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Amajor characteristic of spiking neural networks (SNNs) over conventional artificial neural

networks (ANNs) is their ability to spike, enabling them to use spike timing for coding

and efficient computing. In this paper, we assess if neuromorphic datasets recorded

from static images are able to evaluate the ability of SNNs to use spike timings in

their calculations. We have analyzed N-MNIST, N-Caltech101 and DvsGesture along

these lines, but focus our study on N-MNIST. First we evaluate if additional information

is encoded in the time domain in a neuromorphic dataset. We show that an ANN

trained with backpropagation on frame-based versions of N-MNIST and N-Caltech101

images achieve 99.23 and 78.01% accuracy. These are comparable to the state of the

art—showing that an algorithm that purely works on spatial data can classify these

datasets. Second we compare N-MNIST and DvsGesture on two STDP algorithms,

RD-STDP, that can classify only spatial data, and STDP-tempotron that classifies

spatiotemporal data. We demonstrate that RD-STDP performs very well on N-MNIST,

while STDP-tempotron performs better on DvsGesture. Since DvsGesture has a temporal

dimension, it requires STDP-tempotron, while N-MNIST can be adequately classified by

an algorithm that works on spatial data alone. This shows that precise spike timings are

not important in N-MNIST. N-MNIST does not, therefore, highlight the ability of SNNs to

classify temporal data. The conclusions of this paper open the question—what dataset

can evaluate SNN ability to classify temporal data?

Keywords: spiking neural network, spike timing dependent plasticity, N-MNIST dataset, neuromorphic benchmark,

spike time coding

1. INTRODUCTION

The remarkable performance and efficiency of the brain have prompted scientists to build systems
that mimic it—for studying biological function as well as improving engineering systems. Early
neural networks, networks of the first and second generations do not have neurons that spike. These
networks, known as artificial neural networks (ANNs) have real-valued outputs and can be seen as
time averaged firing rates of neurons. The networks of the third generation (Maass, 1997; Vreeken,
2003), known as spiking neural networks (SNN) explicitly employ spikes as their mechanism for
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FIGURE 1 | Spike rate definition: there are several definitions of spike rate.

Averaging over all the spikes emitted by a single neuron (spikes in the red box),

we get the Spike-count rate. Averaging over the spikes emitted at a time

instant by all the neurons (spikes in the green box), we get the Instantaneous

population rate.

computation. Third generation networks are more
mathematically accurate models of biological neurons. A
neuron of the third generation network receives incoming
spikes through its synapses and fires a spike when its membrane
potential exceeds a threshold. Such a neuron can use spike time
coding, described below. Before we describe spike time coding,
we will first enumerate the different definitions of firing rate
currently used.

The firing rate of a spiking neuron is defined in several ways:
(1) The time averaged firing rate is the number of spikes fired by a
neuron over a certain duration, (2) The instantaneous population
firing rate is the number of spikes elicited by a population of
neurons in a small time window, (3) The trial averaged firing rate
of a neuron firing is the average number of spikes across trials.
Note that definition (2) and (3) denote firing rate as a variable in
time. The first two definitions are illustrated in Figure 1. In this
paper, we focus primarily on the first definition (Figure 1, spike-
count rate) but also consider the second definition (Figure 1,
instantaneous population rate).

Scientists have debated over how neurons code information—
whether the brain follows a rate code or a temporal code (Brette,
2015). Rate code makes use of the firing rate of neurons while
temporal code makes use of the precise spike timing of the
neurons. The issue of time and rate coding, as summarized in
Brette (2015) is as follows: does spike firing rate of a neuron
capture most of the important information and computations,
rendering the exact timing of spikes unnecessary?

Several studies have highlighted the importance of precise
spike times. Firstly, Gerstner et al. (1999) shows that there are
specialized subsystems for which the precise timing of spikes are
relevant. The specialized subsystems include the electrosensory
system of electric fish (Heiligenberg, 1991; Metzen et al., 2016)
and the auditory system of barn owls (Carr and Konishi, 1990;
Konishi, 1993; Gerstner et al., 1999; Wagner et al., 2005; Keller
and Takahashi, 2015; Carr et al., 2016). Behavioral experiments
on owls show that they can locate sound sources in complete

darkness with extreme precision. They can detect a temporal
difference of around 5µs between the left and right ear. Such
precise calculations invalidate the use of an averagingmechanism
in the brain. Secondly, Thorpe et al. (2001) details several
arguments for spike time codes. Experiments show that primates
are able to perform visual classification as fast as 100–150 ms
after the stimulus is presented (Thorpe et al., 2001; Kirchner and
Thorpe, 2006; Butts et al., 2007; Crouzet et al., 2010). Given that
this information must have passed about 10 layers of processing,
each individual processing stage is completed on average in only
10 ms, rendering a time averaged rate coding mechanism highly
unlikely (Thorpe et al., 2001; Butts et al., 2007). Further, the
number of photoreceptors that are present in the retina and the
resolution of the images processed invalidate an instantaneous
population rate code (Thorpe et al., 2001).

Spike time coding does not need a large number of spikes or
many neurons to quantify large values, but can do so by varying
the spike timing of a few neurons. As a result, spike time codes
allow more efficient computation. If a SNN is just using time-
averaged or instantaneous population rate codes, it would be less
efficient than ANNs, as it would need to run for long periods of
time or employ many neurons to compute accurate averages of
spike rates. The main advantage of the SNNs over the previous
two generations of neural networks is that they can, in principle,
employ spike time coding for higher efficiency.

Neuromorphic engineering incorporates hardware and
software systems that mimic architectures present in the nervous
system. An important aspect of neuromorphic engineering
is that it attempts to utilize the computations of biological
neurons, circuits and architectures and use them in learning
and information processing. The neural networks most closely
related to biological neurons and still widely used in engineering
are spiking neural networks (SNN). Neuromorphic engineering
is a multidisciplinary field that involves computer science,
biology, physics, mathematics, and electronics engineering.

SNNs and their class of learning algorithms form a substantial
but not all of learning algorithms in the neuromorphic
community. Indeed, our community should not just draw ideas
from neuroscience, but could benefit much from ideas in the
more general machine learning or AI community. Hence, the
boundary between neuromorphic and deep learning, if there
was even a clear one to begin with, is now even less so.
Hence, in this paper, we use neuromorphic algorithms/systems
in its more narrow sense to refer to spiking neural networks.
This is for several reasons. Most major neuromorphic systems
use SNNs as their software1 (Benjamin et al., 2014; Merolla
et al., 2014). Further, the only distinguishing factor that
separates neural networks generally used in neuromorphic
architectures from neural networks in machine learning is
that the former are spiking. Precise spike timing has been
perceived by many in the community as an important source of
temporal information, which drives the many on-going studies
in SNN/neuromorphic learning algorithms and neuromorphic
datasets. We also refer to neuromorphic datasets derived from
static images as neuromorphic datasets in the paper.

1https://rethinkresearch.biz/articles/intel-unveils-loihi-neuromorphic-chip
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Along with the advances of neuromorphic engineering, there
arises the need for a neuromorphic dataset to benchmark
different SNNs. In Computer Vision, MNIST (LeCun et al., 1998)
and Caltech101 (Fei-Fei et al., 2004) are examples of well known
image datasets. MNIST is a dataset of handwritten digits and
consists of 60,000 training patterns and 10,000 test patterns.
Caltech101 has pictures of objects belonging to 101 categories.
Categories in Caltech101 have 40–800 images, with most
categories having around 50 images. Recently neuromorphic
algorithms have been tested against MNIST (e.g., Querlioz et al.,
2013; Diehl and Cook, 2015; Kheradpisheh et al., 2018; Mozafari
et al., 2018; Thiele et al., 2018). To do this, images are converted
to spikes using different methods. For e.g., Querlioz et al.
(2013) and Diehl and Cook (2015) convert images to Poisson
spike trains with spike rates proportional to the intensity of
the pixels. (Thiele et al., 2018) draw their mean spike rate
from a Gaussian distribution with spike rates proportional to
the intensity of the pixels. Kheradpisheh et al. (2018) and
Mozafari et al. (2018) convert images to spikes with spike
times inversely proportional to image contrast. However, to
advance the field of neuromorphic algorithms, a dataset whereby
features are encoded in asynchronously in time is required,
which incidentally renders any data pre-processing unnecessary.
N-MNIST, N-Caltech101 (Orchard et al., 2015a), MNIST-DVS
and CIFAR10-DVS are datasets recorded by moving either an
event-based vision sensor or the image from a pre-existing
Computer Vision dataset and recording the resultant images. For
example, NeuromorphicMNIST (N-MNIST) andNeuromorphic
Caltech101 (N-Caltech101) (Orchard et al., 2015a) are recorded
by moving an ATIS vision sensor (Posch et al., 2011) across
the original MNIST and Caltech101 patterns respectively in 3
predefined directions. The ATIS vision sensor is a neuromorphic
sensor that records pixel-level intensity changes in the scene,
based on the principles of the retina. The N-MNIST and
N-Caltech101 patterns are therefore, represented as events
occurring at pixel locations. The N-MNIST dataset has been
successfully tested onmany recent neuromorphic algorithms (for
e.g., Lee et al., 2016, 2020; Thiele et al., 2018; Wu et al., 2018;
Jin et al., 2019; Kim et al., 2020). Image-derived neuromorphic
datasets are just but a subset of all neuromorphic datasets.
An example of a dataset that is not derived from images is
DvsGesture (Amir et al., 2017), which is recorded from hand and
arm movements. DvsGesture is a dataset consisting 1,342 hand
and arm movements from 29 subjects and 11 gestures.

To summarize the above, there are currently several examples
of DVS-based datasets which are useful for benchmarking SNNs.
In general, spikes can encode information in two ways: (1) Their
precise spike timings (although spikes may be subject to jitter and
an SNN should be able to learn these as well) and (2) Firing rate
or spike counts over a relatively large time window.

