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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Around 60% of in vitro fertilized (IVF) human embryos irreversibly arrest before compaction

between the 3- to 8-cell stage, posing a significant clinical problem. The mechanisms behind

this arrest are unclear. Here, we show that the arrested embryos enter a senescent-like

state, marked by cell cycle arrest, the down-regulation of ribosomes and histones and

down-regulation of MYC and p53 activity. The arrested embryos can be divided into 3 types.

Type I embryos fail to complete the maternal-zygotic transition, and Type II/III embryos

have low levels of glycolysis and either high (Type II) or low (Type III) levels of oxidative

phosphorylation. Treatment with the SIRT agonist resveratrol or nicotinamide riboside (NR)

can partially rescue the arrested phenotype, which is accompanied by changes in metabolic

activity. Overall, our data suggests metabolic and epigenetic dysfunctions underlie the

arrest of human embryos.

Introduction

In vitro fertilization (IVF) has revolutionized the treatment of human fertility problems. How-

ever, a large number of human embryos fail to develop in vitro, and typically, only 30% of

human embryos will progress to the blastocyst stage [1,2]. Human preimplantation embryos

can arrest at all stages between the zygote and the blastocyst, and a large fraction irreversibly
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arrest between the 2-cell and 8-cell stages and remain un-compacted [2]. Several cellular mech-

anisms have been proposed to explain this arrest, specifically: failed zygotic genome activation

(ZGA) [3], delayed maternal RNA clearance [4], reactive oxygen species causing endoplasmic

reticulum stress [5,6], and aneuploidy [7]. Computational machine learning techniques can

detect morphological patterns in microscope images of otherwise normal-appearing embryos

that will later go on to arrest [1], suggesting the arrest mechanisms are active before they mani-

fest. However, the cellular mechanism remains unclear.

In vitro developmental models of embryogenesis in other organisms has not brought clarity

to this problem, as preimplantation development is divergent between species [8]. For exam-

ple, ZGA mainly occurs at the 2-cell stage in mice, but in humans, there are 2 waves, a minor

ZGA at the 2-cell stage and the major ZGA at the 8-cell stage [9]. Relatedly, in contrast to

humans, some species have good in vitro developmental potential. For example, approximately

90% of mouse, approximately 80% of (monospermic) pig, approximately 70% of cat, and

approximately 60% of Macaca mulatta embryos successfully develop to the blastocyst stage

[10–12]. Conversely, humans are not the only species with poor in vitro embryonic develop-

mental potential, only 25% to 30% of cattle and horse embryos will develop to a blastocyst

[6,13,14]. However, it is unclear if the same mechanisms are active in other species. Human

embryonic stem cells (ESCs) can be manipulated to form artificial blastocyst-like “blastoids”

that mimic natural blastocysts [15,16]. Interestingly, blastoids are generated at low efficiency,

which may reflect developmental problems inherent to natural blastocysts. However, blastoids

cannot address pre-morula developmental arrest, as they model a later developmental stage,

and it is unclear if the problems seen in blastoids are the same as preimplantation embryos.

Ultimately, to investigate the arrest of human embryos, it is necessary to assay the problems

directly.

In this study, we explored the transcriptomic basis behind the arrest of human embryos. A

subset of the arrested embryos enter into a senescent-like state characterized by the up-regula-

tion of p53, MYC, FOXO1, and the widespread down-regulation of ribosomes, histones, and

translation initiation factors. We show that this senescent phenotype can be partially overcome

using the antioxidant resveratrol and nicotinamide riboside (NR), and our data suggest that

these 2 molecules activate the sirtuin family of acetyltransferases (SIRTs) to modulate metabo-

lism. Modulation of SIRT activity leads to a reactivation of the arrested embryos and progres-

sion to a morula and early blastocyst.

