consisted of participants whose visit took
place at least 2 weeks after the second SARS-CoV-2 vaccination.
We chose 2 weeks after the second vaccination as a time point on
the basis of prior research observing peak virus-specific antibody
concentrations at 2 weeks following the second mRNA-based
SARS-CoV-2 vaccination.17 When possible, subjects were
sampled before vaccination, between the first and second
vaccinations, and again at least 2 weeks after administration of
the second vaccination. Participants with a history of
SARS-CoV-2were sampled if their most recent positive test result
occurred at least 6 months before sampling and they no longer
displayed associated symptoms. Additionally, data from
individuals with a history of SARS-CoV-2 infection were
included only if their antibody concentrations before complete
vaccination were comparable to those of uninfected individuals,
indicating similar baseline antibody levels.

During visit 1, participants completed the consent process;
were examined by a physician; and self-reported their age, sex,
race, body mass index (BMI), and health history, including
SARS-CoV-2 vaccination status, vaccine brand administered,
dates of vaccination(s), and any history of SARS-CoV-2
diagnosis. Blood was collected via venipuncture by a trained
phlebotomist, and serum was isolated through centrifugation.
NELF was collected through methods previously reported.16

Serum and NELF samples were stored at –808C and –208C,
respectively, until analysis. The protocol was submitted to and
approved by the University of North Carolina Biomedical
institutional review board under institutional review board no.
21-0371, and all methods were performed in accordance with
the relevant guidelines and regulations.
Sample analysis
Total IgA and IgG concentrations.. Serum and NELF

samples were analyzed via singleplex electrochemiluminescence
indirect-sandwich ELISAs targeting human IgA (Human IgA
ELISA Kit [reference no. BMS2096], Invitrogen, Waltham,
Mass) and IgG (Human IgG ELISA Kit [reference no.
BMS2091], Invitrogen) per the manufacturer’s instructions.
The dilutions used for measuring total human IgG were
1:500,000 and 1:10,000 for serum and NELF, respectively. The
dilutions used for measuring total human IgA were 1:10,000 and
1:1,000 for serum andNELF, respectively. Summary data available
in Table E1 (in the Online Repository at www.jaci-global.org).

SARS-CoV-2–specific IgA and IgG concentrations.

Serum and NELF samples were analyzed via multiplex
electrochemiluminescence indirect-sandwich ELISAs targeting
IgA (V-PLEX SARS-CoV-2 Panel 1 Kit [catalog no. K15361U],
Meso Scale Discovery, Rockville, Md) and IgG (V-PLEX
SARS-CoV-2 Panel 1 Kit [catalog no. K15359U], Meso Scale
Discovery) per the manufacturer’s instructions. As the
SARS-CoV-2 mRNA vaccines encode for the systemic
production of antibodies targeting epitopes of the SARS-CoV-2
Spike protein (most notably, the receptor-binding domain [RBD],
but also the N-terminal domain [NTD] and Spike 2 [S2]), these
epitopes were primary targets of analysis, with S2 binding
measured indirectly.10 The dilutions used for measuring
SARS-CoV-2–specific IgG and IgA were 1:40,000 and 1:2,500
for serum and NELF, respectively. Calculated virus-specific IgA

http://www.jaci-global.org


J ALLERGY CLIN IMMUNOL GLOBAL

VOLUME 2, NUMBER 4

CAO ET AL 3
and IgG concentrations were normalized to total IgA and IgG as
seen in Equation 1.
% Normalized antibody concentration 5

�
Virus2 specific antibody concetration

Total antibody conentration

�
3 100 (Equation 1)
S1 binding specificity. Serum and NELF IgA and IgG
percentage of binding specificity toward the Spike 1 (S1) subunit
against overall Spike protein binding in the postimmunity group
was calculated as seen in Equation 2.
% S1 binding 5
ðAverage RBD antibody concetrationÞ1 ðAverage NTD antibody concetrationÞ

Average Spike protein antibody concentration
3 100

(Equation 2)
Serum and NELF SARS-CoV-2 S1 RBD neutraliza-

tion. Antibody neutralization activity in serum and NELF
samples toward the SARS-CoV-2 Spike S1 RBD antigen was
measured via multiplex neutralization ELISAs (SARS-CoV-2
Panel 11 Kit [catalog no. K15458U], Meso Scale Discovery). The
dilutions used for measuring SARS-CoV-2 S1 RBD-specific IgG
and IgA neutralization activity were 1:400 and 1:5, respectively.
Percent inhibition was calculated as seen in Equation 3. Percent
inhibition when controlling for virus-specific antibody concentra-
tions was calculated as in accordancewith Equation 4, in arbitrary
units (AU).
% Inhibition 5 12
Sample ECL signal