Given the properties of SNN, we would like to further
understand how it can learn information encoded in
precise spike timing (over various time scales), and not
just simply spike counts in a certain time window. At
same time, we hope to see more of DVS or other event-
based sensor generated datasets, as these are naturally
compatible with SNNs. As such, we hope to see more

event-based datasets that encode information in precise
spike timing on top of spatially encoded information
and rate-coded/spike count encoded information, so as
to improve/benchmark SNN learning capabilities. Precise
timing of spikes is an important aspect of SNNs, and there
is ample evidence in the brain that precise timing of spikes
can be constructively used in spike-based calculations to
increase efficiency.

In addition to enabling spike timings in their calculations,
SNNs have other benefits—for example, SNNs enable low
power computation, due to the sparse computation and
binary nature of the output, and we agree that datasets
without information encoded in spike timing can be used to
assess such capabilities. If datasets such as N-MNIST were
used predominantly to assess such capabilities, it may not
matter whether they have information coded in the timing of
spikes necessary to classify the dataset. N-MNIST and other
datasets generated from static images, are implicitly regarded
as having both spatial and temporal information, and widely
and generically used as such (for e.g., Thiele et al., 2018; Wu
et al., 2018; Jin et al., 2019; Cheng et al., 2020; Kim et al.,
2020). Therefore it becomes extremely important to understand
whether such temporal information encoded in spike timing
information is actually present, necessitating a study such
as ours.

Orchard et al. (2015a) mentions that in N-MNIST and
N-Caltech101, the movement of the ATIS sensor mimics
retinal saccades. However, our visual system is designed to
extract information about the 3D world from many 2D image
projections formed by the retina (Elder et al., 2016). Visual
information is integrated across retinal saccades (Fiser and
Aslin, 2002) to provide a more holistic visual representation, for
example to group visual input to separate image from ground
(Blake and Lee, 2005). In addition, as George (2008) describes, we
are very adept at recognizing images despite different rotations,
scales, and lighting conditions (also Simoncelli, 2003). Such
an integrated representation of objects is obtained from data
varying continuously in time over all these different dimensions,
in ways that conform to laws of physics (Blake and Lee, 2005;
George, 2008; Mazzoni et al., 2011; Lake et al., 2016; Keitel
et al., 2017). Therefore, time is probably acting as a supervisor
providing useful information to enable us to create such a holistic
representation (George, 2008). It is therefore necessary to ask if
saccadic movements of the camera used to record N-MNIST and
N-Caltech101 gather information that is just as rich and critical
for classification. Saccades in these datasets are constructed by
moving a camera over 2D static images in a predefined manner.
This may not match the description of retinal saccades given by
Fiser and Aslin (2002) and George (2008). At the very least it
should provide additional information from the original MNIST
and Caltech101. We therefore want to know what role time plays
in these datasets. We commence our study with both N-MNIST,
N-Caltech101, and DvsGesture but focus the rest of this study on
N-MNIST alone.

In this paper, we ask two questions about neuromorphic
datasets recorded from pre-existing Computer Vision datasets by
moving the images or a vision sensor:
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1. These datasets are encoded in a spatio-temporal domain. Does
the timing of spikes in these neuromorphic datasets provide
any useful information?

2. Do these neuromorphic datasets highlight the strength of
SNNs in classifying temporal information present in the
precise spike timings?

The second question has two parts. The strength of an SNN
algorithm in classifying information encoded in spike timing
is highlighted if: (1) the neuromorphic dataset has information
coded in precise spike timings that can be potentially utilized
by the SNN, and (2) The SNN is able to utilize this temporal
information effectively. An important and related question is if
the current SNNs are able to exploit spike timing information.
It is important that the neuromorphic datasets that are used
have information in spike timings that can then be potentially
exploited by SNNs for classification.

The above two questions are important from various
viewpoints—from a general machine learning perspective, we
want to know if these neuromorphic datasets can be classified
by ANNs just as well, or even more efficiently. From the
neuromorphic perspective, a neuromorphic dataset should be
able to highlight the unique properties and strengths of SNNs
over ANNs in certain machine learning tasks. From the
neuroscience point of view, it would be interesting to investigate
if this method of recording from static images would gather
additional information in the time domain than that available
in the original Computer Vision datasets (such as MNIST
and Caltech101), which can then be further utilized by some
learning algorithms.

To address the questions above, we present several
experiments with the neuromorphic datasets. A list of all
the experiments and the datasets used are given in Table 1. While
we want to assess neuromorphic datasets derived from static
images, we focus on N-MNIST in this paper. We do the initial
experiment (see section 3) on both N-Caltech101 and N-MNIST
to show that the same trend holds for both datasets. In the
experiments with ANN (see section 3) and the DSE experiments
(see section 5), we use DvsGesture as an example of a dataset
derived from hand movements instead of static images—to
contrast against N-MNIST (and N-Caltech in section 3).

1. Our paper only applies to neuromorphic datasets derived from
static images by use of a vision sensor (such as DVS or ATIS,
Lichtsteiner et al., 2008; Posch et al., 2011; Brandli et al., 2014).
In order to compare them with a neuromorphic dataset that is
not derived from static images, we present experiments on the
DvsGesture dataset.

2. By information in the time domain or temporal information,
we specifically refer to spike timing, and all its derivatives, such
as difference in spike timings, such as inter-spike intervals
(ISI) and spike timing sequences across a population.

Our empirical study contains two parts—first is to examine
the classification of neuromorphic datasets using ANNs. We
compare ANNs, which do not use temporal information for
classifications, with state-of-the-art SNNs. The second part of
our paper has several experiments using SNNs with spike timing

dependent plasticity (STDP). The purpose of the second part is
to examine if additional information is encoded in the timing
of spikes.

For SNN experiments, we chose spike-timing dependent
plasticity (STDP) as firstly, the learning rule is based on the
precise timing of spikes, and secondly, by relaxing the time
constants of the synaptic traces, STDP becomes less sensitive to
spike timing and approximates a rate-based learning rule. This
property can then be exploited in an empirical study of the
usefulness of time domain information encoded in any spatio-
temporal dataset.

We start off with a description of N-MNIST, N-Caltech101,
and DvsGesture datasets after which we describe our first
experiment. Here, N-MNIST, N-Caltech101, and DvsGesture are
time-collapsed into static images, by summing the number of
spikes over time. These time-collapsed images are trained on an
ANN. We then describe a design space that further experiments
would explore, followed by other experiments that compare the
performance of temporal and rate based SNNs on the N-MNIST
dataset. This is followed by an experiment that classifies the
N-MNIST dataset using an SNN trained with a data-derived
STDP rule based on instantaneous population rates. Finally, we
conclude with a discussion on the implications of these results,
and other related questions. All accuracies reported in this paper
are based on the test sets.

2. N-MNIST AND N-CALTECH101 DATA
FORMAT

The N-MNIST dataset is created by moving the ATIS vision
sensor over each MNIST image. This is done for all 60,000
training images and 10,000 test images in MNIST. The camera
has 3 pre-definedmovements (or saccades). EachN-MNIST spike
train is 360ms long—divided into 3 saccades. The first saccade
occurs during the first 105 ms (0–105 ms), the second saccade in
the next 105 ms (105–210 ms), and the third saccade in the next
105ms (210-315ms)2 (Cohen et al., 2016). Finally there is a 45 ms
additional time appended to end of 315ms to ensure that the last
events have an effect on learning (Cohen et al., 2016).

N-MNIST patterns are represented as events, each occurring
at a specific pixel location or address at a particular time (each
event has a time stamp in µs). This is known as the address-event
representation (AER) protocol. Events elicited due to an increase
in pixel intensity are characterized as ON events, and decrease in
pixel intensity, as OFF events.

In our experiments we consider ON events in the first saccade
(0–105ms) for most experiments. We reduce the time resolution
of the spike trains by binning events with µs time stamp into
ms intervals. For the first two important experiments (sections
3, 5), we examine N-MNIST with all saccades as well, and do not
observe a significant change in performance.

Caltech101 contains 8709 images, andN-Caltech101 is created
in the same manner from the ATIS vision sensors.

2https://github.com/gorchard/Matlab_AER_vision_functions/
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TABLE 1 | A summary of the experiments.

No. Algorithm Datasets Experiment

1. ANN N-MNIST, N-Caltech101, DvsGesture All spikes are summed up over time (thereby eradicating spike time information), and

classified by an ANN. This is to examine if the lack of spike timing information affects

accuracy.

2. RD-STDP and STDP-tempotron N-MNIST and DvsGesture Two algorithms are compared, one which classifies static data, and another that can

classify spatio-temporal data, on the two datasets.

3. RD-STDP N-MNIST We explore if fixing the output spike time affects the accuracy.

4. Population rate dependent

plasticity (new rule)

N-MNIST A handcrafted plasticity rule based on the population rate is used to classify the

dataset—to understand if a purely population rate based rule can affect the accuracy.

FIGURE 2 | N-MNIST time collapsed images: N-MNIST patterns are collapsed in the time dimension to static images with pixel intensity proportional to the spike rate

of the pixel. These images are trained on an ANN to examine how the removal of the temporal component in N-MNIST affects the performance. The above are 6 such

images created from N-MNIST time-collapsed patterns.

DvsGesture is comprised of 1,342 patterns. A set of 29 subjects
stood against a stationary background and performed 11 hand
and arm gestures each with 3 illumination conditions. These
gestures were recorded using the DVS128 (Jimenez-Fernandez
et al., 2010) camera. In contrast to the previous datasets, this
dataset is not derived from static images, but from dynamic
movement. 11 classes correspond to gestures such as hand
waving, arm rotations clockwise, arm rotations counter-clockwise,
and clapping. The 11th class, Other consists of a gesture invented
by the subject. For ease of classification, we took out the
Other class.

3. EXPERIMENT: TRAINING N-MNIST,
N-CALTECH101, AND DVSGESTURE
IMAGES WITH AN ARTIFICIAL NEURAL
NETWORK

This experiment examines the performance of frame based
versions of N-MNIST, N-Caltech101 and DvsGesture on artificial
neural networks (ANN). Each frame is created by summing the
number of events over time—we henceforth refer to these frames
as time-collapsed images. We want to compare the performance
of neuromorphic datasets derived from static images (i.e., N-
MNIST and N-Caltech101) to a dataset recorded from real-time
movements, i.e., DvsGesture dataset.

