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OBJECTIVE—Key features of diabetic nephropathy include the
accumulation of extracellular matrix proteins. In recent studies,
increased expression of type VIII collagen in the glomeruli and
tubulointerstitium of diabetic kidneys has been noted. The
objectives of this study were to assess whether type VIII collagen
affects the development of diabetic nephropathy and to deter-
mine type VIII collagen–dependent pathways in diabetic ne-
phropathy in the mouse model of streptozotocin (STZ)-induced
diabetes.

RESEARCH DESIGN AND METHODS—Diabetes was in-
duced by STZ injections in collagen VIII–deficient or wild-type
mice. Functional and histological analyses were performed 40
days after induction of diabetes. Type VIII collagen expression
was assessed by Northern blots, immunohistochemistry, and
real-time PCR. Proliferation of primary mesangial cells was
measured by thymidine incorporation and direct cell counting.
Expression of phosphorylated extracellular signal–regulated ki-
nase (ERK1/2) and p27Kip1 was assessed by Western blots.
Finally, Col8a1 was stably overexpressed in mesangial cells.

RESULTS—Diabetic wild-type mice showed a strong renal
induction of type VIII collagen. Diabetic Col8a1�/Col8a2� ani-
mals revealed reduced mesangial expansion and cellularity and
extracellular matrix expansion compared with the wild type.
These were associated with less albuminuria. High-glucose me-
dium as well as various cytokines induced Col8a1 in cultured
mesangial cells. Col8a1�/Col8a2� mesangial cells revealed de-
creased proliferation, less phosphorylation of Erk1/2, and in-
creased p27Kip1 expression. Overexpression of Col8a1 in
mesangial cells induced proliferation.

CONCLUSIONS—Lack of type VIII collagen confers renopro-
tection in diabetic nephropathy. One possible mechanism is that
type VIII collagen permits and/or fosters mesangial cell prolifer-
ation in early diabetic nephropathy. Diabetes 58:1672–1681,

2009

D
iabetic nephropathy is the most common cause
of end-stage renal failure leading to dialysis.
Glomerular lesions are characterized by expan-
sion of the mesangial matrix and thickening of

peripheral glomerular basement membranes due to the
synthesis and accumulation of extracellular matrix (ECM)
(1,2). The degree of mesangial matrix expansion correlates
with the progressive decline in the glomerular capillary
surface area available for filtration and, hence, with the
glomerular filtration rate (3). Early changes include a
confined proliferation of mesangial cells followed by cell
cycle arrest and hypertrophy (3–8). Several growth factors
have been implicated in this process, among them trans-
forming growth factor-�1 (TGF-�1) and platelet-derived
growth factor (PDGF)-BB (4,9,10). During early stages,
PDGF-BB potently increases proliferation and matrix syn-
thesis of mesangial cells and induces the expression of
TGF-�1 (4,5,11). Upregulation of the PDGF-BB pathway
has been shown in kidneys from patients with diabetic
nephropathy as well as in experimental models of diabetic
nephropathy (12,13). Further, PDGF receptor antagonists
attenuate diabetic nephropathy (4). Activation of the
TGF-�1 loop leads to cell cycle arrest, induction of cyclin-
dependent kinase inhibitors, and further ECM synthesis
(3,14).

Type VIII collagen, a nonfibrillar short-chain collagen, is
a structural component of many extracellular matrices
(15–17). Two highly homologous polypeptides, �1(VIII)
and �2(VIII), form either homotrimeric or heterotrimeric
molecules (18–20). Type VIII collagen is involved in cross-
talk between cells and the surrounding matrix by modu-
lating diverse cellular responses such as proliferation,
adhesion, migration, chemotaxis, and metalloproteinase
synthesis (21–23). It is highly expressed by vascular
smooth muscle cells in response to PDGF-BB and is
thought to be a key component of vascular remodeling
(24–27). In healthy kidneys, expression of type VIII colla-
gen has been demonstrated in glomerular arterioles, larger
branches of renal arteries, and in rat glomeruli and mes-
angial cell in vitro (28,29). Increased mRNA as well as
protein expression has been noted in glomeruli and the
tubulointerstitium of biopsies of kidneys from patients
with diabetic nephropathy (30,31). The functional role of
collagen VIII, especially in the early phase of the disease,
has not been investigated and remains obscure.