Lowest % neutralization standard ECL signal
3 100 (Equation 3)

%
Inhibition

AU=mL
5

% inhibition

Normalized antibody concentration
(Equation 4)
Statistical analysis
Comparisons of serum and NELF IgA and IgG concentrations

against target antibodies across vaccine status, vaccine brands, and
sex, as well as postimmunity neutralization activity analysis, was
completed after Shapiro-Wilk normality testing. Unpaired t tests
and Mann-Whitney tests were used to compare IgG and IgA
concentrations and neutralization activity across groups. Analyses
were completed and graphs were plotted in GraphPad Prism 9.2.0
(GraphPad Software, SanDiego, Calif). Differenceswith aP value
less than .05 were considered statistically significant.

z Score values of age, BMI, and antibody concentrations were
measured for contribution toward variance in serum and NELF
IgA and IgG concentrations against SARS-CoV-2 antigens
through principal component analysis (see Figs E1-E5 in the
Online Repository at www.jaci-global.org). Analyses were
completed in R-4.2.0 using the FactoMineR18 and Factoextra19

packages.
RESULTS

Demographics
Subject demographics are summarized in (Table I). There were

no differences among groups in terms of age or BMI. As
suggested in prior studies, data on potential sex differences in
response to vaccination were analyzed by sex.20,21 However,
sex-dependent differences in serum and NELF antibody concen-
trations and neutralization activity were not observed for this
study. This finding may be limited by a small sample size, and
future studies with a larger population are needed to confirm a
lack of sex differences.

http://www.jaci-global.org


TABLE I. Study demographics

Characteristic N 5 29

n1 5 19

(preimmunity

visits)

n2 5 24

(postimmunity

visits)

n3 5 14

(Comirnaty

postimmunity visits)

n4 5 10

(Spikevax

postimmunity visits)

Age (y), mean 6 SD 25.80 6 7.23 24.29 6 5.71 26.64 6 7.60 27.5 6 8.54 25.43 6 6.28

Male-to-female ratio 13:16 11:8 14:10 5:9 5:5

BMI (kg/m2), mean 6 SD 25.20 6 6.09 25.89 6 6.67 25.05 6 6.32 24.1 6 4.49 26.37 6 8.34

Race

Black 3 2 2 2 0

Asian 2 2 2 2 0

White 22 13 19 10 9

Black/Asian 1 1 1 0 1

Asian/White 1 1 0 0 0

Serum IgGSerum IgA

NELF IgA NELF IgG

0

2

4

6 ✱

nsns ns

Ig
A 

C
on

ce
nt

ra
tio

n
(lo

g(
A

U
/m

L)
)

0

1

2

3

4

5
✱✱✱✱ ✱✱✱✱

✱✱✱✱
✱✱

Ig
G

 C
on

ce
nt

ra
tio

n
(lo

g(
A

U
/m

L)
)

0

2

4

6

8

0.0575
✱

✱✱

.0543

Ig
A 

C
on

ce
nt

ra
tio

n
(lo

g(
A

U
/m

L)
)

0

2

4

6

8 ✱✱ ✱✱✱

✱✱✱✱

✱

Ig
G

 C
on

ce
nt

ra
tio

n
(lo

g(
A

U
/m

L)
)

Pre-Immunity
Post-Immunity

SARS-CoV-2 Spike
SARS-CoV-2 S1 RBD
SARS-CoV-2 S1 NTD
SARS-CoV-1 Spike

A B

C D

FIG 1. Preimmunity and postimmunity SARS-CoV-2 virus–specific IgG and IgA antibody concentrations in

NELF and serum. Antibody concentrations were reported as log10 values. A, NELF IgA. B, NELF IgG.

C, Serum IgA. D, Serum IgG. Unpaired t test and Mann-Whitney test with Shapiro Wilk normality testing.