In this experiment, N-MNIST, N-Caltech101, and DvsGesture
patterns are collapsed in the time dimension to static images with
pixel intensity proportional to the spike rate of the pixel (see
Figure 2 for examples of collapsed images). The conversion from
AER to static images is done as follows. Each pattern p can be

represented as a set of spike trains, one for each pixel. The spike
train for pattern p, pixel x is sx,p = {t

x,p
1 , t

x,p
2 , ...t

x,p
n } where each

element denotes the time of spike. Note that t
x,p
1 , ..., t

x,p
n are in the

range [0, 105]ms since we consider only saccade 1 (ON polarity).
The normalized spike counts Cx,p are calculated as follows:

Cx,p =

∑n
i g(t

x,p
i )

maxy
∑n

i g(t
y,p
i )

(1)

where the function g(t) is calculated as follows:

g(t) =

{

1, 0 ≤ t ≤ 105ms;
0, otherwise.

(2)

So Cx,p is the count of spikes, normalized by the highest
spike count per pixel in pattern p. Note that spike counts
are normalized per pattern, so patterns with low spike rates
have their overall Cp, i.e., normalized spike count vector for a
pattern, increased.

Each time collapsed N-MNIST image pattern p is a 34 × 34
image with intensity values at each pixel x beingCx,p (see Figure 2
for a few examples of images). The patterns are trained in Keras
on a CNN whose specifications are given in Table 2. The loss
function used is cross entropy, and the Adadelta optimizer is
applied3. After running 100 epochs, we get a test accuracy of
99.23%. We compare this to the performance of other state-of-
the-art algorithms on N-MNIST in Table 3.

In order to ensure that the results we are getting is not
due to the time window of 0–105 ms, we repeated the same

3http://www.kaggle.com
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TABLE 2 | Description of the CNN used for classifying N-MNIST and DvsGesture.

Layer Specification

Conv2d 32 filters of size 3× 3, ReLU activation

Conv2d 32 filters of size 3× 3, ReLU activation

MaxPool2d Size—2× 2

Dropout Rate—0.25

Conv2d 64 filters of size 3× 3, ReLU activation

Conv2d 64 filters of size 3× 3, ReLU activation

MaxPool2d Size—2× 2

Dropout Rate—0.25

Fully connected 128 output neurons

Dropout Rate—0.5

Fully connected 10 output neurons, softmax activation

TABLE 3 | This table shows the accuracy of N-MNIST on several state-of-the-art

algorithms.

Method Accuracy (%)

Lee et al.: Training SNN using backpropagation (Lee et al., 2016) 98.74

HATS (Sironi et al., 2018) 99.1

Active perception with DVS (Yousefzadeh et al., 2018) 98.8

Spatiotemporal backpropagation (Wu et al., 2018) 98.78

SLAYER (Shreshtha and Orchard, 2018a) 99.2

DECOLLE (Kaiser et al., 2020) 96

HM2-BP (Jin et al., 2019) 98.84

Spike based supervised gradient descent (Lee et al., 2020) 99.09

LISNN (Cheng et al., 2020) 99.45

Segmented probability-maximization (Liu et al., 2020) 96.3

Graph based object classification (Bi et al., 2019) 99.0

Learnable membrane time constants (Fang et al., 2020) 99.61

Collapsed images with ANN 99.23

Clearly our method is among the state of the art.

TABLE 4 | This table shows the accuracy of N-Caltech101 on several

state-of-the-art algorithms.

Method Accuracy (%)

HFirst (Orchard et al., 2015b) 5.4

HATS (Sironi et al., 2018) 64.2

HOTS (Lagorce et al., 2017) 21.0

DART (Ramesh et al., 2019) 66.4

YOLE (Cannici et al., 2019) 70.2

EST (Gehrig et al., 2019) 81.7

SSC (Graham et al., 2018) 76.1

Asynchronous sparse CNN (Messikommer et al., 2020) 74.5

Collapsed images with ANN 78.01

Our method is the second best.

experiment by collapsing the images and summing spikes up over
all three saccades, i.e., having a time window of 0–315 ms. The
experiment was identical to the previous one except the time
window was changed to 0–315 ms. We obtained an accuracy of

TABLE 5 | Comparison of DvsGesture performance with our method and other

state of the art algorithms.

Method DvsGesture (%)

Maro and Benosman (Maro and Benosman, 2019) 96.6

Yang et al. (Yang et al., 2019) 97.4

SLAYER (Shreshtha and Orchard, 2018b) 93.64

CNN on TrueNorth (Amir et al., 2017) 96.49

Collapsed images with ANN 71.01

99.18% showing that the good results are not dependent on the
time window of collapsing the images.

N-Caltech101 has images of different sizes. Each time collapsed
N-Caltech101 image pattern p is resized to a 224 × 224 image.
Image resizing is performed using bilinear interpolation. These
images are trained on a VGG-16 convolutional neural network
pretrained on ImageNet. The methodology used for training is
detailed in another paper by our group (Gopalakrishnan et al.,
2018), where we examine N-Caltech101 more thoroughly. A
comparison of N-MNIST and N-Caltech101 performance on
several algorithms is given inTable 4. As can be seen, our method
obtains close to state of the art accuracy with N-MNIST and
N-Caltech101 datasets respectively.

Our method of just summing up spikes over time
(therefore getting rid of the time representation) is able to
obtain comparable to state of the art accuracy compared to
neuromorphic datasets. Although few SNNs give marginal
improvement over our method, it is important to note that we
are not trying to beat other algorithms by building bigger ANN
systems, and optimizing the algorithm. Our aim is to simply
show that there is no significant reduction in accuracy using a
method that does not use temporal information encoded in the
timings of spikes at all. The implications of this result are further
discussed in the section 7.

Finally we tested on DvsGesture which was not derived from
static images but dynamic hand and arm movements. Without
the Other class, the dataset has 10 classes. It was therefore trained
on a CNN that was identical to the one used for training N-
MNIST. We obtained an accuracy of 71.01% on the ANN which
is far worse than the state of the art results obtained by other
algorithms as seen in Table 5. Since DvsGesture has information
coded in spike timings (as it is obtained by dynamic movements)
it requires an SNN to make efficient use of this information
encoded in spike timings to obtain better accuracy than ANNs.

The conclusion of this experiment is the following: While
neuromorphic datasets derived from static images have excellent
performance on par with state of the art on ANNs, neuromorphic
datasets derived from actual movements perform far worse on
ANNs than the state of the art accuracy obtained by SNNs.

4. SPIKING NEURAL NETWORK

The rest of the experiments in this paper are run on spiking
neural networks (SNN) using spike timing dependent plasticity
(STDP) learning rule. In this section, we will describe the SNN
that is used for the experiments. The SNN algorithm in this paper

Frontiers in Neuroscience | www.frontiersin.org 6 March 2021 | Volume 15 | Article 608567

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Iyer et al. Is N-MNIST Neuromorphic?

FIGURE 3 | Spiking neural network architecture: (modified from Iyer and Basu, 2017, Figure 2). The N-MNIST patterns, each pattern representing a saccade project

to the excitatory layer. There is an all-to-all connection from the input to excitatory layer. The excitatory layer has a one-to-one connection with the inhibitory layer.

Upon firing, an excitatory neuron activates its corresponding inhibitory neuron, which in turn inhibits all excitatory neurons except the one it received excitatory

connections from. Top right: Kernel functions for the currents in the network—Ixe has a gradual rise in current followed by a gradual fall. The other two currents, Iei and

Iie have an instantaneous rise in current followed by a gradual fall.

closely follows (Diehl and Cook, 2015), but has been modified
to suit the N-MNIST dataset. For a detailed description of these
modifications, refer to Iyer and Basu (2017).

4.1. Network Architecture
The input layer contains 34× 34 neurons (one neuron per image
pixel in N-MNIST). Each input neuron projects to all neurons in
the excitatory layer with weightsWxe. The excitatory layer has Ne

neurons which have a one-to-one connectivity with Ni neurons
in the inhibitory layer. Note that Ni = Ne. When a neuron spikes
in the excitatory layer it will activate the corresponding neuron in
the inhibitory layer. Each inhibitory neuron inhibits all neurons
in the excitatory layer except the one that it has afferent excitatory
connection with. The net effect is lateral inhibition.

The system architecture is shown in Figure 3. More
information on the network dynamics can be found in Iyer and
Basu (2017).

4.2. Learning
The learning function follows from Diehl and Cook (2015).
When there is a postsynaptic spike, the synaptic weight update
1w is:

1w = η(xpre − xtar)(wmax − w)µ (3)

where xpre is the presynaptic trace, xtar is the target value of the
presynaptic trace at the moment of postsynaptic spike, η is the
learning rate,wmax is themaximumweight, andµ determines the
dependence on the previous weight. See Diehl and Cook (2015)
for more details.

When a presynaptic spike arrives at the synapse, the
presynaptic trace, xpre is increased by 1xpre, and decays
exponentially with the time constant τxpre .

4.3. Threshold Adaptation
The threshold adaptation mechanism used here is identical to
that employed by Diehl and Cook (2015). In order to prevent
any single neuron in the excitatory layer from dominating the
response pattern, it is desirable that all neurons have similar
firing rates at the end of training. Therefore, the neuron’s firing
threshold Vth is adapted as follows:

Vth = vthresh + θ (4)

Vth has two components, a constant vthresh and a variable
component, θ . θ is increased by1θ every time a neuron fires, and
decays exponentially with a very large time constant, τθ = 107ms,
rendering the decay negligible during the simulation. Therefore
if a neuron spikes more, its threshold is higher, requiring more
input for the neuron to spike.

4.4. Pattern Presentation
If for any pattern presentation there is no output spike, Axe, the
EPSC of a single neuron is increased by 1Axe and the pattern is
presented again. This is repeated till there is an output spike.

