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The function of proteins arises from cooperative interactions
and rearrangements of their amino acids, which exhibit large-
scale dynamical modes. Long-range correlations have also been
revealed in protein sequences, and this has motivated the search
for physical links between the observed genetic and dynamic
cooperativity. We outline here a simplified theory of protein,
which relates sequence correlations to physical interactions and
to the emergence of mechanical function. Our protein is mod-
eled as a strongly coupled amino acid network with interactions
and motions that are captured by the mechanical propagator,
the Green function. The propagator describes how the gene
determines the connectivity of the amino acids and thereby, the
transmission of forces. Mutations introduce localized perturba-
tions to the propagator that scatter the force field. The emergence
of function is manifested by a topological transition when a
band of such perturbations divides the protein into subdomains.
We find that epistasis—the interaction among mutations in the
gene—is related to the nonlinearity of the Green function, which
can be interpreted as a sum over multiple scattering paths. We
apply this mechanical framework to simulations of protein evolu-
tion and observe long-range epistasis, which facilitates collective
functional modes.

protein evolution | epistasis | genotype-to-phenotype map |
Green function | dimensional reduction

A common physical basis for the diverse biological functions
of proteins is the emergence of collective patterns of forces

and coordinated displacements of their amino acids (1–13). In
particular, the mechanisms of allostery (14–18) and induced
fit (19) often involve global conformational changes by hinge-
like rotations, twists, or shear-like sliding of protein subdomains
(20–22). An approach to examine the link between function
and motion is to model proteins as elastic networks (23–26).
Decomposing the dynamics of the network into normal modes
revealed that low-frequency “soft” modes capture functionally
relevant large-scale motion (27–30), especially in allosteric pro-
teins (31–33). Recent works associate these soft modes with the
emergence of weakly connected regions in the protein (Fig. 1
A and B)—“cracks,” “shear bands,” or “channels” (21, 22, 34–
36)—that enable viscoelastic motion (37, 38). Such patterns of
“floppy” modes (39–42) emerge in models of allosteric proteins
(36, 43–45) and networks (46–48).

Like their dynamic phenotypes, proteins’ genotypes are
remarkably collective. When aligned, sequences of protein fam-
ilies show long-range correlations among the amino acids (49–
61). The correlations indicate epistasis, the interaction among
mutations that takes place among residues linked by physical
forces or common function. By inducing nonlinear effects, epis-
tasis shapes the protein’s fitness landscape (62–68). Provided
with sufficiently large data, analysis of sequence variation can
predict the 3D structure of proteins (50–52), allosteric pathways
(53–55), epistatic interactions (56, 57), and coevolving subsets of
amino acids (58–60, 69).

Still, the mapping between sequence correlation and collec-
tive dynamics—and in particular, the underlying epistasis—is not

fully understood. Experiments and simulations provide valuable
information on protein dynamics, and extensive sequencing accu-
mulates databases required for reliable analysis; however, there
remain inherent challenges: the complexity of the physical inter-
actions and the sparsity of the data. The genotype-to-phenotype
map of proteins connects spaces of huge dimension, which are
hard to sample, even by high-throughput experiments or natural
evolution (70–72). A complementary approach is the applica-
tion of simplified coarse-grained models, such as lattice proteins
(73–75) or elastic networks (24), which allow one to extensively
survey the map and examine basic questions of protein evolu-
tion. Such models have been recently used to study allosteric
proteins (35, 36, 43–45) and in networks (46–48). Our aim
here is different: to construct a simplified model of how the
collective dynamics of functional proteins directs their evolu-
tion and in particular, to give a mechanical interpretation of
epistasis.

This paper introduces a coarse-grained theory that treats pro-
tein as an evolving amino acid network with topology that is
encoded in the gene. Mutations that substitute one amino acid
with another tweak the interactions, allowing the network to
evolve toward a specific mechanical function: in response to a
localized force, the protein will undergo a large-scale conforma-
tional change (Fig. 1 C and D). We show that the application of
a Green function (76, 77) is a natural way to understand the pro-
tein’s collective dynamics. The Green function measures how the
protein responds to a localized impulse via propagation of forces
and motion. The propagation of mechanical response across the
protein defines its fitness and directs the evolutionary search.
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Fig. 1. Protein as an evolving machine and propagation of mechanical forces. (A) Formation of a softer shear band (red) separating the protein into two
rigid subdomains (light blue). When a ligand binds, the biochemical function involves a low-energy hinge-like or shear motion (arrows). (B) Shear band and
large-scale motion in a real protein: the arrows show the displacement of all amino acids in human glucokinase when it binds glucose (Protein Data Bank ID
codes 1v4s and 1v4t). The coloring shows a high-shear region (red) separating two low-shear domains that move as rigid bodies (shear calculated as in refs.
21 and 36). (C) The mechanical model. The protein is made of two species of amino acids, polar (P; red) and hydrophobic (H; blue), with a sequence that
is encoded in a gene. Each amino acid forms weak or strong bonds with its 12 near neighbors (Right) according to the interaction rule in the table (Left).
(D) The protein is made of 10× 20 = 200 amino acids with positions that are randomized from a regular triangular lattice. Strong bonds are shown as gray
lines. Evolution begins from a random configuration (Left) and evolves by mutating one amino acid at each step, switching between H and P. The fitness is
the mechanical response to a localized force probe (pinch) (2). After ∼ 103 mutations (Center; intermediate stage), the evolution reaches a solution (Right).
The green arrows show the mechanical response: a hinge-like, low-energy motion with a shear band starting at the probe and traversing the protein,
qualitatively similar to B. L, left; R, right.