To address the role of type VIII collagen in the patho-
genesis of diabetic nephropathy, we applied the strepto-
zotocin (STZ) model to mice with homozygous deletions
of both collagen VIII genes and compared them with
wild-type mice. The objectives of this study were to assess
whether collagen VIII–dependent pathways are involved
in the development of diabetic nephropathy and in various
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cellular and molecular processes associated with this
disorder.

RESEARCH DESIGN AND METHODS

Animal experiments were approved by the local animal care committee of the
University of Hamburg and done in accordance with the German Animal
Protection Law. Col8a1�/Col8a2� mice crossed for at least 20 generations
into the C57BL/6 background (21) and wild-type mice were maintained in a
pathogen-free facility. All animals had free access to water and were fed
standard rodent chow. Systolic blood pressure was measured using tail cuff
plethysmography (TSE Systems, Bad Homburg, Germany).
Disease model. Eight- to 10-week-old male mice were randomly divided into
groups treated with STZ (Sigma, Deisenhofen, Germany) or left untreated. STZ
was dissolved in sterile citrate buffer and injected intraperitoneally (150 mg/kg
body weight) within 10 min of preparation on 3 consecutive days. To render
animals hyperglycemic without becoming ketoacidotic, a subcutaneous insu-
lin implant (LinShin, Toronto, ON, Canada) was administered. Fifteen
Col8a1�/Col8a2� mice and 12 wild-type mice were treated with STZ; 7
Col8a1�/Col8a2� mice and 10 wild-type mice were left untreated. Urinary
glucose levels (Diabur Test 5000; Roche, Mannheim, Germany) and body
weight were examined at the beginning and the end of this study. Venous
blood glucose concentrations were measured with a B-glucose analyzer
(HemoCue, Ängelholm, Sweden). Urine samples were collected in metabolic
cages at baseline and before sacrifice. Mice were killed after 40 days. Blood
urea nitrogen (BUN) was measured by a multianalyzer (Hitachi, Ramsey, NJ).
Quantification of albuminuria. Two microliters of urine were placed in 18
�l of Laemmli buffer, boiled, and subjected to 12% SDS-PAGE. Gels were
stained by Coomassie Blue following standard procedures, and pictures were
taken of native gels. The albumin band with a molecular weight of 66.2 kDa
was assessed densitometrically as described previously (32).
Histology, immunohistochemistry, and immunofluorescence. Kidneys
were fixed in 10% buffered formalin, and 4-�m sections were stained with
hematoxylin-eosin and periodic acid Schiff (PAS) reagent. For immunohisto-
chemistry, paraffin sections were incubated with protease XXIV (15 min, 5
mg/ml), blocked with 5% normal horse or goat serum (30 min, room temper-
ature), and incubated with anti-laminin (1:3,600, overnight, 4°C) or anti–
collagen IV (1:600, overnight, 4°C) (both from Southern Biotechnology,
Eching, Germany), followed by biotinylated donkey IgG (1:400, 30 min, room
temperature). Signal amplification was performed with an ABC-AP kit (Vector
Laboratories, Loerrach, Germany) according to the manufacturer’s instruc-
tions using Neufuchsin as a substrate. For immunofluorescence, kidneys were
fixed in 10% buffered formalin, infiltrated with 20% sucrose, and frozen in OCT.
Cryosections (5 �m) were rehydrated, treated with proteinase XXIV, blocked
in 5% goat serum in PBS, and incubated with rabbit anti–enhanced green
fluorescent protein (EGFP) antibodies (1:500, 1 h, 37°C; Molecular Probes,
Karlsruhe, Germany). A nonimmune rabbit serum was used as a control.
Fluorescein anti-rabbit IgG was applied as a secondary antibody. For double
immunofluorescence, staining with an anti-EGFP antibody was performed as
above; the secondary antibody was a Texas Red anti-rabbit IgG. Sections were
further incubated with anti-CD31/antiplatelet endothelial cell adhesion mole-
cule-1 (PECAM-1) (1 h, room temperature; BD Biosciences, Franklin Lakes,
NJ); the secondary antibody was a fluorescein anti-rat antibody.
Morphometric analysis. Twenty glomerular cross sections per mouse were
photographed with an Axioscope microscope equipped with an Axiocam and
evaluated with KS300.1 software (Zeiss, Oberkochen, Germany) in a double-
blind fashion. The area of the glomerular cross section, the glomerular tuft,
and the number of nuclei were measured. Results are expressed as percent
glomerular tuft area and number of nuclei per glomerular cross section.
Capillary density was measured by taking 20 pictures of each section stained
against CD31 and evaluated with ImageJ64.
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FIG. 1. Morphometry of diabetic (f) and nondiabetic (�) wild-type
and Col8a1�/Col8a2� mice. A: Mesangial tuft area per glomerulus
(square millimeters). B: Mesangial nuclei per 1,000 �m2. C: Glomerular
volume. D: Plasma BUN (mg/100 ml). Bars represent SE; *P < 0.05, n �
10�12. Representative PAS stainings of nondiabetic wild-type (E) and
Col8a1�/Col8a2� mice (G) and diabetic wild-type (F) and Col8a1�/

Col8a2� mice (H). CON, control; KO, knockout; WT, wild-type. (A
high-quality digital representation of this figure is available in the
online issue.)