4.5. Neuron Label Assignment
Once the training is done, the training patterns are presented
again to the learnt system. Each neuron is assigned to the class
that it most strongly responds to. This neuron assignment is used

Frontiers in Neuroscience | www.frontiersin.org 7 March 2021 | Volume 15 | Article 608567

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Iyer et al. Is N-MNIST Neuromorphic?

in calculating the classification accuracy. Note that class labels are
only used in this step, and not for training.

4.6. Parameters
The values of most parameters in this SNN follow (Diehl
and Cook, 2015). These include Vrest , vthresh and Vreset in the
excitatory and inhibitory layers. Since we present each pattern
one after another, the presentation time for N-MNIST is 105
ms, equivalent to the time taken for one saccade in the N-
MNIST dataset. For DvsGesture, we take only the first 1,450 ms
of the pattern to classify the dataset, as has been done earlier
(e.g., Stewart et al., 2020) and this is the presentation time. As
presynaptic spike rates vary throughout pattern presentation, the
output neuron must spike only at the end of the presentation
(see Iyer and Basu, 2017 for more details). Therefore, τM , the
membrane time constant of each excitatory neuron is adjusted
such that there is only one output spike (see Iyer and Basu,
2017 for additional information) occurring toward the end of
pattern presentation. The value of τSTDP used is more than
double the presentation time for both datasets. After each pattern
presentation, all values except Wxe and θe are reset, as is done in
Diehl and Cook (2015). Diehl and Cook (2015) do this by having
a period of inactivity for 150ms in between pattern presentations.
However, it would be more biologically plausible to not reset
these parameters, and this is something we would explore in our
future work.

This system has been used with large values of τ—this
approximates a rate based system that sums up the spikes. Hence
we term the system rate-dependent STDP, or RD-STDP.

For the Design Space Explorations (see section 5) learning
rate—η and amplitude of threshold adaptation—1θ are adjusted
accordingly.

4.7. Temporal Spiking Neural Network
The RD-STDP network described above has been successful at
classifying MNIST (Diehl and Cook, 2015) and N-MNIST (Iyer
and Basu, 2017). However, for each pattern, only one output
neuron spikes (either one or many spikes) and learns the pattern.
For datasets where the pattern changes temporally during pattern
presentation, and this additional temporal information encoded
in spike timings is important in classifying the data, one output
spike that learns an entire pattern is inadequate. A sequence of
output spikes each of which learn subpatterns of the temporal
pattern would be necessary (see Figures 4, 5). Patterns should be
classified based on this entire sequence.

In Iyer and Chua (2020), we have modified the system
described above, to classify temporal patterns. We add the Self-
Organized Feature Map (SOM) functionality and the tempotron
to the current network. The tempotron is a biologically plausible
learning rule for classifying spatiotemporal patterns, and can
classify a sequence of input spikes.

Given below is the summary of modifications we made to the
RD-STDP to enable it to classify temporal data.

• τM and τxpre have been adjusted to be a fraction 1
10 th of the

pattern presentation time. After every kms where k is 1
10 th the

FIGURE 4 | Input-output sequences in STDP-tempotron: (reproduced from

Iyer and Chua, 2020, Figure 1). (A) Sequence of frames created from input

spikes. Input spikes collapsed over every m ms, where m is 1
10 th the

presentation time. The images from top to bottom depict a pattern from the

class right hand clockwise. (B) The images from top to bottom show the

sequence of output neurons that spike in response to the input. Each output

neuron is represented by weights from the input, and rearranged on a

128× 128 grid as in Figure 5. As can be seen, the sequence of output

neurons that fire on the right, look very similar to the input spikes on the left.

presentation time, all voltage traces, all currents and current
traces, and synaptic traces are reset.

• In RD-STDP, when no spike occurs, Axe, (EPSC) is increased
and the pattern is presented again (see section 4.4). However,
here it is essential that the spikes occur in an online manner, as
there are a sequence of spikes for each pattern. Therefore, Axe

is kept constant.
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FIGURE 5 | Learned weights in STDP-tempotron: (reproduced from Iyer and Chua, 2020, Figure 2) Input-excitatory weights of a 900 output neuron network after

training—left: weights from input to each excitatory neuron is arranged as 128× 128 matrix to visualize the input learnt. These individual neuron weights are arranged

on a 30× 30 grid. Right: (A–D) Zoomed snapshots of the image on the left. As can be seen the weights learn temporal snapshots of different actions. These

snapshots can be used as raw material for producing actions from different classes. (A) Some images are a part of clapping and others, arm rolling, and others, left

hand wave or left hand clockwise or counterclockwise movements, (B) Can be part of left-hand waving or left hand clockwise or counterclockwise movements, (C)

can be a part of right-hand waving or right hand clockwise or counter clockwise movements, and (D) can be part of arm rolling or air drums. Similar actions are

grouped together in space due to SOM functionality.

• The sequence of spikes produced by the STDP system are then
classified by a tempotron (Gutig and Sompolinsky, 2006) in a
supervised manner.

We hereby term the temporal version of the system STDP −

tempotron. Note that the two systems are essentially the same.
Some minimal features are added in order to classify temporal
data. Also note that in STDP-tempotron, the clustering of
neurons is completely unsupervised as in RD-STDP. Only the
classification of output sequences occurs in a supervised manner.

As RD-STDP classifies information by integrating
information with large τSTDP time constants, it can only
classify based on spatial information. On the other hand, with
smaller τSTDP values, and added capabilities to classify sequences,
STDP-tempotron can classify based on spatio-temporal info.

In the sections that follow we describe the experiments that
use the RD-STDP and STDP-tempotron described above.

5. EXPERIMENT: DESIGN SPACE
EXPLORATION IN SNN TO EXPLORE
TEMPORAL AND RATE-BASED STDP
REGIMES

Spike-timing dependent plasticity (STDP) is a learning rule
commonly used in SNNs for unsupervised learning. For the
SNN experiments, we choose spike-timing dependent plasticity
(STDP) for the following reason. Generally in STDP, weight
updates are based on the precise difference between pre and
postsynaptic spike times. When the synaptic trace time constants
are increased, STDP operates in a regime whereby weight changes
can be approximated by sum of pre-synaptic and post-synaptic
spikes. One can intuitively understand this by assuming delta
synaptic trace on one extreme, and perfectly integrated synaptic

trace on the other extreme. The former would be highly sensitive
to spike timing (they must occur at same time for weight
changes), while the later would have weight changes proportional
to spike counts of the neurons. These different modes due
to presynaptic time constant (τxpre) are illustrated in Figure 6.
Hence STDP learning rule is highly suitable for our exploration,
as it can operate in spike-time based as well as rate-based modes.

If N-MNIST has better performance in the rate-based regime,
then precise spike timing in N-MNIST dataset would seem
unnecessary for classifying it, to the extent that the experiment
findings can be generalized. We think they can be for the reasons
stated below.

It is hard to compare performance of an SNN trained
using backpropagation against one trained using STDP, given
the difference in network topology and learning algorithms.
However, there is one commonality across both, and that is
the use of synaptic trace in their learning rules (Gutig and
Sompolinsky, 2006; Lee et al., 2016; Zenke and Ganguli, 2018).
By tuning the time constants of the synaptic trace, one effectively
tune the sensitivity of the SNN toward spike-timing. Hence, from
this aspect, our results can be further generalized to all other
SNN based learning algorithms whose weight update contains
the synaptic trace.

In our experiments, we use STDP-tempotron that has a
short synaptic trace time constant, along with added capabilities
to classify sequences. RD-STDP on the other hand, has a
synaptic trace that is larger than the presentation time which
therefore approximates rate-based learning. Further, it has added
capabilities to classify sequences.

In this experiment, we compare two datasets, N-MNIST with
DvsGesture, as in section 3. We compare their performance on
two systems, RD-STDP and STDP-tempotron. A dataset with
no additional encoded in the timing of spikes is expected to
perform better in RD-STDP, which can adequately classify the

Frontiers in Neuroscience | www.frontiersin.org 9 March 2021 | Volume 15 | Article 608567

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Iyer et al. Is N-MNIST Neuromorphic?

FIGURE 6 | Two regimes of STDP operation: By varying the decay time constant of the presynaptic spike trace τxpre we get two regimes of STDP operation, (A) When

τxpre is low, the presynaptic trace (xpre) decays quickly. The value xpre at the time of the postsynaptic spike (green dot) depends on the time difference between the pre-

and post-synaptic spikes. In this regime, spikes that occurred much earlier than the postsynaptic spike time have no impact on learning. (B) When τxpre is high, xpre
decays slowly. At the time of postsynaptic spike, xpre (green dot) depends on the number of spikes (i.e., spike-count rate) alone. Precise presynaptic spike times do

not have much impact on learning.

static spatial dataset. On the other hand, when a dataset has
additional information contained in the timing of spikes, STDP-
tempotron with its added capability is better than RD-STDP at
classifying the dataset. So the hypothesis for our experiment is as
follows.

Hypothesis: N-MNIST is expected to perform better on
RD-STDP than on STDP-tempotron. However, DvsGesture is
expected to perform better on STDP-tempotron compared to
RD-STDP.

5.1. Methodology
The combination of the two algorithms and two methods lead
to four experimental cases, (1) N-MNIST on RD-STDP, (2)
DvsGesture on RD-STDP, (3) N-MNIST on STDP-tempotron,
and (4) DvsGesture on STDP-tempotron.

In order to compare different algorithms and datasets, trials
have been performed on a range of parameter values for
important parameters. These parameters are:

1. η, Learning rate—Higher values of τxpre would result in
higher values of the presynaptic trace, xpre as individual spike
traces would decay slowly. This results in an accumulation of
individual spike traces over time. This, in turn, would lead to
higher weight updates [see the learning rule (Equation 3) in
section 4.2]. To ensure that results are not biased due to more
learning in the system, we vary η.