Thus, the Green function explicitly defines the map: gene →
amino acid network → protein dynamics → function. We use
this map to examine the effects of mutations and epistasis. A
mutation perturbs the Green function and scatters the propaga-
tion of force through the protein (Fig. 2). We quantify epistasis

in terms of “multiple scattering” pathways. These indirect phys-
ical interactions appear as long-range correlations in the co-
evolving genes.

Using a Metropolis-type evolution algorithm, solutions are
quickly found, typically after∼103 steps. Mutations add localized
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Fig. 2. Force propagation, mutations, and epistasis. (A) The Green func-
tion G measures the propagation of the mechanical signal, depicted as a
“diffraction wave,” across the protein (blue) from the force source f (pinch)
to the response site v. (B) A mutation δHi deflects the propagation of
force. The effect of the mutation on the propagator δG can be described
as a series of multiple scattering paths (6). (C) The epistasis between two
mutations, δHi and δHj , is equivalent to a series of multiple scattering
paths (9).

perturbations to the amino acid network, which are eventually
arranged by evolution into a continuous shear band. Protein
function is signaled by a topological transition, which occurs
when a shearable band of weakly connected amino acids sep-
arates the protein into rigid subdomains. The set of solutions
is sparse: there is a huge reduction of dimension between the
space of genes to the spaces of force and displacement fields.
We find a tight correspondence between correlations in the
genotype and phenotype. Owing to its mechanical origin, epis-
tasis becomes long ranged along the high-shear region of the
channel.

Model: Protein as an Evolving Machine
The Amino Acid Network and Its Green Function. We use a coarse-
grained description in terms of an elastic network (23–27, 39)
with connectivity and interactions that are encoded in a gene
(Fig. 1 C and D). Similar vector elasticity models were consid-
ered in refs. 35 and 36 (app. B3 therein). The protein is a chain
of na = 200 amino acids: ai (i = 1, . . .,na) folded into a 10× 20
2D hexagonal lattice (d = 2). We follow the HP model (73, 74)
with its two species of amino acids, hydrophobic (ai = H) and
polar (ai = P). The amino acid chain is encoded in a gene c, a
sequence of 200 binary codons, where ci = 1 encodes an H amino
acid and ci = 0 encodes a P amino acid.

We consider a constant fold, and therefore, any particular
codon ci in the gene encodes an amino acid ai at a certain con-
stant position ri in the protein. The positions ri are randomized
to make the network amorphous. These nd = d ·na = 400 dfs are
stored in a vector r. Except the ones at the boundaries, every
amino acid is connected by harmonic springs to z = 12 near-
est and next nearest neighbors. There are two flavors of bonds
according to the chemical interaction, which is defined as an
AND gate: a strong H−H bond and weak H−P and P−P
bonds. The strength of the bonds determines the mechanical
response of the network to a displacement field u, when the
amino acids are displaced as ri→ ri + ui . The response is cap-
tured by Hooke’s law that gives the force field f induced by a
displacement field, f = H(c) u . The analogue of the spring con-
stant is the Hamiltonian H(c), a nd ×nd matrix, which records
the connectivity of the network and the strength of the bonds.
H(c) is a nonlinear function of the gene c, reflecting the amino
acid interaction rules of Fig. 1C (Eq. 11, Materials and Methods).

Evolution searches for a protein that will respond by a pre-
scribed large-scale motion to a given localized force f (“pinch”).
In induced fit, for example, specific binding of a substrate should
induce global deformation of an enzyme. The response u is
determined by the Green function G (76):

u = G(c) f . [1]

G is the mechanical propagator that measures the transmis-
sion of signals from the force source f across the protein (Fig.
2A). Eq. 1 constitutes an explicit genotype-to-phenotype map
from the genotype c to the mechanical phenotype u: c→ u(c) =
G(c)f. This reflects the dual nature of the Green function G:
in the phenotype space, it is the linear mechanical propaga-
tor that turns a force into motion, u = G f, whereas it is also
the nonlinear function that maps the gene into a propagator,
c→G(c).

When the protein is moved as a rigid body, the lengths of the
bonds do not change, and the elastic energy cost vanishes. A 2D
protein has n0 = 3 such zero modes (Galilean symmetries), two
translations, and one rotation, and H is, therefore, always singu-
lar. Hence, Hooke’s law and [1] imply that G is the pseudoinverse
of the Hamiltonian, G(c) = H(c)+ (78, 79), which amounts to
inversion of H in the nonsingular subspace of the nd −n0 = 397
nonzero modes (Materials and Methods). A related quantity is
the resolvent, G(ω) = (ω−H)−1, with poles at the energy levels
of H, ω=λk .

The fitness function rewards strong mechanical response to a
localized probe (pinch in Fig. 1D): a force dipole at two neigh-
boring amino acids p′ and q ′ on the left side of the protein (L
in Fig. 1D), fq′ =−fp′ . The prescribed motion is specified by a
displacement vector v, with a dipolar response, vq =−vp , on the
right side of the protein (R in Fig. 1D). The protein is fitter if the
pinch f produces a large deformation in the direction specified
by v. To this end, we evolve the amino acid network to increase
a fitness function F , which is the projection of the displacement
u = Gf on the prescribed response v:

F (c) = vᵀu = vᵀG(c) f . [2]

Eq. 2 defines the fitness landscape F(c). Here, we examine partic-
ular examples for a localized pinch f and prescribed response v,
which drive the emergence of a hinge-like mode. This approach
is general and can as well treat more complex patterns of force
and motion.