Results

Gene expression of arrested human embryos after in vitro fertilization

Under typical IVF procedures, approximately 60% of embryos arrest (Fig 1A). We were inter-

ested in the class of embryos that arrest during development, but maintained a normal mor-

phology and cell integrity, and did not show signs of disintegration. Embryos often arrest at

either day 3 or day 4, postfertilization (Fig 1A and S1 Data). Day 4-arrested embryos reach the

8-cell stage but would fail to form a morula. The day 3–arrested embryos would undergo cleav-

age, but failed to reach the 8-cell stage (Fig 1B and 1C and S1 Data). In this study, we focused

on the day 3–arrested embryos. The embryos were left a further day to confirm no further

development and no fragmentation or disintegration of the embryonic cells. Under these crite-

ria, the embryos would be discarded in IVF procedures. It should be noted that, by this defini-

tion, approximately 3% of the day 3–arrested embryos can spontaneously recommence

development and form a blastocyst (see later in the manuscript). However, prolonged in vitro

culture of human embryos is deleterious for further development [2]; hence, we chose the min-

imal window between confirming the arrest of the embryos and preserving developmental

PLOS BIOLOGY Mechanisms behind the arrest of human embryos

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001682 June 30, 2022 2 / 29

supporting the conclusions of this article are

available in the GSA (Genome Sequence Archive):

HRA001406 under controlled access for human

samples. The normalized gene expression matrix

for all samples and genes/TEs used in the study

and the raw tag count matrix of all samples

(excluding resveratrol) used in this study for

CytoTRACE analysis are available at https://

figshare.com/articles/dataset/Human_embryo_

normalized_gene_expression_data/19775992.

Funding: This work was supported by the National

Key R&D Program of China (2018YFC1704300 to

Y.J.W.), the National Natural Science Foundation of

China (81070494 and 81170571 to G.Q.T,

81571442 to W.Z., and 31970589 to A.P.H.), the

Shenzhen Innovation Committee of Science and

Technology (JCYJ20200109141018712 to A.P.H.

and ZDSYS20200811144002008 to the Shenzhen

Key Laboratory of Gene Regulation and Systems

Biology and to A.P.H.), and the Stable Support Plan

Program of the Shenzhen Natural Science Fund

(20200925153035002 to A.P.H.). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: AU : Anabbreviationlisthasbeencompiledforthoseusedinthetext:Pleaseverifythatallentriesarecorrect:DE, differentially expressed; ERV,

endogenous retrovirus; ESC, embryonic stem cell;

GSEA, gene set enrichment analysis; HSC,

hematopoietic stem cell; IVF, in vitro fertilized;

MZT, maternal-to-zygotic transition; NR,

nicotinamide riboside; PCA, principal component

analysis; TE, transposable element; TF,

transcription factor; TSS, transcription start site;

ZGA, zygotic genome activation.

https://doi.org/10.1371/journal.pbio.3001682
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992


competency. For this study, we defined irreversibly arrested as day 3 embryos at the 2-cell to

5-cell stage that remained in that state on day 4, at which point a normal human embryo

would be a morula (Fig 1C).

To explore the mechanism of arrest, we performed single-embryo RNA-seq on 17 arrested

human embryos and combined this data with 6 arrested embryos from a previous study [4]

(https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/

19775992). We compared these data with publicly available single-embryo or single-cell RNA-

seq data from normal human embryos from the oocyte through to the late blastocyst [17–19].

Considering the high rate of developmental arrest of human embryos, it should be noted that

the “normal” dataset is likely to contain embryos that are arrested or will go on to arrest. The

dataset was analyzed using a hybrid single-cell RNA-seq and bulk RNA-seq pipeline based on

Fig 1. Human IVF embryos have poor in vitro developmental capability. AU : AbbreviationlisthavebeencompiledforthoseusedinFigs1 � 6; S3 � S5; andS7 � S10:Pleaseverifythatallentriesarecorrect:(A) Typical outcomes for human IVF

blastocyst development. Developmental results of 123 embryos were collected from 30 patients undergoing IVF.

Underlying data can be found in S1 Data. (B) Number of blastomeres in the 37 embryos arrested on day 3

postfertilization. These embryos were defined as arrested and had normal morphology with distinct blastomeres, no

unequal divisions, and no fragmentation. Underlying data can be found in S1 Data. (C) Bright-field images of

uncompacted arrested human embryos between the 2-cell and 5-cell stages, and normal embryos at the same day of

development. Scale bar = 20 μm. IVF, in vitro fertilized.

https://doi.org/10.1371/journal.pbio.3001682.g001
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scTE and EDASeq G/C normalization [20–22]. In total, our dataset contained 1,020 single

cells or single embryos, of which 23 were arrested.

Arrested embryos can be divided into 3 types of arrest

We next investigated the developmental state of the arrested embryos. Potentially, arrested

embryos have a failed or distorted developmental program, which may explain their arrest.