TABLE 1
Variables measured during the study period of STZ-induced diabetes

Body weight (g) Blood glucose
(mg/dl)

Urinary glucose
(g/dl)

Albuminuria
(OD/mm2)Initial End

Col8a1�/�/Col8a2�/� controls 24.6 � 1.3 31.4 � 1.8 128.5 � 28.7 0 0.2 � 0
Col8a1�/�/Col8a2�/� STZ 27.2 � 3.5 26.9 � 3.3* 292.4 � 66.6* 3.7 � 0.9 0.3 � 0.2*
Col8a1�/�/Col8a2�/� controls 26.9 � 2.3 29.7 � 2.5 155.7 � 36 0 0.1 � 0.1
Col8a1�/�/Col8a2�/� STZ 26.8 � 3.4 26.2 � 3.2† 319 � 61.2† 3.8 � 1 0.5 � 0.3†‡

Data are means � SD. *P � 0.01 vs. Col8�/� controls. †P � 0.01 vs. Col8�/� controls. ‡P � 0.05 vs. STZ Col8[�/�.
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Cell culture, transfection, and Western blot analysis and isolation of

RNA and Northern blots. Detailed descriptions can be found in the
supplemental data (available in an online appendix at http://care.diabetes
journals.org/cgi/content/full/db08-0183/DC1).
Isolation and characterization of mouse mesangial cells. Two different
isolates of wild-type and Col8a1�/Col8a2� mouse mesangial cells (MMCs)
were released from glomeruli using a modification of a published method (33).
In brief, for each experiment two wild-type and two knockout mice were
killed and immediately perfused with 8 � 107 Dynalbeads (Dynal, Invitrogen,
Karlsruhe, Germany) diluted in 40 ml Hanks’ balanced salt solution (HBSS)
through the heart. Kidneys were removed, minced into 1-mm3 pieces, and
digested in 1 mg/ml collagenase A (Roche) and 100 units/ml DNase I in HBSS
at 37°C for 30 min. The tissue was gently pressed through a 90-�m cell strainer
and washed with 5 ml HBSS. The filtrate was passed though a new cell strainer
without pressing and washed again. The cell suspension was then centrifuged
at 200g for 5 min and resuspended in 2 ml HBSS. Finally, glomeruli containing
Dynalbeads were gathered by a magnetic particle concentrator and washed
three times with HBSS. Collagenase-digested glomeruli were seeded into cell

culture dishes and maintained in Dulbecco’s modified Eagle’s medium, 10%
serum and 1% glutamine, 100 units/ml penicillin, and 100 �g/ml streptomycin
(Invitrogen) at 37°C and 5% CO2 for 6 days. MMCs were passaged every 4–5
days.

For characterization, cells were grown on glass coverslips, fixed with 10%
formalin, and photographed with a phase-contrast microscope or fixed with
methanol (10 min on ice) for immunostaining. Cells were washed with PBS,
blocked with 3% BSA in PBS (30 min, room temperature), and incubated with the
primary antibodies (1 h, 37°C) and fluorescein-labeled anti-mouse-, anti-rat-, or
anti-rabbit IgG (1:200, 1 h, 37°C). Primary antibodies were anti–collagen VIII
(Seikagaku, Tokyo, Japan), anti-EGFP (Molecular Probes), anti-vimentin, anti-
desmin, anti–smooth muscle actin (Sigma), anti-CD31/PECAM-1, and anti–colla-
gen IV (ICN, Northeim, Germany). Isotype-matched IgG and nonimmune rabbit
IgG were used as controls. Pictures were taken at �200 magnification with an
Axioscope fluorescence microscope.
Thymidine incorporation and growth curves. MMCs (passages 4–10)
were plated on 96-well plates at a density of 3 � 103 cells/well and maintained
in Dulbecco’s modified Eagle’s medium supplemented with 100 mg/dl glucose

FIG. 2. Light microscopic features of the glomerular lesions and expression of type VIII collagen. Representative glomerulus of an untreated
wild-type mouse (A and E) and a Col8a1�/Col8a2� mouse (C and G) stained against type IV collagen (A and C) and laminin (E and G).