Evolution Searches in the Mechanical Fitness Landscape. Our simu-
lations search for a prescribed response v induced by a force f
applied at a specific site on the left side (pinch). The prescribed
dipolar response may occur at any of the sites on the right side.
This gives rise to a wider shear band that allows the protein
to perform general mechanical tasks (unlike specific allostery
tasks of communicating between specified sites on L and R). We
define the fitness as the maximum of F [2] over all potential loca-
tions of the channel’s output (typically 8–10 sites) (Materials and
Methods). The protein is evolved via a point mutation process
where, at each step, we flip a randomly selected codon between
zero and one. This corresponds to exchanging H and P at a ran-
dom position in the protein, thereby changing the bond pattern
and the elastic response by softening or stiffening the amino acid
network.

Evolution starts from a random protein configuration encoded
in a random gene. Typically, we take a small fraction of amino
acid of type P (about 5%) randomly positioned within a majority
of H (Fig. 1D, Left). The high fraction of strong bonds renders
the protein stiff and therefore, of low initial fitness F ' 0. At
each step, we calculate the change in the Green function δG (by
a method explained below) and use it to evaluate from [2] the
fitness change δF :

δF = vᵀδG f. [3]

The fitness change δF determines the fate of the mutation:
we accept the mutation if δF ≥ 0; otherwise, the mutation is
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rejected. Since fitness is measured by the criterion of strong
mechanical response, it induces softening of the amino acid
network.

The typical evolution trajectory lasts about 103 steps. Most
are neutral mutations (δF ' 0) and deleterious ones (δF < 0);
the latter are rejected. About a dozen or so beneficial muta-
tions (δF > 0) drive the protein toward the solution (Fig. 3A).
The increase in the fitness reflects the gradual formation of the
channel, while the jump in the shear signals the emergence of
the soft mode. The first few beneficial mutations tend to form
weakly bonded P-enriched regions near the pinch site on the left
side and close to the right boundary of the protein. The follow-
ing ones join these regions into a floppy channel (a shear band),
which traverses the protein from left to right. We stop the sim-
ulation when the fitness reaches a large positive value Fm∼ 5.
The corresponding gene c∗ encodes the functional protein. The
ad hoc value Fm∼ 5 signals slowing down of the fitness curve
toward saturation at F >Fm, as the channel has formed and now
only continues to slightly widen. In this regime, even a tiny pinch

will easily excite a large-scale motion with a distinct high-shear
band (Fig. 1D, Right).

Results
Mechanical Function Emerges at a Topological Transition. The hall-
mark of evolution reaching a solution gene c∗ is the emer-
gence of a new zero-energy mode, u∗, in addition to the three
Galilean symmetry modes. Near the solution, the energy of
this mode λ∗ almost closes the spectral gap, λ∗→ 0, and G(ω)
has a pole at ω≈ 0. As a result, the emergent mode domi-
nates the Green function, G' u∗uᵀ

∗/λ∗. The response to a pinch
will be mostly through this soft mode, and the fitness [2] will
diverge as

F (c∗)'F∗=
(vᵀu∗)(uᵀ

∗f)
λ∗

. [4]

On average, we find that the fitness increases exponentially with
the number of beneficial mutations (Fig. 3A). However, ben-
eficial mutations are rare and are separated by long stretches
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Fig. 3. The mechanical Green function and the emergence of protein function. (A) Progression of the fitness F during the evolution run shown in Fig. 1D
(black) together with the fitness trajectory averaged over ∼ 106 runs 〈F〉 (red). Shown are the last 16 beneficial mutations toward the formation of the
channel. The contribution of the emergent low-energy mode 〈F∗〉 (blue) dominates the fitness [4]. (B) Landscape of the fitness change δF [3] averaged over
∼ 106 solutions for all 200 possible positions of point mutations at a solution. Underneath, the average amino acid configuration of the protein is shown
in shades of red (P) and blue (H). In most sites, mutations are neutral, while mutations in the channel are deleterious on average. L, left. (C) The average
magnitude of the two-codon correlation |Qij| [5] in the shear band (amino acids in rows 7–13; red) and in the whole protein (black) as a function of the
number of beneficial mutations, t. (Inset) Profile of the spatial correlation g(r) within the shear band (after t = 1, 11, 16 beneficial mutations). (D) The mean
shear in the protein in a single run (black) and averaged over ∼ 106 solutions (red) as a function of the fraction of P amino acids, p. The values of p are
shifted by the position of the jump, pc. (Inset) Distribution of pc.
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of neutral mutations. This is evident from the fitness landscape
(Fig. 3B), which shows that, in most sites, the effect of muta-
tions is practically neutral. The vanishing of the spectral gap,
λ∗→ 0, manifests as a topological change in the system: the
amino acid network is now divided into two domains that can
move independently of each other at low energetic cost. The soft
mode appears at a dynamical phase transition, where the aver-
age shear in the protein jumps abruptly as the channel is formed
and the protein can easily deform in response to the force probe
(Fig. 3D).