Projection of the gene expression into principal component analysis (PCA) placed the arrested

embryos in several locations, ranging from a 2-cell, 4-cell state, to 8-cell through morula (Fig

2A). This was surprising, as morphologically the cells remained as 2-cells to 5-cells (Fig 1C).

The arrested embryos did not diverge from a normal developmental pathway and clustered

with zygote through to the late morula (E4) stage. None of the arrested embryos had under-

gone compaction, yet many arrested embryos had a gene expression signature in advance of

their morphological state. This suggests the developmental program is not correlated with the

number of cells.

Early embryonic development is a highly dynamic process with rapid changes in gene

expression [23,24]. The arrested embryos are distributed through several developmental stages,

hence to isolate the factors involved in arrest, we attempted to remove development as a con-

founding variable. Co-correlation of the arrested embryos resulted in 3 groups (Fig 2B), which

we designate Types I to III. Type I embryos clustered with the zygote, 2-cell and 4-cell stages,

while Types II and III were grouped with 8-cell and beyond stages, (Fig 2A). Analysis of the

arrested embryo types using CytoTRACE, which estimates developmental trajectories [25],

placed Type I closest to the 4-cell stage, Type II between 4-cell and 8-cell, and Type III between

E3 (embryonic-stage 3, early morula, as defined in [19]) and morula stages (S1A–S1C Fig and

https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/

19775992). Interestingly, CytoTRACE did not indicate that the arrested embryos had lost

developmental potency, supporting the idea that the developmental gene expression program

is not substantially impacted by arrest. Analysis of genes specific to each stage of development

indicated that each arrested type expressed genes normal for their developmental stage (S1D–

S1F Fig). For example, Type I arrested embryos expressed typical developmental markers for

the 4/8-cell stages, such as LIN28A, DIS3, REST, and SNAPC1 (S1D Fig). While Types II and

III arrested embryos expressed markers specific for the morula or even blastocyst, including

NANOG, DNMT3L, ESRRB, and ZFP42 (S1E Fig). Clustering the expression of genes from an

8-cell-specific signature identified in [26] clustered Type I with 2/4-cell stages, although some

8-cell-specific genes were up-regulated in the Type I embryos (S1F Fig). This suggests that the

Type I arrested embryos are developmentally arrested at the 4-cell stage, but express some

8-cell markers, while Types II and III embryos are more developmentally advanced and

express 8-cell, morula, and even blastocyst-stage developmental genes.

Arrested embryos do not show excessive aneuploidy

We next looked at the karyotype of the arrested embryos. Normal human embryos have sur-

prisingly high levels of aneuploidy, compared to other species [27], and this may be a contrib-

uting factor to arrest during IVF, particularly in embryos from women of advanced maternal

age [28]. Aneuploidy mainly takes 2 forms [29]: full embryo aneuploidy due to meiotic errors

in the oocyte/zygote or mosaic aneuploidy due to mitotic errors after fertilization [3,30]. We

used the RNA-seq data to estimate the karyotype, as we could then correlate it with the arrest

type in the same embryo. We used the method described in [31] to estimate aneuploidy (S2

Data). Around 30% of cells were predicted to be aneuploid (S2A and S2B Fig and S2 Data),

which agrees with previous data that aneuploidy is common in human embryos [32]. We
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Fig 2. Arrested embryos adopt 3 distinct types of arrest. (A) PCA of single embryo or single-cell RNA-seq for normal or arrested

human embryos. Arrested embryos are marked in pink. Presumed normal embryonic cells are colored by their developmental stage. The

control (non-arrested presumed normal) samples are from a reanalysis of GSE66507 [18], PRJEB11202 [19], and GSE36552 [17]

embryonic data. E = Embryonic-stage samples, as defined in [19], for this and all subsequent figures. Underlying data can be found in:

https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992. (B) Pair-wise co-correlation matrix

(Pearson’s R) of the arrested embryo RNA-seq data. The types (based on the major clades in each cluster) are indicated. Clustering is

based on Euclidean distance with complete linkage and optimal ordering. Underlying data can be found in: https://figshare.com/articles/

dataset/Human_embryo_normalized_gene_expression_data/19775992. (C) Box plots showing the expression in each cell/embryo for

the major ZGA genes and maternal RNA clearance genes as defined in S3A Fig and S3 Data. Cell types are labeled in the colored header

bar and labeled below the heatmap. Note that the “normal” 8-cell from the [17] dataset, which appears to be failing the MZT and we

predict is arrested, is indicated with stars. Underlying data can be found in: https://figshare.com/articles/dataset/Human_embryo_

normalized_gene_expression_data/19775992. (D) Violin plot showing the expression of the key ZGA genes DUX4 and ZSCAN4.