*P < .05; **P < .01; ***P < .001. Figures generated in GraphPad Prism 9.2.0.
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Preimmunity versus postimmunity
SARS-CoV-2 protein–specific IgA and IgG concentrations

were compared between the preimmunity and postimmunity
groups in both serum and NELF samples (see Tables E2-E8 in
the Online Repository at www.jaci-global.org). Spike protein–
specific IgA and IgG concentrations were greater in the
postimmunity group than the preimmunity group for both
NELF (Fig 1, A and B) and serum (Fig 1, C and D) samples.
Nasal mucosal IgA and IgG antibody concentrations (14,116
6 30,586 AU and 54,4346 8,195 AU, respectively) were an or-
der of magnitude lower than those the serum concentrations
(154,2456 265,080 AU and 15,5466 31,600 AU, respectively).
S1 RBD protein–specific IgG concentrations were greater in the
postimmunity group than in the preimmunity group for both
serum and NELF samples (Fig 1, B and D). Only the serum-
derived S1 RBD protein–specific IgA concentration was greater
in the postimmunity group than in the preimmunity group,
indicating a weaker IgA immune response to this antigen within
the nasal cavity (Fig 1,C). S1 NTD protein–specific IgG concen-
trations were greater in the postmmunity group than in the pre-
immunity group for both serum and NELF samples (Fig 1, B and
D). However, a difference in S1 NTD protein–specific IgA con-
centrations was not observed in either the serum or NELF sam-
ples, indicating aweaker IgA immune response systemically and
within the nasal cavity to this antigen (Fig 1, A and C). No dif-
ference in SARS-CoV-2 nucleocapsid protein–specific IgA
and IgG concentrations was found when the preimmunity and
postimmunity groups were compared across serum and NELF
samples (see Table E7). Severe acute respiratory syndrome coro-
navirus 1 (SARS-CoV-1) Spike protein–specific IgG concentra-
tions were greater in the postimmunity group than in the
preimmunity group for both serum and NELF samples (Fig 1,
B and D). However, a difference in SARS-CoV-1 Spike
protein–specific IgA concentration was not found in either the
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serum and NELF samples (Fig 1, A and C). As both SARS-CoV-
2 and SARS-CoV-1 share similar binding mechanisms utilizing
the Spike protein, these results may indicate conserved epitopes
for antibody recognition.22
S1 subunit binding specificity
The ratio of RBD and NTD to SARS-CoV-2 Spike protein–

specific antibody concentration in the postimmunity group was
calculated to measure S1 subunit binding specificity in NELF and
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serum samples. S1 subunit IgG binding accounted for 54.63%
(50.91% derived from RBD and 3.72% derived from NTD) and
48.97% (47.57% derived from RBD and 1.40% derived from
NTD) of the total binding to the SARS-CoV-2 Spike protein in the
NELF and serum samples, respectively (Fig 2, A and B). In
contrast, S1 subunit IgA binding accounted for 0.52% (0.39%
derived from RBD and 0.13% derived from NTD) and 6.96%
(4.98% derived from RBD and 1.98% derived from NTD) of
the total binding to the SARS-CoV-2 Spike protein in the NELF
and serum samples, respectively (Fig 2, B and C). Thus, it is plau-
sible that IgA antibodies may have more affinity to S2 epitopes;
however this was not measured directly in this study.
Spikevax versus Comirnaty
SARS-CoV-2 protein–specific IgA and IgG concentrations

were compared between Spikevax- and Comirnaty-vaccinated
individuals in both serum and NELF samples (see Table E9
in the Online Repository at www.jaci-global.org). Spike
protein–specific serum IgA and NELF IgG concentrations
were greater in Spikevax-vaccinated individuals than in
Comirnaty-vaccinated individuals across postimmunity visits
(Fig 1, B and C). S1 RBD protein–specific serum and NELF
IgA and NELF IgG concentrations were greater in Spikevax-
vaccinated individuals than in Comirnaty-vaccinated individuals
across postimmunity visits (Fig 3, A-C). S1 NTD protein–specific
serum and NELF IgA and NELF IgG concentrations were greater
in Spikevax-vaccinated individuals than in Comirnaty-vaccinated
individuals across postimmunity visits (Fig 3,A-C). Nucleocapsid
protein–specific serum IgG concentrations were greater in
Spikevax-vaccinated individuals than in Comirnaty-vaccinated
individuals across postimmunity visits. However, SARS-CoV-2
nucleocapsid protein–specific NELF IgA concentrations were
greater in Comirnaty-vaccinated individuals than in Spikevax-
vaccinated individuals. As neither vaccine brand encodes for
the nucleocapsid protein, this difference in concentration could
be due to unreported SARS-CoV-2 infection or potential antibody
cross-reactivity. SARS-CoV-1 Spike protein–specific serum IgA
concentrations were greater in Spikevax vaccinated individuals
compared to Comirnaty across postimmunity visits (Fig 3, C).
SARS-CoV-2 S1 RBD neutralization activity
A difference in percent inhibition was not observed when