As the shear band is taking shape, the correlation among
codons builds up. To see this, we align genes from the ∼ 106

simulations in analogy to sequence alignment of real protein
families (49–61), albeit without the phylogenetic correlation that
hampers the analysis of real sequences. At each time step, we cal-
culate the two-codon correlation Qij between all pairs of codons
ci and cj :

Qij ≡〈cicj 〉− 〈ci〉〈cj 〉, [5]

where brackets denote ensemble averages. We find that most
of the correlation is concentrated in the forming channel (Fig.
3C), where it is 10-fold larger than in the whole protein. In the
channel, there is significant long-range correlation shown in the
spatial profile of the correlation g(r) (Fig. 3C, Inset). Analogous
regions of coevolving residues appear in real protein families
(53–55, 58–60) as well as in coarse-grained models of protein
allostery (35, 36, 43, 44) and allosteric networks (46, 47).

Point Mutations Are Localized Mechanical Perturbations. A muta-
tion may vary the strength of no more than z = 12 bonds around
the mutated amino acid (Fig. 2B). The corresponding pertur-
bation of the Hamiltonian δH is, therefore, localized, akin to
a defect in a crystal (80, 81). The mechanics of mutations can
be further explored by examining the perturbed Green function,
G′= G + δG, which obeys the Dyson equation (77, 82) (Materials
and Methods):

G′= G−G δH G′. [6]

The latter can be iterated into an infinite series

δG = G′−G =−G δH G + G δH G δH G− · · · .

This series has a straightforward physical interpretation as a sum
over multiple scatterings: as a result of the mutation, the elastic
force field is no longer balanced by the imposed force f, leaving
a residual force field δf = δH u = δH G f. The first scattering term
in the series balances δf by the deformation δu = G δf = G δH Gf.
Similarly, the second scattering term accounts for further defor-
mation induced by δu and so forth. In practice, we calculate the
mutated Green function using the Woodbury formula [12], which
exploits the localized nature of the perturbation to accelerate the
computation by a factor of ∼ 104 (Materials and Methods).

Epistasis Links Protein Mechanics to Genetic Correlations. Our
model provides a calculable definition of epistasis, the nonlin-
earity of the fitness effect of interacting mutations (Fig. 2C). We
take a functional protein obtained from the evolution algorithm
and mutate an amino acid at a site i . This mutation induces
a change in the Green function δGi (calculated by [12]) and
hence, in the fitness function δFi [3]. One can similarly perform
another independent mutation at a site j , producing a second
deviation, δGj and δFj . Finally, starting again from the origi-
nal solution, one mutates both i and j simultaneously, with a
combined effect δGi,j and δFi,j . The epistasis eij measures the
departure of the double mutation from additivity of two single
mutations:

eij ≡ δFi,j − δFi − δFj . [7]

To evaluate the average epistatic interaction among amino acids,
we perform the double-mutation calculation for all 106 solu-
tions and take the ensemble average Eij = 〈eij 〉. Landscapes of
Eij show significant epistasis in the channel (Fig. 4). Amino
acids outside the high-shear region show only small epistasis,
since mutations in the rigid domains hardly change the elastic
response. The epistasis landscapes (Fig. 4 A–C) are mostly posi-
tive, since the mutations in the channel interact antagonistically
(83): after a strongly deleterious mutation, a second mutation has
a smaller effect.

Definition [7] is a direct link between epistasis and protein
mechanics: the nonlinearity (“curvature”) of the Green func-
tion measures the deviation of the mechanical response from
additivity of the combined effect of isolated mutations at i
and j , ∆Gi,j ≡ δGi,j − δGi − δGj . The epistasis eij is simply the
inner product value of this nonlinearity with the pinch and the
response:

eij = vᵀ ∆Gi,j f. [8]

Relation [8] shows how epistasis originates from mechanical
forces among mutated amino acids.

In the gene, epistatic interactions are manifested in codon cor-
relations (56, 57) shown in Fig. 4D, which depicts two-codon
correlations Qij from the alignment of∼ 106 functional genes c∗
[5]. We find a tight correspondence between the mean epistasis
Eij = 〈eij 〉 and the codon correlations Qij . Both patterns exhibit
strong correlations in the channel region with a period equal to
channel’s length: 10 amino acids. The similarity in the patterns
of Qij and Eij indicates that a major contribution to the long-
range correlations observed among aligned protein sequences
stems from the mechanical interactions propagating through the
amino acid network.

Epistasis as a Sum over Scattering Paths. One can classify epista-
sis according to the interaction range. Neighboring amino acids
exhibit contact epistasis (49–51), because two adjacent pertur-
bations, δHi and δHj , interact nonlinearly via the AND gate of
the interaction table (Fig. 1C), ∆Hi,j ≡ δHi,j − δHi − δHj 6= 0
(where δHi,j is the perturbation by both mutations). The leading
term in the Dyson series [6] of ∆Gi,j is a single scattering from
an effective perturbation with an energy ∆Hi,j , which yields the
epistasis

eij =−vᵀ [G ∆Hi,j G]f+ · · · .
Long-range epistasis among nonadjacent, noninteracting pertur-
bations (∆Hi,j = 0) is observed along the channel (Fig. 4). In this
case, [6] expresses the nonlinearity ∆Gi,j as a sum over multiple
scattering paths, which include both i and j (Fig. 2C):

eij = vᵀ [G δHiG δHj G + G δHj G δHiG]f− · · ·. [9]

The perturbation expansion directly links long-range epistasis to
shear deformation: near the transition, the Green function is
dominated by the soft mode, G' u∗uᵀ