2. 1θ , Amplitude of threshold adaptation (see section 4.3)—
Threshold adaptation is done to prevent some neurons from
dominating the learning and distributing the receptive field
of input patterns over all neurons. However, if threshold
adaptation occurs very slowly compared to the learning rate,
this purpose will not be served. If, on the other hand, the
threshold of a neuron is increased very quickly before it even
learns, then during training, no useful learning will take place.
We therefore change 1θ along with η.

3. Axe, EPSC (only for STDP-tempotron)—Although in RD-
STDP, the EPSC increases if there is no output spike (see
section 4.4), in STDP-tempotron, it is kept constant (see
section 4.7). For some values of Axe, there is no output spike,

TABLE 6 | Network size used in each of the experimental cases.

Dataset Algorithm Network size

DvsGesture RD-STDP 49

DvsGesture STDP-tempotron 900

N-MNIST RD-STDP 400

N-MNIST STDP-tempotron 400

while others will have more spikes. Since this value affects the
accuracy, this is one of the parameters of consideration for
STDP-tempotron.

4. Ne, the number of output neurons in the network, henceforth
called Network Size. Since we are using datasets of different
sizes (DVSGestures has only 732 training patterns, while
N-MNIST has 60,000 training patterns), and a one layer
network, different network sizes would be optimal for different
experimental cases.

We perform two design space explorations—DSE1 for the first
three parameters, andDSE2 for the fourth parameter. For the first
two parameters, we do not know the optimal values. Hence, we do
a systematic design space exploration of all possible combinations
of the first three parameters for STDP-tempotron and RD-STDP.
The first two parameters are varied on a logarithmic scale. For the
third parameter, we first work logarithmically to find a ball park
current that yields enough spikes for classification, and then vary
this current value on a linear scale. This is because having very
small current values will not yield enough spikes for classification.
We perform theDSE1 experiment to find the best set of values for
the first three parameters.

For the fourth parameter, i.e., network size, we can
theoretically determine a network size that can be used without
loss of generality, for optimum results. This is given as follows,
and summarized in Table 6.

• DvsGesture SNN—49 neurons—There are very few patterns
in the DvsGesture dataset. Since the large membrane time
constant and large STDP time constant collapse the image and
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TABLE 7 | Summary of parameters used in DSE1 and DSE2.

Parameter SNN algorithm Scale of

variation

Experiment

Learning rate, η RD-STDP &

STDP-tempotron

Logarithmic DSE1

Threshold

adaptation amp., 1θ

RD-STDP &

STDP-tempotron

Logarithmic DSE1

EPSC current, Axe STDP-tempotron Find ballpark

and vary

linearly

DSE1

Network size, Ne RD-STDP &

STDP-tempotron

Linear DSE2

a single spike is learnt for each pattern, there will not be many
weight changes within the pattern. Due to this, the network
size needs to be low so that parameters are adequately trained.

• DvsGesture STDP-tempotron 900 neurons—although the
number of patterns are low, there are many spikes, and so
the weights essentially learn subpatterns within a pattern.
Therefore, a larger size is deemed more suitable in order to
classify all the subpatterns.

• N-MNIST RD-STDP—400 neurons—The dataset size is very
large and therefore, we do not need to use small networks.

• N-MNIST STDP-tempotron—400 neurons—The subpatterns
are not expected to be very different from the main pattern.
Therefore, we do not see the need for larger networks either.

DSE1 is performed using the network sizes described above. An
obvious concern is that network sizes chosen abovemight bias the
results. To obviate this concern, we perform another experiment,
DSE2. For DSE2 we hypothesize that having different network
sizes from those described in the previous list will not change the
results.

We therefore, perform 2 design space exploration
experiments, DSE1 and DSE2. The purpose of DSE1 is to
do a systematic hyperparameter search to find the set of the
first three parameters that yield the best results for each of the
four cases, using theoretical values of the fourth parameter. The
purpose of DSE2 is to ensure that there is no network size that is
better than the theoretical values we have specified in DSE1. We
are able to perform DSE2 separately as each of the other three
parameters can be adjusted for network size as follows—(1)Axe is
independent of network size as it acts on each individual neuron.
(2) The learning rate η and amplitude of threshold adaptation,
1θ can be adjusted for network size, which we examine in Iyer
and Chua (2020), section 3A.

The reason why we perform DSE2 as a separate experiment
instead of including network size as an additional parameter in
experiment 1 is largely to reduce computational costs. We use
the theoretical values of the fourth parameter to perform a design
space exploration of a much smaller parameter space (having
only three parameters), and then perform themuch smallerDSE2
experiment to ensure that the usage of theoretical values of the
fourth parameter in DSE1 does not bias the results.

We describe the two experiments as follows.

TABLE 8 | DSE1 Results: The best results of DSE1 for the two datasets,

DvsGesture and N-MNIST on the two algorithms, RD-STDP and STDP-tempotron.

RD-STDP (%) STDP-tempotron (%)

DvsGesture 53.18 59.11

N-MNIST 83.89 76.13

Bold values indicates the better accuracy for each algorithm.

DSE1:
Hypothesis: N-MNIST is expected to perform better on

RD-STDP than on STDP-tempotron. However, DVSGestures is
expected to perform better on STDP-tempotron compared to
RD-STDP.

By doing a hyperparameter search of the parameters, we will
be able to compare the performance on the four systems and
verify the above hypothesis. Here we focus on all parameters,
other than Network Size, which would be dealt with in DSE2. A
summary of the parameters, the corresponding algorithm(s) and
experiment wherein they are studied is given in Table 7.

Learning rate, η and spike frequency adaptation rate
1θ are varied on a logarithmic scale to ensure that we
cover all possible ranges of activity. The values of η used
are {0.0005, 0.005, 0.05, 0.5}. The values of 1θ used are
{1, 0.1, 0.01}mV . For STDP-tempotron, an additional parameter
was explored, and that is Axe. We choose the parameters for
Axe as follows. It was noted that for DvsGesture, an Axe value
of 0.5nA is enough to get at least one output spike for most
patterns, and classify the dataset. However, for N-MNIST, the
Axe value had to be around 5nA before there was at least one
output spike formost patterns. ForAxe values less than this, many
patterns did not get any output spikes, and the dataset could not
be classified. For Axe values are varied on a linear scale, around
the preliminary values stated earlier,—for DvsGesture, Axe values
used are {0.1, 0.3, 0.5, 0.7} nA, but for N-MNIST, the Axe values
used are {1, 3, 5, 7} nA.

The best results for each of the four experimental cases are
given in Table 8.

As can be seen, RD-STDP performs better than STDP-
tempotron at N-MNIST, while STDP-tempotron performs better
than RD-STDP at DvsGesture. Therefore, the hypothesis for
DSE1 has been satisfied.

DSE2: This section describes the protocol for DSE2.
Our hypothesis for DSE2 is:

1. DVSGestures—no RD-STDP of any network size can exceed
the best performance of STDP-tempotron obtained in DSE1.

2. N-MNIST—no STDP-tempotron of any network size can
exceed the best performance of RD-STDP obtained in DSE1.

• To verify DSE2 Hypothesis 1, we take the best performing RD-
STDP in DSE1, adjust for network size, and test DVSGestures
on RD-STDP networks of different sizes.

• To verify DSE2 Hypothesis 2, we test the best performing
STDP-tempotron in DSE1, adjust for network size, and test
N-MNIST on STDP-tempotron networks of different sizes.

The protocol for DSE2 experiments is as follows.
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TABLE 9 | DSE2 results on N-MNIST using STDP-tempotron networks of different

sizes.

No. of output neurons Accuracy (%)

49 60.14

225 73.19

400 76.13*

576 76.67

729 77.43

900 77.19

The blue asterisk indicates (not indicate) and the bold indicates the best results.

TABLE 10 | DSE2 results on DvsGesture using RD-STDP networks of different

sizes.

No. of output neurons Accuracy (%)

49 53.18*

225 19.71

400 12.94

576 17.66

729 25.46

900 24.84

The blue asterisk indicates (not indicate) and the bold indicates the best results.

1. (a) Following from Hypothesis 1 for DSE, we take
the parameters for the best performing RD-STDP in
DVSGestures. (b) Following from Hypothesis 2 for DSE, we
take the parameters for the best performing STDP-tempotron
in N-MNIST.

2. Wemodify1θ and η for a modified network size according to
the protocol we describe in Iyer and Chua (2020), section 3A.

3. We choose network sizes that are evenly distributed from
49 to 900. The network sizes are chosen to be relatively
even squared numbers between 49 and 900, and are—
{49, 225, 400, 576, 729, 900}

4. We ran the system and noted the accuracies. These are given
in the table below.

InDSE2, after running on networks with different sizes, we see in
Table 9 that the best performing STDP-tempotron on N-MNIST
has an accuracy of 77.43%. However, N-MNIST on RD-STDP
has a best performing accuracy of 83.89%. Thus, Hypothesis 1
of DSE2 is satisfied. Also, the best performing RD-STDP on
DvsGesture has an accuracy of 53.18%, and is for the smallest
network size of 49, as seen in Table 10. This accuracy is less the
best performing STDP-tempotron for DvsGesture which has an
accuracy of 59.11%. Therefore, Hypothesis 2 of DSE2 is satisfied.
Overall, DSE1 and DSE2 show that indeed, STDP-tempotron,
a temporal algorithm with short synaptic trace time constants
works better with DvsGesture. However, N-MNIST performs
better on RD-STDP algorithm. Also we note that in N-MNIST
larger networks have better accuracy, while in DvsGesture this is
not necessarily the case, as we mentioned earlier.

It is evident from these experiments that DvsGesture performs
better with an algorithm that is suitable for temporal datasets, and
has smaller synaptic traces. The absolute results in DvsGesture
dataset are not very good due to overfitting (as discussed further

TABLE 11 | Further results on N-MNIST with the best parameters in linear scale.