comparing serum and NELF, with signal levels falling within the
standard curve for both sample types, thus indicating appropriate
dilution concentrations for both sample types (Fig 4,A).When the
concentration of virus-specific antibodies was controlled for,
nasal antibodies displayed greater neutralization activity than
did serum antibodies in the postimmunity group (Fig 4, B). In
NELF samples, percent inhibition was elevated in Spikevax-
vaccinated individuals versus in Comirnaty-vaccinated individ-
uals (Fig 4, C). However, when concentration of virus-specific
antibodies was controlled for, a difference in percent inhibition
in serum and NELF was not found when Comirnaty- and
Spikevax-vaccinated individuals were compared (Fig 4, D).
DISCUSSION
The purpose of this study was to evaluate the hypothesis that

intramuscular mRNA-based vaccination against the SARS-CoV-
2 virus induces virus-specific antibody production within the
nasal cavity, which is a primary site of infection. To assess this
hypothesis, we sampled nasal epithelial lining fluid to collect
soluble biomarkers within the nasal cavity and systemically
through serum. Virus-specific antibody concentration and
neutralization activity were measured across vaccine status,
mRNA-based vaccine brands, and sex. Our results demonstrate
that mRNA-based intramuscular vaccination against the SARS-
CoV-2 virus induces virus-specific antibody production within
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the nasal cavity and systemically (Fig 1). Additionally, our results
suggest IgG specificity toward the S1 subunit and potentially IgA
specificity to the S2 subunit of the SARS-CoV-2 Spike protein
(Fig 2). Spikevax vaccination appears to induce a greater concen-
tration of systemic and nasal mucosal antibodies than Comirnaty
vaccination does (Fig 3). Lastly, our results demonstrate that
nasal-derived antibodies display significantly greater neutralizing
characteristics than serum-derived antibodies do (Fig 4, B).

We have demonstrated that intramuscular mRNA vaccination
against the SARS-CoV-2 virus induces a robust systemic and
intranasal IgG and IgA antibody response against the SARS-CoV-
2 Spike protein following intramuscular vaccination, thereby
demonstrating the capability of mRNA vaccination to induce a
localized immune response within the nasal cavity, which is a
primary site of infection (Fig 1). Systemic and nasal IgG targeting
the RBD and NTD epitopes of the S1 subunit was found to be
elevated after vaccination (Fig 1, B and D). Despite observing
an elevated systemic and intranasal IgA response to the
SARS-CoV-2 Spike protein, we did not observe a similar degree
of increase in systemic and nasal IgA concentrations targeting the
RBD and NTD epitopes after vaccination (Fig 1, A and C). This
indicates that IgA may not target the RBD and NTD of the S1
subunit but instead bind to other domains found on either the
S1 or S2 subunit (Fig 2). We believe that the elevated systemic
and intranasal IgA response to the SARS-CoV-2 Spike protein
may be attributed to IgA antibodies targeting epitopes of the S2
subunit of the SARS-CoV-2 Spike protein; however, other studies
that include S2-specific assessments are needed to verify this
hypothesis.

Longitudinal observation of SARS-CoV-2 vaccine response in
naive subjects found a significant increase in systemic IgG
compared with systemic IgA targeting the RBD-domain 6months
after vaccination.23 This coincides with our results, indicating
greater IgG binding specificity toward the RBD-domain than
IgA binding specificity toward the RBD-domain. Furthermore,
although most ongoing SARS-CoV-2 vaccine research has
focused on the S1 subunit, specifically, the RBD, several studies
have characterized vaccine-induced antibody response against
the S2 subunit as well as its potential as a target in vaccine devel-
opment. The S2 subunit of the Spike protein is a highly conserved
region across coronaviruses that mediates viral fusion to the host
membrane following angiotensin-converting enzyme 2 (ACE2)
binding.24 A study profiling SARS-CoV-2 Spike mRNA
vaccine–induced antibodies identified 42 mAbs targeting the
epitopes of the full-length Spike protein in 3 naive vaccinated
subjects. Of the mAbs identified, 12 bound specifically to the
RBD whereas 10 antibodies bound specifically to the NTD.
Surprisingly, 17 antibodies bound specifically to the S2 subunit,
providing evidence that SARS-CoV-2 Spike mRNA vaccination
induces antibody production targeting the S2 subunit.24

Additionally, vaccination induced a robust population of
S2-specific memory B cells 6 months after vaccination,
accounting for 40% to 80% of the Spike-specific memory
B-cell population.23 This suggests that in addition to the S2
subunit being a target for antibody binding, S2-specific antibodies
may play an important role in providing long-term immunity
against SARS-CoV-2 infection. However, this is speculation, as
no studies quantifying vaccine-induced IgA-specific binding to
epitopes found on the S2 subunit have been conducted.