∗/λ∗, with fitness F given
by [4]. From [6] and [8], we find a simple expression for the
mechanical epistasis as a function of the shear:

eij 'F ·
[

hi
1 + hi

+
hj

1 + hj
− hi + hj

1 + hi + hj

]
. [10]

The factor hi ≡ uᵀ
∗δHiu∗/λ∗ in [10] is the ratio of the change

in the shear energy due to mutation at i (the expectation value
of δHi) and the energy λ∗ of the soft mode, and it is simi-
lar for hj . Thus, hi and hj are significant only in and around
the shear band, where the bonds varied by the perturbations
are deformed by the soft mode. When both sites are outside
the channel, hi , hj � 1, the epistasis [10] is small, eij ' 2hihjF .
It remains negligible even if one of the mutations, i , is in
the channel, hj � 1� hi , and eij ' hjF . Epistasis can only be
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Fig. 4. Mechanical epistasis. The epistasis [7], averaged over ∼ 106 solutions Eij = 〈eij〉, between a fixed amino acid at position i (black arrow) and all
other positions j. Here, i is located at (A) the binding site, (B) the center of the channel, and (C) slightly off the channel. Underneath, the average amino
acid configuration of the protein is drawn in shades of red (P) and blue (H). Significant epistasis mostly occurs along the P-rich channel, where mechanical
interactions are long ranged. Although epistasis is predominantly positive, negative values also occur, mostly at the boundary of the channel (C). Landscapes
are plotted for specific output site at right. L, left. (D) The two-codon correlation function Qij [5] measures the coupling between mutations at positions i
and j [5]. The epistasis Eij and the gene correlation Qij show similar patterns. Axes are the positions of i and j loci. Significant correlations and epistasis occur
mostly in and around the channel region (positions ∼70–130, rows 7–13).

long ranged along the channel when both mutations are sig-
nificant, hi , hj � 1, and eij 'F

[
1− h−1

i − h−1
j + (hi + hj )

−1]'
F [1− 1/min(hi , hj )]. We conclude that epistasis is maximal
when both sites are at the start or end of the channel as illus-
trated in Fig. 4. The nonlinearity of the fitness function gives rise
to antagonistic epistasis.

Geometry of Fitness Landscape and Gene-to-Function Map. With
our mechanical evolution algorithm, we can swiftly explore
the fitness landscape to examine its geometry. The genotype
space is a 200D hypercube with vertices that are all possi-
ble genes c. The phenotypes reside in a 400D space of all
possible mechanical responses u. The Green function provides
the genotype-to-phenotype map [1]. A functional protein is
encoded by a gene c∗ with fitness that exceeds a large threshold,
F (c∗)≥Fm' 5, and the functional phenotype is dominated by
the emergent zero-energy mode, u(c∗)' u∗ (Fig. 3A). We also
characterize the phenotype by the shear field s∗ (Materials and
Methods).

The singular value decomposition (SVD) of the 106 solutions
returns a set of eigenvectors with ordered eigenvalues that show
their significance in capturing the data (Materials and Meth-
ods). The SVD spectra reveal strong correspondence between
the genotype c∗ and the phenotype, u and s∗ (Fig. 5). In all
three datasets, the largest eigenvalues are discrete and stand

out from the bulk continuous spectrum. These are the col-
lective dfs, which show loci in the gene and positions in the
“flow” (i.e., displacement) and shear fields that tend to vary
together.

We examine the correspondence among three sets of eigen-
vectors: {Uk} of the flow, {Ck} of the gene, and {Sk} of the
shear. The first eigenvector of the flow, U1, is the hinge motion
caused by the pinch, with two eddies rotating in opposite direc-
tions (Fig. 5A). The next two modes, shear (U2) and breathing
(U3), also occur in real proteins, such as glucokinase (Fig. 1B).
The first eigenvectors of the shear S1 and of the gene sequence
C1 show that the high-shear region is mirrored as a P-rich region,
where a mechanical signal may cause local rearrangement of the
amino acids by deforming weak bonds. In the rest of the pro-
tein, the H-rich regions move as rigid bodies with insignificant
shear. The higher gene eigenvectors, Ck (k > 1), capture patterns
of correlated genetic variations. The striking similarity between
the sequence correlation patterns Ck and the shear eigenvectors
Sk shows a tight genotype-to-phenotype map, as is further shown
in the likeness of the correlation matrices of the amino acid and
shear flow (Fig. 5C).

In the phenotype space, we represent the displacement field
u in the SVD basis, {Uk} (Fig. 5B). Since ∼ 90% of the data are
explained by the first∼ 15 Uk , we can compress the displacement
field without much loss into the first 15 coordinates. This implies

E4564 | www.pnas.org/cgi/doi/10.1073/pnas.1716215115 Dutta et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1716215115


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

Fig. 5. From gene to mechanical function: spectra and dimensions. (A) The first four SVD eigenvectors (in the text) of the gene Ck (Top), the displacement
flow field Uk (Middle), and the shear Sk (Bottom). (B) Cross-sections through the set of solutions in the genotype space (Upper) and the phenotype space
(Lower). Density of solutions is color coded. The genotype cross-section is the plane defined by the eigenvectors C3− C100, and in the phenotype space, it
is defined by the eigenvectors U3−U100 (in the text). The dimensional reduction is manifested by the discoid geometry of the phenotype cloud compared
with the spheroid shape of the genotype cloud. (C) Genetic correlations Qij show similarity to correlations in the shear field, s∗ (color coded in log scale).
Corr, correlation.

that the set of solutions is a 15D discoid, which is flat in most
directions. In contrast, representation of the genes c∗ in the SVD
frame of reference (with the {Ck} basis) reveals that, in genotype
space, the solution set is an incompressible 200D spheroid (Fig.
5B). The dramatic dimensional reduction in mapping genotypes
to phenotypes stems from the different constraints that shape
them (36, 84–89).