Specifications Accuracy (%)

1 epoch, 1 saccade, ON polarity 82.46

3 epochs, 1 saccade, ON polarity 89.87

3 epochs, 6 separate networks, 3 saccades, ON and OFF

polarities, 2,400 output neurons

91.78

Results with Diehl and Cook (2015)

400 output neurons 87.0

1600 output neurons 91.9

This is compared with MNIST results obtained in Diehl and Cook (2015).

in Iyer and Chua, 2020), but the trends clearly show that the rate
based system performs more poorly in classifying the dataset. On
the other hand, N-MNIST shows the opposite trend and better
results are obtained on an STDP system that approximates rate
based calculations. Indeed, we see in the next section that the
unsupervised results on N-MNIST by this system is indeed state-
of-the-art. This indicates that there is no additional information
in the time domain in the N-MNIST dataset necessary to
classify it.

5.2. Further Results With N-MNIST on
STDP
We performed further experiments with N-MNIST on STDP to
improve the results.

As results are on the logarithmic scale, there may be
intermediate parameter values that give better results. To
check this, we repeat the experiments with just one epoch for
parameters around the vicinity of the best results. We determine
that the best results are given by values 1θ = 0.2mV , η =

0.05, τxpre = 215ms). Using these parameters, we repeated this
experiment for 3 epochs. Finally, we repeated this procedure for
training 6 separate 400 neuron networks—each of the 3 saccades
with both ON and OFF polarities. For each test pattern, all 6
networks gave a class prediction and we took a majority vote. The
results obtained are summarized in Table 11.

The results obtained by the rate based STDP on N-MNIST are
highly comparable similar STDP based methods. We compare
the system with a similar STDP system on MNIST (Diehl and
Cook, 2015—see Table 11). It is not surprising to see a slight
deterioration in N-MNIST over MNIST due to noisy and more
realistic input.

We are performing the rest of the STDP experiments with
just one epoch, and comparing to the results of this experiment
carried out with one epoch.

6. EXPERIMENT: STDP WITH FIXED
POSTSYNAPTIC SPIKE

Earlier we noted that rate based STDP regime yields the best
accuracy results indicating that presynaptic spike times do not
affect the accuracy. If learning is dependent on purely spike rates
alone, we postulate that the precise timing of postsynaptic spikes
should not affect the accuracy either. So if we fix the postsynaptic
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FIGURE 7 | Results on linear scale: The best test accuracy in the log scale,

(τxpre = 215ms, η = 0.05,1θ = 0.1mV ) was taken. Values of the parameters,

1θ and η around the best result were plotted on linear scale to determine if

there were better results around the parameter space. Training was done over

one epoch. We see that generally results get better as learning rate (η) gets

higher and amplitude of threshold adaptation (1θ ) gets higher. The best results

are marked with a red star on the top right. We get a slight improvement in

accuracy, 84.51%.

spike to occur at a certain time for every pattern, there should not
be a fall in accuracy.

In this experiment we train the system using the parameters
for the best results seen in the previous experiment (Figure 7:
1θ = 0.2mV , η = 0.05, τxpre = 215ms), and record the
postsynaptic spike time for each pattern.We then find the average
of the postsynaptic spike time over all patterns, t∗.

We re-start and repeat the training fixing the postsynaptic
time to be t∗. As we have a Winner-Take-All network, and the
neuron that is the first to spike wins, we do not enforce the neuron
to spike at time t∗, but the network learns as if the spike occurs
at t∗. Therefore, we take the presynaptic spike traces at time t∗ to
calculate the weight updates.

The accuracy for this experiment is 84.10% after one epoch.
This is even better than the best accuracy results in the DSE
experiment 5 which is 82.46%. The high accuracy indicates that
performance is not dependent on the precise timing of the
postsynaptic spike either.

7. EXPERIMENT: SPIKE RATE DEPENDENT
STDP

In the previous experiments, we examined the performance of
a simple ANN and the SNN (both rate based and time based)
on the N-MNIST dataset. Both the ANN and the rate based
SNN use time-averaged firing rates (Figure 1) for classification.
In this final experiment we examine the effect of instantaneous
population rate (Figure 1) on performance.

We note that events recorded by the ATIS sensor are relatively
sparse at the beginning and end of a saccade. Most events occur
in the middle of a saccade. So, we hypothesize that the middle of

the saccade is the time period where the information is the most
abundant. Events that happened at the beginning and end of the
saccade could be regarded as noise. From this, we hypothesize
that by (1) using an engineered STDP function—i.e., an STDP
function that is based on the peristimulus time histogram (PSTH)
of the training data, and (2) fixing the postsynaptic spike time
at the end of the pattern presentation, we will not experience a
decrease in performance. Such an STDP function is completely
independent of the pre and postsynaptic spike time differences,
and is governed by the instantaneous population spike rates
alone. If the above hypothesis is correct, then spike times of
individual neurons are unnecessary. Instantaneous population
spike rates adequately characterize the dataset.

The STDP function is created as follows. Each pattern p can
be represented as a set of spike trains, with one spike train for
each pixel. The spike train for pattern p and pixel x is represented
as sx,p = {t

x,p
1 , t

x,p
2 , ...t

x,p
n }, where each of the elements represents

the time at which the corresponding event occurred. Note that
t1, ..., tn are in the range [0, 105] ms, (first saccade) and are allON
events.

The total number of events that occurred over all patterns p at
all pixels x at the instantaneous time between t and 1t is:

H′(t) =
∑

p

∑

x

a
x,p
i (5)

a
x,p
i =

{

1, t ≤ t
x,p
i ≤ 1t, t

x,p
i ∈ sx,p;

0, otherwise.
(6)

H(t) =
H′(t)

Npatterns
(7)

H(t) is then scaled and biased as follows:

h(t) = aH(t)+ b (8)

Parameters a and b are chosen so that the STDP function h(t)
fulfills the following conditions:

• The area of LTD is greater than the area of LTP—this is to
ensure network stability (Song et al., 2000).

• The weight updates are of similar magnitude to that of the
learning rule described in section 4.2. This is determined
empirically using the first few patterns so as to determine a
and b, so that learning rate would not be the varying factor in
the classification accuracy obtained in experiments.

The function H(t) that we derived from the N-MNIST training
data and the corresponding STDP function h(t) that we obtained
are given in Figure 8.

From the STDP function h(t) we calculate the presynaptic
trace xpre for a pattern p as follows:

x
x,p
pre =

{
∑i=n

i=1 h(t
x,p
i ), n > 0

−xtar , otherwise.
(9)
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FIGURE 8 | STDP function derived from the training data: Left: H(t) is the average number of presynaptic neurons spiking at instantaneous time t in a pattern. The

function H(t) derived from all the training patterns is given in the figure. Right: h(t) is the STDP curve obtained after scaling and biasing H(t) to ensure stability and to

preserve the learning dynamics described in the previous sections.

So when a neuron fires one or more spikes, the resultant value
xpre is the sum of the values of h(t) for all time instances t where
spikes occurred. Equation (9) also has a depression component.
When a neuron does not spike at all, there is a LTD of −xtar .
This is similar to section 3, Equation (3), where, in the absence
of spikes, a neuron gets depressed by the same amount −xtar .
The LTD component is introduced in Equation (9) to keep the
learning dynamics similar to that of section 4.2. This addition of
depression does not negate the purpose of this experiment—the
STDP curve is still dependent on the presynaptic spike rate.

The learning rule is similar to that of Equation (3) in section
4.2:

1w = ηxpre(wmax − w)µ (10)

where xpre is the presynaptic trace, η is the learning rate, wmax is
the maximum weight, and µ determines the dependence on the
previous weight.

We trained the SNN using this learning rule above for
one epoch, and we obtained an accuracy of 85.45%. Good
performance was obtained on an PSTH derived STDP function.
Postsynaptic spike time was also fixed. This indicates that precise
time differences between pre and postsynaptic times are not
necessary to classify the N-MNIST dataset.

8. DISCUSSION

Given in Table 12 is a summary of the experiments conducted
and their conclusion.

In this paper, we wanted to evaluate if neuromorphic datasets
obtained from Computer Vision datasets with static images are
discriminative in the time domain. We started the study with
both N-MNIST and N-Caltech101, and performed several more
experiments on N-MNIST alone to evaluate the same. In section
3, we demonstrate that a simple 9-layer CNN achieves 99.23%
accuracy on collapsed N-MNIST which is comparable to the best

results obtained with SNNs. Using the same method described
in section 3, we examine N-Caltech101 images in another paper
by our group (Gopalakrishnan et al., 2018). Here, we use a pre-
trained VGG-16 (on Imagenet datasets), and retrain it using
collapsed N-Caltech101 images (Gopalakrishnan et al., 2018,
Figures 1C,D) and obtained the second best results on the dataset.
In contrast in DvsGesture a neuromorphic dataset not derived
from static images, our ANN has an accuracy of 71.01% which
is far less than the 96.49% accuracy obtained by SNN, showing
that SNN is preferred over ANN in datasets where additional
temporal information contained in the timing of spikes is present.
Results of this experiment, and comparison with other state-of-
the-art algorithms are given in Tables 3–5. This in turn indicates
that while collapsing the patterns in time does not affect the
performance in N-MNIST and N-Caltech101, a similar trend is
not obtained with DvsGesture dataset, which does significantly
worse than state-of-the-art in the ANN. We noted that while
DvsGesture performs better on the STDP-tempotron, the SNN
network with short time traces and additional capability to
classify a temporal dataset (59.11% on STDP-tempotron vs.
53.18% on RD-STDP), N-MNIST has better results on an RD-
STDP, the SNN algorithm that has high synaptic trace time
constants that approximate a summation of spikes (83.89% on
RD-STDP vs. 76.13% on STDP-tempotron). Therefore, the rate-
coded STDP system is adequate to classify and get very good
results on N-MNIST.

We further showed that fixing the postsynaptic spike time gets
a an accuracy of 84.10%, and the performance is not affected.
Finally, we experimented on an instantaneous population rate
based STDP function, and this achieved a performance of 85.45%.
This shows that the instantaneous rate over a population of
neurons fully characterizes the N-MNIST dataset. Collectively
these experiments show that in the N-MNIST dataset, the precise
timings of individual spikes are not critical for classification.

A central theme of our paper is the additional temporal
information in precise spike timing and spike time differences.
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TABLE 12 | This table shows the conclusions of the experiments conducted in this paper.