Representative glomerulus of a wild-type mouse (B and F) and a Col8a1�/Col8a2� mouse (D and H) treated with STZ and stained against type
IV collagen (B and D) and laminin (F and H). Diabetes was associated with an increase in type IV collagen and laminin protein expression. Lack
of collagen VIII reduced the accumulation of type IV collagen (C and D) and laminin (G and H) in the glomeruli. Immunofluorescence staining
against collagen VIII in wild-type mice (I, J, and K) or EGFP in Col8a1�/EGFP “knock-in” mice (M, N, and O). Strong staining for collagen VIII
(I) and EGFP (M) was seen in healthy mice within the adventitia and the endothelium of arteries, whereas no staining was apparent in tubuli or
glomeruli. In diabetic mice strong staining within the tubular interstitium, within the glomeruli, and around arterioles (anti–type VIII collagen
[J and K] and anti-EGFP [N and O]). No staining against type VIII collagen was seen in Col8a1�/Col8a2� mice (L) or EGFP in wild-type mice (P).
Double immunofluorescence revealed that EGFP (red) only partly colocalized with CD31/PECAM-1 (green), a marker for vascular endothelial
cells (Q). Original magnification: �200 or �400. CON, control; KO, knockout; WT, wild-type. (A high-quality digital representation of this figure
is available in the online issue.)
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and 10% FCS for 24 h to allow cell attachment. Serum-free medium was then
added for 24 h to synchronize the cells in the G0 phase. DNA synthesis was
measured by [3H]thymidine incorporation: 2 �Ci/ml [3H]thymidine was added
for 16 h in the presence or absence of either 450 mg/dl glucose or 50 ng/ml
PDGF-BB. Cells were washed twice with PBS, trypsinized, and harvested onto
filter paper using an automated cell harvester (Dynatech Laboratories, Chan-
tilly, VA). [3H]thymidine incorporation was measured in a scintillation
counter. Cell proliferation was further measured using the 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium assay (Roche Diagnostics). Results were
plotted as means of 12 different values. Experiments were repeated three
times with two different cell preparations. In a second set of experiments,
MMCs (15 � 104) were seeded into six-well plates, stimulated as described
above, trypsinized, and counted using a hemocytometer. D-Mannose (450
mg/dl) served as an osmotic control.
Quantitative real-time PCR. Rested MMCs were either stimulated with 25
ng/ml epidermal growth factor (EGF), basic fibroblast growth factor (bFGF),
TGF-�1 (all from PeproTech, Hamburg, Germany), or PDGF-BB for 12, 24, and
48 h or treated as described for Northern blots. RNA was purified using a RNA
extraction kit. For quantitative PCR amplifications of Col8a1, DNase I–treated
first-strand cDNA was used with components of the SYBR Green JumpStart
Taq Ready Mix (Sigma) on an AbiPrism NN8650 system. The cycling param-

eters were 50°C for 2 min and 95°C for 10 min, followed by 40 cycles of 95°C
for 15 s and 60°C for 1 min. In each experiment, three or more identical PCRs
of Col8a1 and the control RNA 18S were run using the primers for 18S (sense
5	-CACGGCCGGTACAGTGAAAC-3	 and antisense 5	-AGAGGAGCGAGCGAC-
CAAA-3	) and for Col8a1 (sense 5	-TCTGCCACCTCAAATCCCTCCTCA-3	 and
antisense 5	-TCTCCGCGCAAACTGGCTAACG-3	). The data were calculated
by the comparative Ct method (2�

Ct method), by which 

Ct � 
Ct
sample � 
Ct reference. Threshold cycles were determined using the default
threshold levels, and the average threshold cycles were normalized for
amplification of 18S as an internal control to correct for small variations in
RNA quantity and cDNA synthesis. Relative expression levels were normal-
ized to the unstimulated control. Melting curves and 3% NuSieve agarose gel
electrophoresis were used to verify the absence of nonspecific PCR products.
Three separate experiments were performed for each experiment, and one
representative experiment is shown.
Statistical analysis. All data are presented as means � SE. Statistical
significance between multiple groups was tested with the Kruskal-Wallis test.
Individual groups were subsequently tested using the Wilcoxon-Mann-Whitney
test. P � 0.05 was considered significant. Experiments that did not yield
enough independent data points for statistical analysis because of the
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expression in MMCs after 6 h. C: mRNA of murine corneal endothelial cell (mCEC) represent a positive control. D: Representative real-time PCR
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experimental setup were repeated three times; one representative experiment
is shown.