Discussion
Theories of protein need to combine the many-body physics of
the amino acid matter with the evolution of genetic informa-
tion, which together, give rise to protein function. We introduced
a simplified theory of protein, where the mapping between
genotype and phenotype takes an explicit form in terms of
mechanical propagators (Green functions), which can be effi-
ciently calculated. As a functional phenotype, we take cooper-
ative motion and force transmission through the protein [2].
This allows us to map genetic mutations to mechanical pertur-
bations, which scatter the force field and deflect its propagation
[3 and 6] (Fig. 2). The evolutionary process amounts to solv-
ing the inverse scattering problem: given prescribed functional
modes, one looks for network configurations that yield this low
end of the dynamical spectrum. Epistasis, the interaction among
loci in the gene, corresponds to a sum over all multiple scatter-
ing trajectories or equivalently, the nonlinearity of the Green
function [7 and 8]. We find that long-range epistasis signals
the emergence of a collective functional mode in the protein.
The results of this theory (in particular, the expressions for
epistasis) follow from the basic geometry of the amino acid net-
work and the localized mutations and are, therefore, applicable
to general tasks and fitness functions with multiple inputs and
responses.

Materials and Methods
The Mechanical Model of Protein. We model the protein as an elastic net-
work made of harmonic springs (23, 24, 39, 90). The connectivity of the
network is described by a hexagonal lattice with vertices that are amino
acids and edges that correspond to bonds. There are na = 10× 20 = 200
amino acids indexed by Roman letters and nb bonds indexed by Greek let-
ters. We use the HP model (73) with two amino acid species, hydrophobic
(ai = H) and polar (ai = P). The amino acid chain is encoded in a gene c,
where ci = 1 encodes H and ci = 0 encodes P, i = 1, . . ., na. The degree zi

of each amino acid is the number of amino acids to which it is connected
by bonds. In our model, most amino acids have the maximal degree, which
is z = 12, while amino acids at the boundary have fewer neighbors, z< 12
(Fig. 1C). The connectivity of the graph is recorded by the adjacency matrix
A, where Aij = 1 if there is a bond from j to i and Aij = 0 otherwise. The gra-
dient operator∇ relates the spaces of bonds and vertices (and is, therefore,
of size nb× na): if vertices i and j are connected by a bond α, then∇αi = +1
and∇αj =−1. As in the continuum case, the Laplace operator ∆ is the prod-
uct ∆ =∇ᵀ∇. The nondiagonal elements ∆ij are−1 if i and j are connected
and 0 otherwise. The diagonal part of ∆ is the degree ∆ii = zi . Hence, we
can write the Laplacian as ∆ = Z−A, where Z is the diagonal matrix of the
degrees zi .

We embed the graph in Euclidean space Ed (d = 2) by assigning positions
ri∈Ed to each amino acid. We concatenate all positions in a vector r of
length na · d≡ nd . Finally, to each bond, we assign a spring with constant
kα, which we keep in a diagonal nb× nb matrix K. The strength of the spring
is determined by the AND rule of the HP model’s interaction table (Fig. 1C),
kα = kw + (ks− kw )cicj , where ci and cj are the codons of the amino acid
connected by bond α. This implies that a strong H−H bond has kα = ks,
whereas the weak bonds H− P and P−H have kα = kw . We usually take
ks = 1 and kw = 0.01. This determines a spring network. We also assume
that the initial configuration is such that all springs are at their equilibrium
length, disregarding the possibility of “internal stresses” (39), so that the
initial elastic energy is E0 = 0.

We define the “embedded” gradient operator D (of size nb× nd), which
is obtained by taking the graph gradient ∇ and multiplying each nonzero
element (±1) by the corresponding direction vector nij =

(
ri − rj

)
/
∣∣ri − rj

∣∣.
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Thus, D is a tensor (D =∇αinij), which we store as a matrix (α is the bond
connecting vertices i and j). In each row vector of D, which we denote as
mα≡Dα,:, there are only 2d nonzero elements. To calculate the elastic
response of the network, we deform it by applying a force field f, which
leads to the displacement of each vertex by ui to a new position ri + ui

(39). For small displacements, the linear response of the network is given
by Hooke’s law, f = Hu. The elastic energy is E = uᵀHu/2, and the Hamilto-
nian, H = DᵀKD, is the Hessian of the elastic energy E , Hij = δ2E/(δuiδuj). By

rescaling, D→K1/2D, which amounts to scaling all distances by 1/
√

kα, we
obtain H = DᵀD. It follows that the Hamiltonian is a function of the gene
H(c), which has the structure of the Laplacian ∆ multiplied by the tensor
product of the direction vectors. Each d× d block Hij (i 6= j) is a function of
the codons ci and cj :

Hij(ci , cj) = ∆ijnijn
ᵀ
ij

=−Aij
[
kw + (ks− kw)cicj

]
nijn

ᵀ
ij .

[11]

The diagonal blocks complete the row and column sums to zero, Hii =

−
∑

j 6= i Hij .