No. Algorithm Datasets Experiment Conclusion

1. ANN–CNN described in

Table 2

N-MNIST,

N-Caltech101,

DvsGesture

Spikes are summed over the

presentation duration and collapsed

into images. Then they are trained

using an ANN.

The ANN obtains comparable to state-of-the-art results on N-MNIST

(99.23%) and N-Caltech101 (78.01%). However, ANN performs

significantly worse than state-of-the-art on DvsGesture (71.01%), as it

cannot handle the spatiotemporal information. Hence, we conclude that

N-MNIST and N-Caltech101 does not have additional information

contained in the timing of spikes necessary to classify the dataset.

2. RD-STDP and

STDP-tempotron

N-MNIST and

DvsGesture

Comparison of rate-based and

temporal STDP algorithms on the two

datasets

While the rate-dependent RD-STDP obtains very good performance on

N-MNIST (83.89%), it is unable to do as well in DvsGesture (76.13%). In

contrast, STDP-tempotron performs better in DvsGesture (59.11%), but

worse for N-MNIST (53.18%). We conclude that while DvsGesture has

spatio-temporal information, and therefore needs STDP-tempotron,

N-MNIST does not have additional information in the time domain

necessary to classify it.

3. RD-STDP N-MNIST Fixing the output spike time Despite fixing the output spike time, the system performs well (84.10%),

demonstrating that precise timing of spikes are not useful at all in

N-MNIST

4. Populate rate

dependent plasticity

(new rule)

N-MNIST A new STDP curve was devised based

on summing up spikes over the

population—the instantaneous

population firing rate (The second

definition of firing rate—see section 1,

Paragraph 2)

Despite using an STDP curve based on the population spike rates

alone, the system is able to give good performance on N-MNIST

(85.45%). This demonstrates that spike timing is not important in

classifying N-MNIST.

Therefore, it is necessary to highlight the importance of spike
time coding. We gave some evidence on its importance in the
introduction, and we begin this section with more biological
evidence of spike time coding. Thorpe et al. (2001) has examined
both time averaged rate and instantaneous population rate
coding using Poisson spikes, the most prevalent rate coding
scheme. Through simple statistical analysis he demonstrates
that Poisson coding is not efficient enough to transmit detailed
information about the level of excitation in a sensory receptor—
and there are several studies detailing the importance of precise
spike times in sensory systems: (1) Johansson and Birznieks
(2004) points out that precise timing of the first spikes in tactile
afferents encodes touch signals. Tactile perception is shaped by
millisecond precise spike timing (Mackevicius et al., 2012; Saal
et al., 2015). (2) In cats and toads, retinal ganglion cells encode
information about light stimuli by firing only 2–3 spikes in
100 ms (Gabbiani and Midtgaard, 2001). (3) Studies have also
shown the importance of spike timing in the vestibular system
(Sadeghi et al., 2007) and somatosensory cortex (Harvey et al.,
2013; Zuo et al., 2015). Finally, results in neuroprosthetics show
that precise relative timing of spikes is important in generating
smooth movement (Popovic and Sinkjaer, 2000). These studies
suggest that when high speed of a neural system is required,
timing of individual spikes is important. With the importance
of precise spike timings, there are several neural coding theories
that take spike timing into account—examples are time to
first spike (Johansson and Birznieks, 2004; Saal et al., 2009),
rank order coding (Thorpe et al., 2001; VanRullen and Thorpe,
2001; Kheradpisheh et al., 2018), polychronization (Izhikevich,
2006), coding by synchrony (Grey and Singer, 1989; Singer,
1999; von der Malsburg, 1999), predictive spike coding (Deneve,
2008) hypotheses.

As can be seen above, and in the introduction, there is a
lot of evidence that spiking neurons use precise spike timing
for effective coding and computation. In order to assess this
ability in an SNN, a dataset is required to have additional
temporal information in spike timings required for classification.
In this paper, our hypothesis is that any neuromorphic dataset
derived from static images, either by moving a camera or moving
the images, does not contain relevant additional temporal
information contained in the timing of spikes. We support this
thesis through empirical means, by showing that systems using
summation of spikes perform better than those that utilize the
precise timing of spikes. The paper is divided broadly into two
parts, first experiments with ANNs and second experiments
with SNNs and STDP. Both parts of the paper are integral in
supporting this hypothesis. The first part does so by showing that
an ANN has comparable results to the state of the art SNNs when
trained on collapsed neuromorphic dataset on N-MNIST and N-
Caltech101, but the opposite trend is observed in DvsGesture,
which performs significantly worse than state-of-the-art.

The second part explores why training with ANN obtains
such good accuracy through STDP experiments in a SNN
model. RD-STDP learns to integrate the spikes over large time
windows (τSTDP), and uses these spike counts for classification.
On the other hand, STDP-tempotron uses smaller τSTDP and
classify by looking for discriminatory spike patterns within a
small time window. Results of this experiment are given in
Tables 8–10. Currently, the network is shallow, with just one
layer, and as a result, the performance of the current STDP-
tempotron is limited. However, with a deeper network, in
addition to discerning additional features, the tempotron can
potentially learn a longer sequence, by integrating outputs of
several discriminatory time windows. From the design-space
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exploration done, we drew insight and based on this new
insight designed further experiments to prove that no additional
temporal information in spike timings is required for good
classification accuracy. We also reasoned why our approach
is generalizable to SNNs in general. While comparing RNNs
and SNNs, He et al. (2020) have also compared N-MNIST and
DvsGesture, and also concluded that smaller time windows result
in better performance for DvsGesture, but not N-MNIST.

From the insight drawn from above, we further show
that when considering population rate coding (see section 1,
paragraph 2, also Figure 1), there is a very regular pattern to the
population spike rates. We derive a fixed learning curve based
on the population rate code and is able to achieve good accuracy
on the dataset. We would like to note that this learning filter is
applied at the post-synaptic neuron after the input spike train
has been presented. Hence the spike-timing of all neurons are
disregarded and simply collapsed into a population rate code.

Ours is also the first unsupervised STDP SNN to be trained
on image-derived neuromorphic dataset (i.e., RD-STDP), as
has been described earlier (Iyer and Basu, 2017). We have
produced a variant of this architecture suitable for classifying
temporal data (STDP-tempotron—Iyer and Chua, 2020). Note
that the tempotron is supervised.We compare these two different
architectures, performing a systematic study with design space
exploration. We show that while DvsGesture performs better
with STDP-tempotron, N-MNIST is able to get very good results
on the rate-coded RD-STDP system.

The second part of our paper hence shows that given
spatio-temporal information encoded in the spike timing of a
population of neurons, we can either sum up the spikes in
the time domain or over the population, and both rate codes
perform better compared to a STDP learning rule sensitive to
precise spike timing. Hence both parts worked in tandem in
support of the main contribution of our paper: part one to first
pose the question (is additional temporal information contained
in spike timings required for good classification accuracies for
such neuromorphic datasets), and part two to show empirically
that in fact better accuracies are obtained in N-MNIST but not
DvsGesture when the spikes are summed up, hence answering
the question posed.

As we have mentioned earlier, with a completely unsupervised
STDP SNN, and with our temporal variant, where sequences
are learnt in a supervised manner, we are not aiming to achieve
state-of-the-art accuracy compared to other supervised learning
methods; rather the tunable sensitivity to spike timing of STDP
makes it useful for our study. Having said that, in the RD-STDP,
we do achieve reasonable accuracies on N-MNIST compared to
similar STDP based methods—with a 400 neuron network, we
achieve 89.87% accuracy, while a similar STDP system (Diehl and
Cook, 2015) on the original MNIST obtained 87.0% accuracy. On
an 2,400 neuron network, our system achieved 91.78% accuracy
while a 1,600 network (Diehl and Cook, 2015) achieved 91.9%
accuracy. It is not surprising to see a slight deterioration in
N-MNIST over MNIST due to noisy and more realistic input.

This is an empirical paper, and as such we do not prove that
additional temporal information contained in spike timings is
not present in the datasets. We do however, clearly show that

the results point in this direction. In the first part of the paper,
the comparable accuracy between the ANNs and state-of-art
SNNs could lead to two possible conclusions: (1) No additional
temporal information in the timing of spikes is available in the
datasets, so an ANN can perform just as well, or (2) There is, but
existing SNN methods do not make proper use of the additional
temporal information. After all, research on ANNs is much more
mature than that of SNNs, and ANNs are generally expected
to perform better. These results are significant because of the
reasons given as follows.

N-MNIST and N-Caltech101 have actually been used to assess
many SNN algorithms. However, the fact that an ANN (such as
the CNN used for image classification) which uses no additional
temporal information contained in spike timings is on par with
these SNNs shows that (1) These SNNs are either not using
the additional temporal information, or (2) No such temporal
information is available. In either case, the efficacy of these
SNNs has not been proven. The implication of our finding is
the below: with already state-of-the art or close to state-of-
the art accuracies achieved by an ANN (specifically a standard
CNN for image classification) based on collapsed neuromorphic
datasets, if this is due to inherent lack of useful additional
temporal information, such datasets cannot be used in SNNs or
in general any machine learning algorithms hoping to leverage
on spatio-temporal information in these datasets. If however,
it is due to the fact that existing SNNs are found lacking in
leveraging on the encoded spatio-temporal information, then
would it not be more conclusive (and also satisfying) to develop
better SNNs for datasets that standard ANNs could not do well
in, and demonstrate some significant improvements rather than
marginal ones in terms of accuracy? This marginal improvement
would be problematic in justifying the efficacy of the newly
developed SNN anyway, as it is always difficult to tease out the
role of hyper-parameter tuning. Hence, in any case, while the
paper aims to empirically show that there is little useful spatio-
temporal information in such neuromorphic datasets, should the
reader remains unconvinced, one should at the very least, bear
in mind that there is little to be gained over the close to already
state-of-art accuracies obtained from using standard CNNs.