RESULTS

STZ-induced diabetes in wild-type and Col8a1
�/

Col8a2
� mice. Type VIII collagen was shown to be

expressed by mesangial cells. We therefore hypothesized
that lack of type VIII collagen may alter early mesangial
changes seen in diabetic nephropathy. We induced diabe-
tes by the short high-dose protocol of repeated STZ
injections. Both wild-type and Col8a1�/Col8a2� mice in-
jected with STZ developed elevated levels of blood
glucose as well as glucosuria. At the end of the study the
diabetic wild-type and Col8a1�/Col8a2� mice had failed
to gain weight compared with the nondiabetic controls,
but there was no significant difference between wild-
type and knockout mice (Table 1 and data not shown).
STZ-treated mice developed albuminuria. However, the
albumin excretion of diabetic Col8a1�/Col8a2� mice
was significantly lower compared with that of the
wild-type mice (P � 0.05) (Table 1). Plasma BUN
increased significantly with diabetes (P � 0.05), but
there was no significant difference between genotypes
(Fig. 1D). Tail plethysmography revealed no significant
difference (P � 0.8) in systolic blood pressure of
untreated wild-type (100 � 3.8 mmHg, n � 5) and
Col8a1�/Col8a2� mice (99.2 � 5.8 mmHg, n � 5).
Reduced mesangial expansion and cellularity in
Col8a1

�/Col8a2
� mice. Histological analysis revealed

the characteristic features of STZ-induced diabetic kidney
lesions in the wild-type mice as described previously (34).
Morphometric quantification of the glomerular tuft area in
proportion to the total area of the glomerular cross section
revealed a significant increase in diabetic wild-type mice
(68.4 � 4.7%) compared with nondiabetic controls (60.5 �
2.0%, P � 0.05) (Fig. 1A). In contrast, diabetic Col8a1�/
Col8a2� mice (62.5 � 4.3%) had no significant increase
compared with nondiabetic Col8a1�/Col8a2� animals
(58.9 � 1.5%). This finding was supported by increased
immunohistochemical staining for type IV collagen (Fig.
2A–D) and laminin (Fig. 2E–H).

In addition, diabetic wild-type mice showed significant
glomerular hypercellularity (14.6 � 1.4 vs. 10.3 � 1.2
nuclei/1,000 glomerular micrometers squared in nondia-

betic wild-type mice, P � 0.05), whereas there was no
difference in STZ Col8a1�/Col8a2� mice (12 � 1.6 vs.
10.7 � 1.7 nuclei/1,000 glomerular �m2) (Fig. 1B). Exam-
ples of PAS stainings are shown in Fig. 1E–H. No signifi-
cant difference was observed in the glomerular volume
(Fig. 1C). The interstitial capillary density showed no
significant difference (CD31� pixels: wild-type controls,
1.37 � 0.45%; wild-type STZ treated, 1.37 � 0.52%; knock-
out controls, 1.49 � 0.51%; and knockout STZ treated,
1.46 � 0.45; NS, n � 10–12 for each group).
Expression of type VIII collagen in glomeruli of

STZ-treated wild-type mice. Type VIII collagen was
detected by immunofluorescence in the mesangium, in the
interstitium, and around blood vessels in diabetic wild-
type mice, whereas staining in the control mice only was
seen within the adventitia and the endothelium of arteries
(Fig. 2I–K). As expected, no staining was detectable in
Col8a1�/Col8a2� mice (Fig. 2L). Because the knockout
mice contain an EGFP gene driven by the Col8a1 promo-
tor, we also studied EGFP expression in STZ-treated and
control Col8a1�/Col8a2� mice. The distribution was com-
parable to that in the wild-type mice in both the STZ-
treated and the control groups (Fig. 2M–P). EGFP did not
colocalize with CD31/PECAM-1, indicating that type VIII
collagen is not synthesized by glomerular endothelial cells
(Fig. 2Q).
High glucose induces Col8a1 but not Col8a2 in mes-