Significance is from a 2-sided Welch’s t test. Underlying data can be found in: https://figshare.com/articles/dataset/Human_embryo_

normalized_gene_expression_data/19775992. (E) Violin plot of expression for the key maternal RNA clearance gene BTG4. Significance

is from a 2-sided Welch’s t test. Underlying data can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_

gene_expression_data/19775992. (F) GSEA showing significantly enriched gene set terms for the up-regulated genes in the Type I

arrested embryos versus 8-cell-stage embryos. Underlying data can be found in S3 Data. (G) Heatmap of the Z-scores of the expression

of a selection of differentially expressed epigenetic factors. Cells/embryos were clustered according by Euclidean distance and complete
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notice that chromosomal defects become particularly evident at the 8-cell stage, and reach

around 30% at the morula/E3 stage (14/48 cells, 29%) and persist to the E7-stage (late blasto-

cyst) at similar rates (116/321 cells, 36%) (S2C Fig). Of the arrested embryos, 6/23 (26%) had a

predicted aneuploidy (S2A and S2B Fig). This number is not substantially different from nor-

mal embryos and is in line with the typical levels of aneuploidy seen in human embryos. This

computational approach cannot easily detect the difference between meiotic and mitotic aneu-

ploidies, but assuming most of the aneuploidies we see are due to mitotic errors, there was no

overall bias in the gain or loss of specific chromosomes (S2C and S2D Fig). Ultimately, these

data suggest that aneuploidy is not a specific feature of arrested embryos. In a study of aneu-

ploidy in embryos from women of advanced maternal age, 50% of embryos still developed to

the blastocyst stage, despite 84% of the embryos having at least 1 chromosomal abnormality

[28]. Similarly, there is evidence that mosaic aneuploidies are common and may not be detri-

mental to development [30,33], at least to the blastocyst stage. Finally, meiotic aneuploidies

can develop to the blastocyst stage, although they have severe consequences for further devel-

opment [34]. Hence, we argue that while aneuploidy is an important problem in postimplanta-

tion development, it is not responsible for developmental arrest pre-compaction or to reach

the blastocyst.

Type I arrested embryos fail the maternal-to-zygotic transition

We next looked at biological processes that were behind the arrest. Because each type of

arrested embryo clusters with different embryonic stages, we decided to investigate each type

separately. The arrest of Type I embryos is developmentally close to the maternal-to-zygotic

transition (MZT), which happens from fertilization to the 8-cell stage [35]. The MZT encom-

passes 2 processes, major ZGA and the degradation of maternal transcripts. A failure of the

major ZGA or maternal-clearance may lead to embryonic arrest. Indeed, there is evidence that

maternal-clearance is defective in arrested embryos [4], but the major ZGA can initiate nor-

mally in arrested embryos [36]. We first defined major ZGA genes as those genes that were sig-

nificantly up-regulated >4-fold from 2-cell to 8-cell stages, and maternal-clearance genes as

those significantly down-regulated (S3A Fig and S3 Data), in a method similar to [37]. Gene

set enrichment analysis (GSEA) supported the designation of these genes as representing the

MZT, as up-regulated terms included spliceosomes, transcription, and down-regulated genes

included female gamete generation (S3B Fig).

We next applied these 2 MZT gene sets to the arrested embryos. Surprisingly, the expres-

sion of major ZGA genes and maternal-clearance genes could discriminate Type I arrested

embryos from Types II and III (Fig 2C). Types II and III arrested embryos had gene expression

levels of major ZGA genes that matched the 8-cell stage, and maternal-clearance genes were

lower in Type II/III than in 4-cell-stage embryos (Fig 2C), indicating that Types II and III

arrested embryos had traversed the MZT. Conversely, the Type I arrested embryos had poor

activation of ZGA genes and incomplete degradation/reduction of maternal transcripts (Fig

2C). This observation was supported by the expression of key MZT-related regulatory genes.

linkage. Underlying data can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/

19775992. (H) Box plots showing the percent of normalized tags mapping to TEs in the indicated embryonic stages or the arrested

embryos. Significance is from a 2-sided Welch’s t test. Underlying data can be found in S1 Data. n.s. = not significant. (I) Volcano plot

of differential gene expression for Type I arrested embryos versus 4-cell-stage embryos. This plot only shows the differentially expressed