One could imagine that if there is any useful additional
temporal information contained in the timing of spikes, then
collapsing the spike trains over its entire duration of all 3 saccades
would have lost all of this information. We next train a standard
CNN using this dataset obtaining an accuracy of 99.18% showing
that there is not much change in the performance at all. This
shows that changing time bins does not cause the performance
to deteriorate. It also casts serious doubt on if there is any
additional temporal information contained in spike timings in
these neuromorphic datasets, hence requiring more studies (part
two of the paper) in addressing this.

While we do not expect datasets derived from static images
to have additional temporal information in the timing of spikes,
we do expect recordings of movements to contain temporal
information. Therefore we expect that in a dataset such as
DvsGesture, ANNs cannot match the performance of SNNs
as this dataset is expected to contain additional temporal
information. Indeed, we note that this is correct—in an ANN
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identical to one that was used for N-MNIST, we obtain an
accuracy of 71.01% which is far less than state-of-the-art SNN
accuracy which is mostly greater than 95%. If, indeed, the results
on N-MNIST and N-Caltech101 were because current SNNs
were unable to extract additional temporal information in spike
timings that is present in the dataset, then why does DvsGesture
have a different result? Indeed, an SNN is able to extract the
relevant temporal information, and perform far better than our
ANN in classifying the DvsGesture dataset.

We initially approached N-MNIST to devise a STDP
algorithm for classifying neuromorphic data, and as a result
we implemented the first unsupervised SNN algorithm for N-
MNIST. However, explorations with N-MNIST showed that its
features encoded are not discriminative in time. These results are
confirmed in N-Caltech101 as well. In this section, we detail why
this result is important, and discuss the possible next steps. We
pose several questions: (1) Why do we get these results? (2) Why
do we need a neuromorphic dataset that is discriminative in the
time domain? (3) What constitutes a neuromorphic dataset that
can evaluate the temporal aspect of neuromorphic ability? If N-
MNIST is not suitable, then what is? This is a very important
question in neuromorphic engineering.

Why do we get these results? We get good results in the ANN
(section 3) and rate-based SNN (section 5) due to the nature
of N-MNIST. We sum up the spikes in an N-MNIST saccade
in two ways (1) through collapsing the events in time as in
section 3 or (2) by a relatively non-leaky integration of spikes
in section 5. Using both methods, we note that after summation
we retain all the information in N-MNIST (see Figure 2 for a
few examples of collapsed images). This is possibly because of
the static 2-dimensional nature of the underlying dataset (i.e.,
MNIST). Using the N-MNIST creation process of recording from
the ATIS camera can at best reproduce the original MNIST
dataset—there is no additional information over time. N-MNIST
is less informative than MNIST, due to noise and gradations in
the image introduced due to themoving camera. Noise is good, as
the recordings from the camera make the dataset more realistic.
Gradation in the image—i.e., high spike rate while recording
certain parts of the image and low spike rates in other parts
of the image—is an artifact introduced by the predefined and
regular N-MNIST camera movements. Such gradations do occur
in the real world. However, as our sensory neurons are able to
detect and embody the statistics in the environment (Simoncelli
and Olshausen, 2001; Geisler, 2008; Elder et al., 2016) the image
gradations represented in biological neurons are not an artifact
of biological image processing, but probably accurately reflect the
statistics of the scene itself.

We get good results in the last experiment (section 7) due to
an artifact in theN-MNIST dataset. The ATIS cameramovements
are clearly defined, regular, and all images are relatively similarly
sized. Such regularity is not characteristic of retinal saccades, or
any other sensory stimuli. Since we do not believe N-MNIST
to encode discriminative features in time, we could then exploit
such an artifact to do a rate-based classification, as we rightfully
demonstrate in section 7. There are others who agree with our
point of view on the limitations of datasets such as N-MNIST (for
e.g., Sethi and Suri, 2019; Zhu et al., 2019; Deng et al., 2020; He

et al., 2020; See et al., 2020), and He et al. (2020) shows similar
results in a different paradigm (i.e., RNN vs. SNN) to further
corroborate our point.

Why do we need a dataset that is discriminative in the time
domain? The ability to use precise spike timings in calculations is
a very useful property of SNNs, and we need more datasets that
are able to evaluate this property. The spirit of neuromorphic
engineering is not to just reproduce the methodology and
computational mechanisms that deep learning already has, but
to utilize additional characteristics of spiking neurons such as
precise spike timings.We argue that given the event-based nature
of the DVS camera, it is an ideal sensor platform to generate event
datasets for benchmarking SNNs. However SNNs should not
only be able to learn spike count/rate encoded information but
also precise spike timing encoded information. As such, we hope
to see more DVS datasets which encode information in precise
spike timing, such as the DvsGesture. As seen in the introduction
of this paper, there is a lot of biological evidence that precise
spike times play an important role in neural computations. The
brain works on spatiotemporal patterns. SNNs use spikes as their
units of computation. STDP uses difference between spike times
as its measure for learning. To highlight the utility of these
computational mechanisms, we need datasets wherein features
are encoded in individual spike times asynchronously.

In order to do well on a rate-based dataset, large time
constants for synaptic traces are required to sum up over spikes.
This necessarily results in slower reaction times. As we have
stated in our introduction, one of the arguments by Thorpe for
spike time coding in SNNs is that biological systems have short
reaction times. Therefore, we do think that in a cognitive task
that requires fast response time, spike time coding maybe more
biologically plausible. The development of better SNN learning
algorithms we believe is also largely driven by the quest for an
algorithm that can learn the temporal information encoded in
spike timing and its derivatives. Naturally, the dataset to assess
such algorithms should then contain useful time information
necessary for the classification task. We think audio and motion
datasets would contain such temporal information, and learning
algorithms sensitive to spike timing would have small time
constants for their synaptic traces, leading to shorter reaction
time as well.

Finally, our third and most important question is—what
constitutes a neuromorphic dataset that can evaluate the
temporal aspect of neuromorphic ability? The method of moving
images or a vision sensor across static images in a Computer
Vision dataset was one of the first attempts at creating a
neuromorphic dataset. Although researchers have used datasets
such as N-MNIST and N-Caltech101 for various purposes, we
have seen that they do not have additional temporal information
contained in spike timing necessary for their classification. What
kind of dataset has this temporal information? We believe that
DvsGesture does as it has recordings of dynamic movements—
information that varies over time. Other useful candidates may
be audio and video datasets. Audio and video are inherently
spatiotemporal, and summing up temporal events over time will
result in huge loss of information. These datasets also does not
have one single peak in amplitude that is representative of all
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patterns. Over a short duration, audio and video do not make
sense. On the contrary, audio and video events are dynamic,
and events that unfold over a period of time lead to a holistic
representation of the information, as described in George (2008).

There are several studies in speech classification where deep
learning methods are applied to spectrograms which are treated
like static images. This is indeed one interesting approach to
audio classification, alongside other approaches using recurrent
neural networks or the LSTM. An advantage of SNN (for instance
one trained using the tempotron) over deep learning methods
is its ability to predict the class as soon as there is enough
discriminatory evidence, and not at the end of the input (Gutig
and Sompolinsky, 2006). This is achieved even when the SNN
is trained over the entire audio sequence duration. Another
would be that when an ANN is trained using the multi-condition
protocol (McLoughlin et al., 2015), the accuracy for clean data
tends to suffer a little, while this is not the case for a SNN. Both
these advantages are discussed in work still under review. He
et al. (2020) show that datasets not derived from static images
(i.e., DvsGesture) are more suitable for SNNs than RNNs. On
the other hand, datasets such as N-MNIST do not show this
advantage.

N-MNIST and N-Caltech101 and the datasets from which
they were derived, i.e., MNIST and Caltech101, are inherently
about image classification, and DvsGesture about action
recognition. However, an image classification dataset can have
information encoded not just in the spatial domain (Fiser and
Aslin, 2002; George, 2008). Motion and action classification
requires data changing over space and time. Although we are
able to recognize a static image perfectly well, we are also
able to generalize in a way that deep learning cannot—over
different rotations, lighting conditions, sizes, and so on. This
is possibly because we are exposed to a continuous stream of
varying data (Simoncelli, 2003; Blake and Lee, 2005; Mazzoni
et al., 2011; Faive and Koch, 2014; Keitel et al., 2017), and
use time as a supervisor to understand and perform these
generalizations (George, 2008). A visual dataset that embodies
these principles may be suitable. Saccades in biological systems
in the real world are over objects which may be moving or even
if stationary, changing in perspective over time. In this case,
collapsing over saccades will lose this time encoded information
useful for cognitive functions, as additional information on
precise spike timing is lost. Considering the changes along with
the precise time information will lead to holistic representations
not otherwise possible with static information. Clearly, N-
MNIST and N-Caltech101 have information encoded in spatial-
temporal domain, albeit the time domain encoding scheme
being spike count based. Images can also be encoded in the
temporal domain using precise spike timing, as in the case
of latency coding (Mostafa, 2018; Comsa et al., 2020), for
instance. Similarly, for a temporal dataset like speech, one
can use a CNN to learn such a dataset whereby the input
is encoded using an image generated from a spectrogram of
the input word (Palaz and Collobert, 2015). Therefore the
creation of a spatiotemporal dataset need not be limited to
a particular task, but rather the manner in which the data
is encoded.

9. CONCLUSION

In this paper, we address an important issue in neuromorphic
computing by examining if datasets created from static images
with the DVS-camera are discriminative over the time domain.
We have focused on N-MNIST throughout the paper, but in the
first experiment, show that N-Caltech101 follows the same trend.
In the discussion, we have highlighted why it is important to have
datasets that are discriminative in time. We also discuss what
would be an appropriate dataset that tests the ability of SNNs to
use precise spike timings in their computation.

In conclusion, spikes occurring over time is not just an
alternate mechanism for representing static information, such
as using the intensity of a pixel as the rate for a Poisson spike
train. Brains have evolved to use computing mechanisms that are
inherently suitable to represent and process information from a
dynamic world, and even for a purely engineering purposes, we
can utilize these processes. This paper, therefore highlights a need
for further research into effective benchmarks that could test the
temporal abilities of SNNs over earlier neural networks.
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