The Inverse Problem: Green Function and Its Spectrum. The Green function
G is defined by the inverse relation to Hooke’s law, u = Gf [1]. If H were
invertible (nonsingular),G would have been just G = H−1. However, H is
always singular owing to the zero-energy (Galilean) modes of translation
and rotation. Therefore, one needs to define G as the Moore–Penrose pseu-
doinverse (78, 79), G = H+, on the complement of the space of Galilean
transformations. The pseudoinverse can be understood in terms of the spec-
trum of H. There are at least n0 = d(d + 1)/2 zero modes: d translation
modes and d(d− 1)/2 rotation modes. These modes are irrelevant and
will be projected out of the calculation (note that these modes do not
come from missing connectivity of the graph ∆ itself but from its embed-
ding in Ed). H is singular but is still diagonalizable (since it has a basis
of dimension nd), and it can be written as the spectral decomposition,
H =

∑nd
k=1 λkukuᵀ

k , where {λk} is the set of eigenvalues and {uk} are the
corresponding eigenvectors (note that k denotes the index of the eigen-
value, while i and j denote amino acid positions). For a nonsingular matrix,
one may calculate the inverse simply as H−1 =

∑nd
k=1 λ

−1
k ukuᵀ

k . Since H is
singular, we leave out the zero modes and get the pseudoinverse H+, G =

H+ =
∑nd

k=n0+1 λ
−1
k ukuᵀ

k . It is easy to verify that, if u is orthogonal to the

zero modes, then u = GHu. The pseudoinverse obeys the four requirements
(78): (i) HGH = H, (ii) GHG = G, (iii) (HG)ᵀ = HG, and (iv) (GH)ᵀ = GH. In prac-
tice, as the projection commutes with the mutations, the pseudoinverse has
most virtues of a proper inverse. The reader might prefer to link G and H
through the heat kernel, K(t) =

∑
k eλktukuᵀ

k . Then, G =
∫∞

0 dt K(t) and
H = d

dt K|t=0.

Pinching the Network. A pinch is given as a localized force applied at the
boundary of the “protein.” We usually apply the force on a pair of neigh-
boring boundary vertices, p′ and q′. It seems reasonable to apply a force
dipole (i.e., two opposing forces fq′ =−fp′ ), since a net force will move the
center of mass. This pinch is, therefore, specified by the force vector f (of
size nd), with the only 2d nonzero entries being fq′ =−fp′ . Hence, it has
the same structure as a bond vector mα of a “pseudobond” connecting p′

and q′ A normal pinch f has a force dipole directed along the rp′ − rq′ line
(the np′q′ direction). Such a pinch is expected to induce a hinge motion. A
shear pinch will be in a perpendicular direction ⊥ np′q′ and is expected to
induce a shear motion.

Evolution tunes the spring network to exhibit a low-energy mode, in
which the protein is divided into two subdomains moving like rigid bod-
ies. This large-scale mode can be detected by examining the relative motion
of two neighboring vertices, p and q, at another location at the boundary
(usually at the opposite side). Such a desired response at the other side of
the protein is specified by a response vector v, and the only nonzero entries
correspond to the directions of the response at p and q. Again, we usually
consider a “dipole” response vq =−vp.

Evolution and Mutation. The quality of the response (i.e., the biological
fitness) is specified by how well the response follows the prescribed one
v. In the context of our model, we chose the (scalar) observable F as
F = vᵀu = vp·up + vq·uq = vᵀGf [2]. In an evolution simulation, one would
exchange amino acids between H and P, while demanding that the fitness
change δF is positive or nonnegative. By this, we mean δF> 0 is thanks to
a beneficial mutation, whereas δF = 0 corresponds to a neutral one. Delete-
rious mutations δF< 0 are generally rejected. A version that accepts mildly

deleterious mutations (a finite temperature Metropolis algorithm) gave sim-
ilar results. We may impose a stricter minimum condition δF≥ ε F with
a small positive ε, say 1%. An alternative, stricter criterion would be the
demand that each of the terms in F, vp·up and vq·uq, increases separately.
The evolution is stopped when F≥ Fm∼ 5, which signals the formation of
a shear band. When simulations ensue beyond Fm∼ 5, the band slightly
widens, and the fitness slows down and converges at a maximal value,
typically Fmax∼ 8.

Evolving the Green Function Using the Dyson and Woodbury Formulas. The
Dyson formula follows from the identity δH≡H′−H = G′+−G+, which
is multiplied by G on the left and G′ on the right to yield [6]. The for-
mula remains valid for the pseudoinverses in the nonsingular subspace.
One can calculate the change in fitness by evaluating the effect of a
mutation on the Green function, G′ = G + δG, and then examining the
change, δF = vᵀδGf [3]. Using [6] to calculate the mutated Green func-
tion G′ is an impractical method, as it amounts to inverting at each step
a large nd × nd matrix. However, the mutation of an amino acid at i has
a localized effect. It may change only up to z = 12 bonds among the
bonds α(i) with the neighboring amino acids. Thanks to the localized
nature of the mutation, the corresponding defect Hamiltonian δHi is,
therefore, of a small rank, r≤ z = 12, equal to the number of switched
bonds (the average r is about 9.3). δHi can be decomposed into a prod-
uct δHi = MBMᵀ. The diagonal r× r matrix B records whether a bond α(i)
is switched from weak to strong (Bαα = ks− kw = +0.99) or vice versa
(Bαα =−0.99), and M is a nd × r matrix with r columns that are the
bond vectors mα for the switched bonds α(i). This allows one to calculate
changes in the Green function more efficiently using the Woodbury formula
(91, 92):