angial and tubular epithelial cells. To further investi-
gate potential mechanisms, we evaluated mRNA
expression of Col8a1 and Col8a2 in mesangial cells
(MMCs), glomerular endothelial cells, and tubular epithe-
lial cells (MCTs) under high-glucose conditions. Northern
blot analysis revealed an increase of Col8a1 in MMCs and
MCTs after 24 h, whereas Col8a2 expression was not
detectable (Fig. 3A). A time course experiment in MMCs
showed that Col8a1 mRNA expression under high-glucose
conditions was already present at 6 h (Fig. 3B and C). A
real-time PCR was performed to quantify this effect.
Col8a1 mRNA expression was raised after 6 h and peaked
at 24 h. Increasing D-mannose concentrations to equios-
molar concentrations had no effect, indicating that the
high-glucose effect is independent of the medium osmolar-
ity (Fig. 3D).
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TGF-�1 was the strongest inductor of Col8a1 after 24 h followed by PDGF-BB, EGF, and bFGF (B). C: Stimulation for 48 h with TGF-�1 still had
an effect on the Col8a1 expression, but none by bFGF, EGF, and PDGF-BB. Bars represent SE; *P < 0.05.

TYPE VIII COLLAGEN IN DIABETIC NEPHROPATHY

1676 DIABETES, VOL. 58, July 2009



PDGF-BB is an early regulator of Col8a1 in MMCs.
Because growth factors such as PDGF-BB and TGF-�1
(4,10) have been implicated in the pathogenesis of diabetic
glomerulosclerosis, we determined the response of MMCs
to different cytokines by real-time PCR. Wild-type MMCs
were stimulated with EGF, bFGF, PDGF-BB, or TGF-�1
(Fig. 4). At 12 h, PDGF-BB (2.0 � 0.4; P � 0.05) and bFGF
(1.8 � 0.1; P � 0.05) induced Col8a1 �2-fold, whereas
there was no TGF-�1 (1.0 � 0.6) or EGF effect (0.7 � 0.0).
At 24 and 48 h, TGF-�1 (24 h 4.2 � 0.2, 48 h 1.8 � 0.2; P �
0.005) was the strongest inductor. PDGF-BB and bFGF
had a sustained effect at 24 h but not at 48 h. These results
suggest that PDGF-BB and bFGF are early regulators of
Col8a1 expression, whereas TGF-�1 is more important at
a later time point.
Decreased proliferation of Col8a1

�/Col8a2
� MMCs.

We isolated Col8A1�/Col8A2� and wild-type MMCs
to compare their ability to proliferate in response to

glucose and PDGF-BB. Characterization of the primary
mesangial cell cultures showed the expected elongated
stellate shape in wild-type and Col8a1�/Col8a2� mice
(Fig. 5). By immunofluorescence, the cells stained pos-
itive for vimentin, desmin, and smooth muscle actin and
were negative for CD31/PECAM-1. Wild-type MMCs
were positive for type VIII collagen, whereas Col8a1�/
Col8a2� MMC stained for EGFP. [3H]thymidine incor-
poration and cell counts were used as an index of MMC
proliferation (Fig. 6A and B). High glucose stimulated
cell proliferation significantly less in Col8a1�/Col8a2�

MMCs than in wild-type MMCs. Stimulation with
PDGF-BB had an identical effect (Fig. 6C and D).
D-Mannose had no impact on cell proliferation (Fig. 6I).
Transfection of Col8A1 into Col8a1�/Col8a2� MMCs
reversed the phenotype and prevented the decrease of
proliferation in the Col8a1�/Col8a2� cells after chal-
lenge with high glucose or PDGF-BB (Fig. 6E–H).

FIG. 5. Characterization of MMCs. The isolated mesangial cells showed the expected elongated stellate shape (A and B). An antibody against collagen
VIII–stained wild-type (C) but not Col8a1�/Col8a2� MMCs (D), whereas EGFP was stained in Col8a1�/Col8a2� (F) but not wild-type MMCs (E).
Intermediate filaments typical for MMCs stained positive: vimentin (G and H) and desmin (K and L). An antibody against cytoskeletal �–smooth muscle
actin distinguished MMCs from fibroblasts (I and J). Staining MMCs with antibodies against markers specific for vascular endothelial cells such as
CD31/PECAM-1 was negative (M and N). An isotype matched mouse IgG was used as control (O). Wild-type: A, C, E, G, I, K, M, and O; Col8a1�/Col8a2�:

B, D, F, H, J, L, and N. Original magnification: �200. (A high-quality digital representation of this figure is available in the online issue.)
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The discoidin domain receptor tyrosine kinase (DDR1)
functions as a collagen receptor on MMCs and signals by
mitogen-activated protein kinase (MAPK) phosphorylation
(35). Because Col8a1�/Col8a2� MMCs proliferated at a
slower pace than wild-type MMCs, we evaluated the
amount of ERK1/2 (p42/p44) MAPK phosphorylation (Fig.
6J). Compared with wild-type cells, Col8a1�/Col8a2�

cells had a lower pp42/44 level in the resting state. Upon
stimulation with PDGF-BB, Col8a1�/Col8a2� MMCs
showed markedly decreased p42/44 phosphorylation com-
pared with wild-type MMCs.