TEs. The x-axis is the log2 fold-change, and the y-axis is the −log10(q-value) as reported by DESeq2 with Bonferroni–Hochberg multiple

testing correction. Significantly, up- and down-regulated TEs are labeled in red and blue, respectively, and the number of TE types that

are up- or down-regulated are labeled. Underlying data can be found in S4 Data. GSEA, gene set enrichment analysis; MZT, maternal-

to-zygotic transition; PCA, principal component analysis; TE, transposable element; ZGA, zygotic genome activation.

https://doi.org/10.1371/journal.pbio.3001682.g002
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The DUX family of transcription factors (TFs) are involved in ZGA, and DUX4 is activated

just before major ZGA [38,39]. In the Type I arrested embryos, DUX4 was low compared to

the expression of DUX4 in 4-cell-stage embryos, and 2 target genes of DUX4, DUXA, and

ZSCAN4 were poorly induced compared to the 8-cell-stage (Figs 2D and S3C). Similarly, the

key maternal RNA-clearance genes BTG4, PAN2, and CNOT6L [40] remained high in Type I

arrested embryos (Figs 2E and S3D). Interestingly, our data indicates that one of the “normal”

8-cell embryos resembles a Type I arrested embryo, with low levels of major ZGA genes and

incomplete maternal RNA-degradation (Fig 2C). Overall, our data suggest that MZT failure

can account for about approximately 40% of arrested embryos (10/23 arrested embryos and 1/

4 “normal” embryos).

We next looked at mechanisms underlying the arrest of Type I embryos. The MZT is a time

of very active epigenetic and 3D genome rearrangements [24], and we speculated that epige-

netic defects underlie MZT. We first measured differentially expressed (DE) genes and trans-

posable elements (TEs) by comparing Type I versus 4-cell-stage embryos (S4A Fig). GSEA

indicated that DNA methylation and HDAC deacetylase pathways were up-regulated (Fig 2F),

suggesting epigenetic regulatory dysfunction. Many specific epigenetic repressors and activa-

tors were significantly down-regulated in arrested embryos (Fig 2G). For example, SAP30, a

member of the SIN3A co-repressor complex was down-regulated, along with the histone argi-

nine methyltransferase PRMT5. Histone lysine methylating enzymes were also down-regu-

lated, including KMT5C (SUV420H2), which is responsible for catalyzing the repressive

histone H4K20me3 mark. Additionally, KMT2B (MLL2), an enzyme responsible for the active

histone mark H3K4me3 was also down-regulated. Conversely, the histone demethylases

KDM4F and KDM4E were up-regulated in arrested embryos (Fig 2G). The consequences of

these changes are likely to be major disruptions in the balance of activatory and repressive

chromatin.

Ideally, we would perform ChIP-seq for methylated histones in human embryos. However,

this technique is extremely challenging when small amounts of material are available. Histone

ChIP-seq has been performed using mouse embryos but required several hundred embryos

[41], which is a level of material not available for human embryos. Consequently, we exploited

an indirect method to measure the epigenetic state of the cell. In other embryonic model sys-

tems, such as mouse or human ESCs, we and others have shown that when epigenetic regula-

tors are disrupted, TEs tend to be up-regulated [42,43]. The situation is complicated by the

presence of expressed TE sequences during normal embryonic development [44]. Nonetheless,

TE expression can act as an indirect read-out for chromatin state. Remarkably, in the Type I

arrested embryos, we observed a dramatic increase in the overall number of reads mapping to

TEs (Fig 2H). This was also reflected in the number of differentially regulated TEs, and 366 TE

types were up-regulated, while only 7 types of TE were down-regulated (Fig 2I). This pattern

held whether we compared Type I to 2-cell, 4-cell, or 8-cell cells (S4B Fig). TEs were unaf-

fected in Type II arrested embryos, and modestly up-regulated in Type III (Fig 2H); however,

only a few types of TE were differentially expressed (S4C Fig). In Type I arrested embryos,

endogenous retrovirus (ERV) families were up-regulated, and approximately 70% of ERV1,