This study has also demonstrated that compared with
Comirnaty vaccination, Spikevax vaccination induces a greater
level of virus-specific antibody production systemically and
intranasally (Fig 3, A-C). Nasal-derived IgG and IgA targeting
the RBD and NTD were elevated in Spikevax-vaccinated
individuals versus in Comirnaty-vaccinated individuals (Fig 3,
A and B). This may indicate a slightly more protective immune
response within the nasal cavity, a primary site of infection, in
Spikevax-vaccinated individuals. Systemic IgG concentrations
targeting the full-length Spike, RBD, and NTD did not
significantly differ between Spikevax- and Comirnaty-
vaccinated individuals (Fig 3,D). However, systemic IgA concen-
trations targeting these domains were consistently elevated in
Spikevax-vaccinated individuals versus in Comirnaty-
vaccinated individuals (Fig 3, C). This coincides with current
literature observing elevated anti-Spike and anti-RBD antibody
concentrations in Spikevax-vaccinated individuals versus in
Comirnaty-vaccinated individuals, resulting in slightly greater
vaccine effectiveness and lower associated hospitalizations in
Spikevax recipients than in Comirnaty recipients.8,25 Nonethe-
less, little is known regarding the optimal intranasal antibody con-
centrations needed to confer protection, and therefore, we cannot
confirm whether the observed differences in concentration result
in altered functional outcomes.

In addition to determining levels of antibodies in serum and
nasal mucosa, we also evaluated neutralization as a measure of
immune competence. When we controlled for concentration,
nasal antibodies displayed significantly greater levels of
neutralization activity toward SARS-CoV-2 RBD than serum
antibodies did (Fig 4, B). Another study observed significantly
greater proportions of systemic nonneutralizing anti-RBD
antibodies than neutralizing antibodies in mRNA-based
SARS-CoV-2–vaccinated adults, indicating that systemic
antibodies derived from the mRNA-based vaccine may be less
involved in neutralization activity.26 Furthermore, mucosal-
derived oral fluids have previously demonstrated neutralizing ca-
pabilities in response to the Wuhan strain, along with Delta,
Alpha, Beta, and Gamma variants of concern in naive vaccinated
individuals.27 This indicates that SARS-CoV-2 vaccination may
direct an immune response guided by production of neutralizing
antibodies within the nasal cavity and other mucosal surfaces.
However, as the assay utilized measures overall antibody
neutralization against the RBD antigen, we were unable to
measure Ig-specific neutralization activity. The production of
neutralizing antibodies within the nasal cavity, a primary site of
infection for the SARS-CoV-2 virus, may confer further
protection by preventing initial dissemination of the virus, and
it is encouraging as a starting point for developing intranasal
vaccines or boosters for even greater neutralization activity.

Because of declining efficacy of vaccine-induced antibody
production against new strains of SARS-CoV-2, different types of
boosters, including several targeting viral neutralization in the
nasal mucosa, are currently in development.28,29 Studies have
shown that priming systemically followed by intranasal boosting
may result in systemic immunity similar to that resulting from
systemic priming and boosting, but with the additional benefit
of eliciting more robust mucosal immunity.30 In a mouse model
of waning immunity, intranasal boosting resulted in protection
against a lethal dose of SARS-CoV-2. This protection was charac-
terized by elevated numbers of antigen-specific CD81 tissue-
resident memory T cells within the lungs as well as IgA and
IgG in bronchial alveolar lavage fluid.14 However, intranasal
vaccination alonemay not be sufficient to induce a robust immune
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response. For example, in a recent phase I trial funded by Astra-
Zeneca, 2-dose primary intranasal vaccination utilizing their
adeno-associated virus–based ChAdOXI nCoV-19 in vaccine-
naive adults induced a weaker anti-Spike mucosal response
than in convalescent subjects. Systemic immunity following
both intranasal doses was also much weaker than 2 intramuscular
vaccine doses.31 It should be noted that this study does have lim-
itations; they include lack of optimization of the intramuscular
ChAdOXI nCoV-19 vector for intranasal use. Overall, intranasal
booster vaccination following intramuscular priming may
contribute significantly to preventing respiratory infection by
conferring mucosal immunity and neutralizing pathogens directly
at the site of infection.