Because increased proliferation is associated with a de-
crease in the cell cycle inhibitor p27Kip1 and MAPK directly
phosphorylated and stabilized p27Kip1 (36), we investigated
whether type VIII collagen also alters the expression of
p27Kip1 (Fig. 6K). As predicted, PDGF-BB induced downregu-
lation of p27Kip1 in wild-type MMCs. In contrast, the levels of

p27Kip1 were increased in Col8a1�/Col8a2� MMCs, and
stimulation with PDGF-BB had no further effect.
Overexpression of Col8a1 leads to increased prolif-
eration of MMCs. An MMC cell line overexpressing
Col8a1 was generated. A 2.5 � 0.2-fold mRNA overexpres-
sion was determined by real-time PCR (data not shown).
Stimulation with high glucose or PDGF-BB for 24 h
resulted in a significant increase in thymidine incorpora-
tion and cell counts compared with those in mock-
transfected cells (Fig. 7A–D). A mild induction of p42/44
was found, which was enhanced on stimulation with
PDGF-BB (Fig. 7E).

DISCUSSION

Mesangial cells are a major player in the maintenance of
glomerular integrity. This is accomplished in part through
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FIG. 6. Decreased proliferation of MMCs in Col8a1�/Col8a2� MMCs. Thymidine incorporation by Col8a1�/Col8a2� MMCs was significantly
attenuated compared with that in wild-type controls (after glucose [A] and PDGF-BB stimulation [C]). Cell proliferation was also assessed by cell
counts in the presence or absence of high glucose (B) or PDGF-BB (D). E–H: Transfection of Col8A1 reversed the phenotype. I: Increased
mannose concentrations had no impact upon proliferation. J: Further, compared with the wild type, Col8a1�/Col8a2� cells had a lower pp42/pp44
level at the resting state and after stimulation with PDGF-BB in Western blots. K: p27Kip1 levels were increased in Col8a1�/Col8a2� MMCs, and
stimulation with PDGF-BB had no further effect. *P < 0.01 vs. wild-type MMC. Bars represent SE. CON, control; KO, knockout; WT, wild-type.
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expression of ECM proteins and growth factors. In dia-
betic glomerulosclerosis, elevated glucose results in pro-
nounced alterations of mesangial cell function with an
early limited proliferation of mesangial cells (4–8), fol-
lowed by cell cycle arrest, hypertrophy (3), excess produc-
tion, and decreased degradation of ECM components
including collagens, fibronectin, laminin, and proteogly-
cans (37). These multiple steps are orchestrated by growth
factors and hormones (10,12).

Several features of type VIII collagen suggest that it
could play an important role in mesangial cell function and
the pathogenesis of diabetic glomerulosclerosis. It is part
of the mesangial matrix in diabetic nephropathy (30,31),
mesangial cells synthesize �1(VIII) collagen (16,29), and
type VIII collagen has been shown to modulate cell prolif-
eration of diverse cells including vascular smooth muscle

cells (23,27,38). We used genetically modified mice defi-
cient in both Col8 genes to test its role in diabetic
nephropathy in the STZ model (21). Several principal
findings emerged from our study: 1) in the absence of type
VIII collagen the severity of the glomerular changes is
markedly attenuated and albuminuria is improved, 2) high
glucose, PDGF-BB, and TGF-�1 are strong inducers of
Col8a1 gene expression in MMCs, and 3) �1(VIII) collagen
permits and/or stimulates MMC proliferation.