ERVL, and ERVK family TEs were up-regulated (S4D Fig). Only a few SINE TEs were up-reg-

ulated, but LINE:L1s were up-regulated, including the L1HS family of TEs that are capable of

transposition [45] (S4E Fig). Indeed, a major epigenetic suppressor of LINE L1s, PRMT5 [46],

was significantly down-regulated in Type I arrested embryos (Fig 2G). Ultimately, the massive

deregulation of TEs seen in arrested embryos is reminiscent of the widespread activation of TE

families in response to the knockdown of epigenetic regulators we previously observed in

mouse ESCs [42]. One further point to note is that many of the deregulated epigenetic factors

in Type I embryos are repressors (Fig 2G). This may seem counterintuitive that repressors are
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down-regulated, TEs are up-regulated, but the ZGA fails to activate. However, epigenetic

repression is an important, if incompletely understood, component of the ZGA [47]. Overall,

our data suggest that Type I arrested embryos have MZT defects that are likely due to epige-

netic deregulation.

Types II and III arrested embryos enter a senescent-like state

We next looked at Types II and III arrested embryos. These arrested embryos are distinct from

Type I, by overall gene expression patterns (Fig 2B), successful traversal of the MZT (Fig 2C),

and do not appear to have a deregulated epigenetic state, as measured by TE sequence frag-

ment expression (although LINE-1 L1HS are up-regulated) (S4C and S4E Fig). This suggests

other mechanisms are responsible for Types II and III arrest. Embryonic development is a

dynamic process, PCA and CytoTRACE indicates the Types II and III arrested embryos are

most similar to cells of the 8-cell/morula stage and the late morula (E4)-stages, respectively

(Figs 2A and S1B). To determine the closest comparable embryonic stage, we measured the

number of significantly DE genes between Types II and III embryos versus 8-cell, morula, and

E4-stages (S5A Fig), and chose the comparison with the smallest overall number of DE genes.

This approach suggested that the closest comparisons are Type II versus morula (1784 DE

genes) and Type III versus E4 (824 DE genes) (S5A and S5B Fig and S3 Data).

We next analyzed the sets of genes that were DE for Types II and III. Interestingly, for

Types I and II, ribosomes, histones, and translation-related genes were down-regulated, as

determined by GSEA and gene expression levels (Fig 3A–3C and S4 Data). In Type III

embryos, large ribosomes were significantly down-regulated, while small ribosomes were unaf-

fected and nucleosomes were significantly elevated; however, select histones and ribosome

transcripts were significantly down-regulated in all 3 arrested embryo types (S5C and S5D

Fig). Ranking cells by the sum of expression of small and large ribosomes and nucleosomes

placed almost all arrested embryos at the bottom of the list (S5E–S5G Fig). Based on the

down-regulation of nucleosomes and ribosomes, we reasoned that the arrested embryos were

entering into a senescent-like state. This was supported by GSEA, which suggested a senes-

cence-like gene expression program was being activated (Fig 3D). Cell cycle genes were dereg-

ulated in the arrested embryos. Expression of the A-type cyclin CCNA2 was down-regulated,

while the cell cycle inhibitor CDKN1A (p21) was up-regulated in arrested embryos (Fig 3E).

Marker genes specific to cell cycle phases tended to be lower in the arrested embryos [48] (S6A

and S6B Fig). These included genes involved in an active cell cycle, such as the tubulin sub-

units TUBB4B, TUBA1A, CCNB1, and PCNA, which were significantly down-regulated in

arrested embryos (S6A and S6B Fig). These results suggest that the arrested embryos are

entering into a senescent-like state marked by reductions in ribosomes, nucleosomes, protein

translation, and cell cycle factors.

Senescence and quiescence are defined molecular programs with overlapping signatures

[49–51]. A key regulator of senescence and quiescence in hematopoietic stem cells (HSCs) is

p53 [52]. GSEA of up- and down-regulated genes suggested hyperactivation of p53 target

genes (Fig 3F). The mRNA levels of p53 (TP53) were either unaffected (Type II) or slightly

reduced (Type III) in the arrested embryos (S6C Fig). However, immunofluorescence indi-

cated that arrested embryos had high levels of phosphorylated (Ser15) p53, a mark of activation