This study, although novel and informative, does include
limitations. A cross-sectional convenience sample with a limited
sample size of 29 was utilized for this study, and it may not fully
represent the outcomes of all vaccinated individuals. We were
also unable to sample all subjects before vaccination to conduct
matched analyses. Participants were asked to self-report COVID-
19 diagnosis, and we cannot confirm whether or when they had
received PCR confirmation. To be conservative, all subjects were
included in this study. Additionally, nonmatched comparisons
were used during the statistical analysis, thereby reducing the
power of comparison. Finally, our sample consisted mainly of
youngWhite adults with a healthy BMI, and it may not accurately
represent other groups. Although no studies have compared nasal
mucosal antibody levels across the life span, what is known about
antibody production differences across the life span is that
systemic vaccine-induced antibody levels decrease in older
populations, and depending on dose, the antibody responses in
children may surpass those in adults.32 In studies evaluating anti-
body levels across age, with Comirnaty vaccine, vaccine-induced
Spike-specific antibody levels decreased with increasing age in
blood.33 In a head-to-head comparison of Comirnaty and Spike-
vax, vaccination with the Comirnaty vaccine was observed to
result in lower antibody levels in postbooster older adults than
in younger individuals, but similar levels were observed across
ages for Spikevax.34 In children, the adult dose of Spikevax
induced an IgG-dominant response surpassing the levels induced
in adults; however, responses were more variable at the pediatric
dose.35 Further, children receiving 2 doses of Comirnaty had
enhanced IgM and similar IgG cross-reactivity to variants of
concern versus that in adults.36 Similarly, there are no studies
comparing nasal mucosal antibody levels in individuals with pre-
existing disease, but in systemic studies, there is some evidence
for waning antibody levels over time after vaccination. For
example, in individuals with asthma being treated with biologics,
IgG levels were lower than in healthy adults 90 days after second
vaccination.37 If the change in nasal mucosal antibody levels with
age and preexisting disease mirrors systemic trends, we might
expect children to have the same or more mucosal antibodies,
older populations to have decreased levels, and individuals with
preexisting respiratory disease to have varying antibody re-
sponses compared with those of young adults. This is plausible
on the basis of prior studies in SARS-CoV-2–infected individuals,
in which correlation between systemic andmucosal antibody pro-
duction was observed.38 However, future research is needed to
fully evaluate this hypothesis.

Overall, this study demonstrates that intramuscular mRNA
vaccination against the SARS-CoV-2 virus elicits a robust
immune response within the nasal cavity, as well as systemically
(Fig 1). Our results suggest systemic and nasal IgG specificity to-
ward epitopes of the S1 subunit, including the RBD and NTD.
Additionally, systemic and nasal IgA may target epitopes of the
S2 subunit, such as the heptad repeat (HR) domain (Fig 2); how-
ever, further studies would be needed to confirm S2 specificity.
We also found that compared with Comirnaty vaccination, Spike-
vax vaccination elicits a greater antibody response against SARS-
CoV-2 systemically and intranasally (Fig 3, A-C).Whereas differ-
ences in systemic antibody concentration between Comirnaty and
Spikevax do not appear to greatly affect immune response, the
optimal intranasal antibody concentrations against SARS-CoV-
2 are unknown, and we are unsure whether this concentration dif-
ference results in altered functional outcome. Additionally, our
results demonstrate that nasal antibodies display significantly
greater levels of neutralizing characteristics against the SARS-
CoV-2 RBD antigen than systemic antibodies do (Fig 4, B).
This suggests an immune response consisting of neutralizing an-
tibodies localized at mucosal primary sites of infection (such as
the nasal cavity) and nonneutralizing antibodies located systemi-
cally. As SARS-CoV-2 variants continue to emerge and vaccine
effectiveness wanes, we believe that intranasal boosting
following intramuscular priming while targeting the S2 subunit
of the SARS-CoV-2 Spike protein may not only greatly reduce
the risk of viral dissemination and infection but also provide im-
munity against multiple variants.
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Key messages

d Intramuscular mRNA vaccination results in the produc-
tion of neutralizing antibodies in the nasal mucosa.

d Binding specificity and overall antibody concentrations
differ by immunoglobulin class and vaccine brand.
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