Our in vivo data clearly show that type VIII collagen is
necessary for mesangial matrix expansion as well as for
hypercellularity. Type VIII collagen accumulated in the
mesangium of diabetic wild-type mice. This finding is
consistent with previous reports of human kidney biopsies
(30,31). Our in vitro data help to explain this difference.
High glucose increases Col8a1 mRNA expression by mes-
angial cells, whereas Col8a2 mRNA was not detectable.
This result suggests the formation of �1(VIII) collagen
homotrimers in the diabetic mesangium. Growth factors
such as PDGF-BB, bFGF, and TGF-�1 have been impli-
cated in the pathogenesis of diabetic glomerulosclerosis
(4,9), and the expression of Col8a1 in vascular smooth
muscle cells has been described after stimulation with
these factors (25,26). Therefore, it is not surprising that
PDGF-BB and bFGF act as early regulators of Col8a1
expression in MMCs followed by TGF-�1. This kinetic
effect parallels the early activation of a PDGF loop that, in
turn, causes an increase in TGF-�1 expression, thus mod-
ulating both mesangial cell proliferation and matrix pro-
duction (11,39). Induction of diabetic nephropathy is
associated with increased proliferation of mesangial cells,
and treatment of diabetic mice with antagonists for the
PDGF receptor reduced the number of proliferating cells
(4). MMCs with inactivated Col8a1 and Col8a2 genes
proliferate less in response to high glucose or growth
factors than wild-type MMCs. In addition, overexpression
of �1(VIII) collagen results in increased cell growth. Type
VIII collagen is expressed by a number of rapidly prolifer-
ating cells, and it promotes vascular smooth muscle cell
migration and proliferation during vascular remodeling
(21–24,27). Therefore, pericellular type VIII collagen may
help maintain the mesangial cells in a proliferative state
during early development of diabetic nephropathy. This
hypothesis is consistent with the finding that Col8a1�/
Col8a2� vascular smooth muscle cells exhibited lower
proliferation rates than wild-type cells when plated on
type I collagen (27), thus suggesting that endogenously
produced type VIII collagen allows smooth muscle cells to
overcome the inhibitory effects of type I collagen on
proliferation, which may also be important in the context
of diabetic nephropathy.

Because systolic blood pressure was not significantly
different in wild-type and Col8a1�/Col8a2� mice and no
significant change in interstitial capillary density was
observed, we think that the change in the mesangium
phenotype is the major mechanism explaining the attenu-
ation of diabetic nephropathy in Col8a1�/Col8a2� mice.

Over the last few years toxicity has become a major
concern in the STZ model of diabetes (34). STZ has a
dose-dependent tubular toxicity, resulting in renal dys-
function and acute tubular necrosis (40). Therefore, stud-
ies of renal function and tubulointestinal changes should
be interpreted with caution because it is difficult to dissect
the contribution of hyperglycemia and toxicity, especially
in high-dose protocols as used in our study. However, to
our knowledge, there is no evidence that the diffuse
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glomerulosclerosis in the STZ model can also be attributed
to a toxic side effect of SZT. In humans, STZ does not
cause diabetes (41) and is used to treat metastatic islet cell
carcinomas of the pancreas. Although renal tubulotoxicity
is the major dose-limiting side effect of this drug (42),
there have been no reports of diffuse or nodular glomeru-
losclerosis in 25 years in clinical use. In mice, several
studies comparing low- and high-dose protocols showed a
similar degree of diffuse glomerulosclerosis in both groups
(34,43). In addition, blood glucose control by insulin
treatment of rats rendered diabetic with STZ prevented
diffuse glomerulosclerosis (44).

MAPKs, including ERK1/2 (p42/p44), play a key role in
the intracellular signal transduction cascade to integrate
the transcription of genes responsible for a variety of
cellular responses relevant to diabetic nephropathy (45).
Our data indicate a role of type VIII collagen in activating
ERK1/2. This activation may be achieved through the
collagen receptor DDR1, which is a key regulator of
mesangial cell proliferation and is stimulated by type VIII
collagen (35,46). Whereas the unstimulated receptor sup-
presses ERK1/2 activation, the activated DDR1 induces
ERK1/2 phosphorylation and subsequent proliferation.
Mesangial cell proliferation is governed at the level of the
cell cycle by regulatory proteins. Specifically, cyclin-
dependent kinase inhibitors including p27Kip1 limit cell
proliferation by binding to and inhibiting cyclin-cyclin–
dependent kinase complexes (47). Consistent with de-
creased proliferation in Col8a1�/Col8a2� MMCs, the
levels of p27Kip1 were increased compared with those in
wild-type mice.

In summary, we provided evidence that type VIII colla-
gen acts as an important messenger molecule regulating
mesangial cell responses during diabetic nephropathy. The
lack of type VIII collagen confers renoprotection in the
STZ model of diabetic nephropathy. We concluded that
type VIII collagen may function to permit and/or foster
mesangial cell proliferation in the early stage of diabetic
nephropathy.
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