(Fig 3G). A major target gene of p53, MDM2, was also significantly up-regulated (Fig 3H), a

feature also seen in quiescent HSCs [52]. Finally, ranking all cells by the sum of their gene

expression for p53 target genes placed all arrested embryos at the top of the list (S6D Fig), indi-

cating increased activity downstream of p53. This analysis suggests that the arrested embryos

are becoming senescent, with a deregulated cell cycle and activated p53. However, the
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Fig 3. Arrested embryos down-regulate histones, ribosomes, and adopt a senescent-like gene expression program with elevated p53 activity. (A) GSEA

for differentially expressed genes in the Type II versus morula comparison. Underlying data can be found in S5 Data. (B) Violin plot of the means of the Z-

scores for all small (top) and large (bottom) ribosomal subunits in the indicated embryonic stages or arrested embryos. Significance is from a 2-sided Welch’s

t test. Underlying data can be found in S1 Data. n.s. = not significant. (C) Violin plot of the means of the Z-scores for all expressed nucleosomes in the

indicated embryonic stages or arrested embryos. Significance is from a 2-sided Welch’s t test. Underlying data can be found in S1 Data. (D) GSEA showing

the SASP term is significantly enriched in Type III versus E4 (late morula) comparison. Underlying data can be found in S5 Data. (E) Violin plot showing the

expression of CDKN1A (p21), or CCNA2 in the indicated embryonic stages or arrested embryos. Significance is from a 2-sided Welch’s t test. Underlying

data can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992. (F) GSEA showing the

enrichment of the HALLMARK p53 list of target genes is significantly enriched in Type III versus E4 (late morula) comparison. Underlying data can be

found in S5 Data. (G) Phospho-S15-p53 (green) immunostaining in arrested embryos. Embryos are co-stained with DAPI (blue), scale bar = 20 μm. (H)

Violin plot of expression showing the expression level of the p53 target gene MDM2 in the indicated embryonic stages or arrested embryos. Significance is

from a 2-sided Welch’s t test. Underlying data can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/

19775992. GSEA, gene set enrichment analysis; SASP, senescence-associated secretory phenotype.

https://doi.org/10.1371/journal.pbio.3001682.g003
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developmental program is still being executed, which suggests that development, senescence,

and cell cycle are uncoupled processes.

Partial rescue of arrested embryos by resveratrol

The arrested embryos have a disrupted cell cycle. However, it is unclear if the arrest is related

to quiescence (i.e., reversible) or senescence (i.e., irreversible). Senescence and quiescence

have many similar cellular and mechanistic features, and there is no clear way to discriminate

between the 2 states, except for reversible reactivation [50]. To determine if the arrested

embryos are irreversibly arrested, we attempted to reactivate the embryos and recommence

development. We selected several small molecule inhibitors that have previously been shown

to impact embryonic or pluripotent stem cell development. Specifically, the mTOR inhibitor

rapamycin, ERK inhibitor PD0325901, vitamin C, and resveratrol. These 4 compounds have

been implicated in various aspects of senescence and embryogenesis. Rapamycin inhibits

mTOR to promote autophagy and has been shown to improve pig oocyte development [53].

Vitamin C is an antioxidant and epigenetic modulator that can affect DNA methylation by

functioning as a co-factor for DNA demethylation TET enzymes [54]. ERK inhibition assists

in the establishment of the inner cell mass in the blastocyst stage [55]. Finally, resveratrol is an

antioxidant that can improve pig and bovine oocytes [56–58] and in vitro development of

aged mice and human oocytes [59].

Application of rapamycin, PD0325901, and vitamin C to the arrested embryos had only a

limited impact, and the embryos did not recommence development at rates substantially higher

than control (untreated arrested) embryos (S7A Fig). Only resveratrol, an antioxidant with

SIRT-activating effect, had a substantial impact on the development of arrested embryos. After

treatment, 23/42 embryos recommenced development (Fig 4A). However, it should be noted

that 4/42 embryos reinitiated development, but ultimately fragmented, suggesting that at least

some of the reactivated embryos are incapable of further development. Similarly, while many

(19/42, 45%) of the embryos recommenced development, only 9 compacted, and only 3 made it

to the blastocyst stage (Fig 4B and 4C). A caveat should, however, be applied. The arrested

embryos were cultured for a further day before starting treatment with resveratrol (i.e., the day

3–arrested embryos started treatment on day 4). Potentially, treating the embryos with resvera-

trol at an earlier time point may have activated more embryos without disintegration.

To further investigate the gene expression patterns, we performed single-embryo RNA-seq

on the resveratrol-treated embryos that recommenced development and made it to at least the

morula stage. PCA suggested that the resveratrol-treated embryos had indeed recommenced

development (Fig 4D), as the resveratrol-treated embryos were now grouped with early and

late blastocyst-stage embryos, and normal developmental marker genes were activated. For

example, ESRRB and TFCP2L1 were highly expressed (S7B Fig). TEs were also expressed at

normal levels (S7E and S7F Fig). We next looked at senescent and cell cycle–related genes.