δG =−GM
(

B−1
+ MᵀGM

)+
MᵀG. [12]

Fig. 6. The effect of the backbone on evolution of mechanical function.
The backbone induces long-range mechanical correlations, which influence
protein evolution. We examine two configurations: parallel (A and B) and
perpendicular (C and D) to the channel. (A and B) Parallel. (A) The back-
bone directs the formation of a narrow channel along the fold (compared
with Fig. 5A). (B) The first four SVD eigenvectors of the gene Ck (Top),
the flow Uk (Middle), and the shear Sk (Bottom). (C and D) Perpendic-
ular. (C) The formation of the channel is “dispersed” by the backbone.
(D) The first four SVD eigenvectors of Ck (Top), Uk (Middle), and shear Sk

(Bottom).
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The two expressions for the mutation impact δG, [6 and 12], are equiv-
alent, and one may get the scattering series of [6] by a series expan-
sion of the pseudoinverse in [12]. The practical advantage of [12] is
that the only (pseudo-)inversion that it requires is of a low-rank tensor
(the term in parentheses). This accelerates our simulations by a factor of
(na/r)3' 104.

Pathologies and Broken Networks. A network broken into disjoint compo-
nents exhibits floppy modes owing to the low energies of the relative
motion of the components with respect to each other. The evolutionary
search might end up in such nonfunctional unintended modes. The common
pathologies that we observed are (i) isolated nodes at the boundary that
become weakly connected via H→ P mutations, (ii) “sideways” channels
that terminate outside the target region (which typically includes around
8–10 sites), and (iii) channels that start and end at the target region with-
out connecting to the binding site. All of these are some easy to understand
floppy modes, which can vibrate independent of the location of the pinch
and cause the response to diverge (> Fm) without producing a functional
mode. We avoid such pathologies by applying the pinch force to the protein
network symmetrically: pinch the binding site on face left, look at responses
on face right, and vice versa. Thereby, we not only look for the transmis-
sion of the pinch from the left to right but also, from right to left. The
basic algorithm is modified to accept a mutation only if it does not weaken
the two-way responses and enables hinge motion of the protein. This pre-
vents the vibrations from being localized at isolated sites or unwanted
channels.

Dimension and SVD. To examine the geometry of the fitness landscape
and the genotype-to-phenotype map, we looked at the correlation among
numerous solutions, typically Nsol∼ 106. Each solution is characterized by
three vectors: (i) the gene of the functional protein, c∗ (a vector of length
na = 200 codons); (ii) the flow field (displacement), u(c∗) = G(c∗)f (a vec-
tor of length nd = 400 of x and y velocity components); and (iii) the
shear field s∗ (a vector of length na = 200). We compute the shear as
the symmetrized derivative of the displacement field using the method in
ref. 21. The value of the s∗ field is the sum of squares of the traceless
part of the strain tensor (Frobenius norm). These three types of vectors
are stored along the rows of three matrices WC , WU, and WS. We cal-
culate the eigenvectors of these matrices, Ck, Uk, and Sk, via SVD (as in
ref. 36). The corresponding SVD eigenvalues are the square roots of the
eigenvalues of the covariance matrix WᵀW , while the eigenvectors are
the same. In typical spectra, most eigenvalues reside in a continuum bulk
region that resembles the spectra of random matrices. A few larger out-
liers, typically around a dozen or so, carry the nonrandom correlation
information.

The Protein Backbone. A question may arise as to what extent the protein’s
backbone might affect the results described so far. Proteins are polypep-
tides, linear heteropolymers of amino acids, linked by covalent peptide
bonds, which form the protein backbone. The peptide bonds are much
stronger than the noncovalent interactions among the amino acids and
do not change when the protein mutates. We, therefore, augmented our
model with a “backbone”: a linear path of conserved strong bonds that
passes once through all amino acids. We focused on two extreme cases: a
serpentine backbone either parallel to the shear band or perpendicular to
it (Fig. 6).

The presence of the backbone does not interfere with the emergence of
a low-energy mode of the protein with a flow pattern (i.e., displacement
field) that is similar to the backboneless case with two eddies moving in
a hinge-like fashion. In the parallel configuration, the backbone constrains
the channel formation to progress along the fold (Fig. 6A). The resulting
channel is narrower than in the model without backbone (Figs. 1D and
5). In the perpendicular configuration, the evolutionary progression of the
channel is much less oriented (Fig. 6C). While the flow patterns are sim-
ilar, closer inspection shows noticeable differences, as can be seen in the
flow eigenvectors Uk (Fig. 6 B and D). The shear eigenvectors Sk represent
the derivative of the flow and therefore, highlight more distinctly these
differences.

As for the correspondence between gene eigenvectors Ck and shear
eigenvectors Sk, the backbone affects the shape of the channel in concert
with the sequence correlations around it. Transmission of mechanical signals
seems to be easier along the orientation of the fold (parallel configuration)
(Fig. 6A). Transmission across the fold (perpendicular configuration) neces-
sitates significant deformation of the backbone and leads to “dispersion”
of the signal at the output (Fig. 6C). We propose that the shear band will
be roughly oriented with the direction of the fold, but this requires further
analysis of structural data. Overall, we conclude from our examination that
the backbone adds certain features to patterns of the field and sequence
correlation without changing the basic results of our model. The presence
of the backbone might constrain the evolutionary search, but this has no sig-
nificant effect on the fast convergence of the search and on the long-range
correlations among solutions.
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