Curiously, ribosomes and nucleosomes had not recovered to their normal levels (S7C Fig) nor

had the cell cycle–related genes CENPA and CCNA2 (S7D Fig). Expression of the cell cycle

inhibitor CDKN1A had also not declined (Fig 4E). However, immunostaining of arrested

embryos and embryos treated with resveratrol indicated that the protein level of p21

(CDKN1A) was reduced, suggesting resveratrol is affecting p21 posttranslationally (Fig 4F).

Similarly, phosphorylated AKT (Ser473) was also reduced (Fig 4G), suggesting reduced cross-

talk between RB and AKT, which is a hallmark for reduced senescence in mouse liver cells

[60]. Overall, resveratrol partially reactivated a normal developmental program in a minority

of embryos. However, the resveratrol-treated embryos retained deregulated levels of ribo-

somes, protein translation, and have not adopted a fully normal state.
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SIRT activators resveratrol and nicotinamide riboside affect embryonic

metabolism

Resveratrol has 2 main mechanistic functions: as an antioxidant and also as a co-activator of

the NAD+ dependent deacetyltransferase SIRT1 [61]. RNA-seq analyses showed that the

expression SIRT1 mRNA was low in Type I arrested embryos, but was high in Type II/III and

resveratrol-treated arrested embryos (Fig 5A). Using immunofluorescence, SIRT1 protein lev-

els were low in the arrested embryos, but when treated with resveratrol, SIRT1 levels increased

Fig 4. Resveratrol can overcome embryonic arrest in limited cases. (A) Number of embryos that remain in an arrested state or

recommenced development (including those embryos that fragment). Embryos were either left untreated or treated with resveratrol. The

total number of embryos in the control group is 40, and 42 in the resveratrol group. Underlying data can be found in S1 Data. (B) Bar

chart showing the breakdown of the stages of embryonic development the control and resveratrol embryos reached. Underlying data can

be found in S1 Data. (C) Morphology of a reactivated resveratrol-treated embryo, compared to normal untreated embryos. The embryo

was arrested on day 3 and did not show any degeneration at day 4. After treatment with resveratrol, the embryo proceeded to the early

blastocyst-like stage. Scale bar = 20 μm. (D) PCA of normal human embryo RNA-seq, with arrested embryos (pink) and embryos treated

with resveratrol (red). The embryo in panel C is marked with a black arrow. Underlying data can be found in: https://figshare.com/

articles/dataset/Human_embryo_normalized_gene_expression_data/19775992. (E) Violin plot showing the expression of CDKN1A in

the indicated embryonic stages, arrested embryos, or the reactivated embryos treated with resveratrol. Underlying data can be found in:

https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992. n.s. = not significant. (F)

Immunostaining and brightfield of embryos either untreated or treated with solvent or with resveratrol. Immunofluorescence using an

antibody against p21 (CDKN1A) (green). Embryos are co-stained with DAPI (blue), scale bar = 20 μm. (G) As in panel F, but for

phospho-S473-AKT (green). Embryos were co-stained with DAPI (blue), scale bar = 20 μm. PCA, principal component analysis.

https://doi.org/10.1371/journal.pbio.3001682.g004
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Fig 5. Resveratrol and nicotinamide riboside reactivate development partly through modulation of SIRT activity. (A) Violin plot showing the expression of SIRT1 in

the indicated embryonic stages or arrested embryos or resveratrol-reactivated embryos. Underlying data can be found in: https://figshare.com/articles/dataset/Human_

embryo_normalized_gene_expression_data/19775992. n.s. = not significant. (B) Immunofluorescence staining of SIRT1 (green) and brightfield in arrested untreated of

treated with solvent or resveratrol-reactivated embryos. Embryos are co-stained with DAPI (blue), scale bar = 20 μm. (C) Immunofluorescence staining of NRF2 (green)

and brightfield in arrested untreated or treated with solvent or resveratrol-reactivated embryos. Embryos were co-stained with DAPI (blue), scale bar = 20 μm. (D)
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(Fig 5B). We also measured NRF2 protein levels (Fig 5C), as resveratrol has been reported to

confer its antioxidant benefits by up-regulating NRF2 at both the transcriptional and protein

levels [62]. Resveratrol indeed activated the antioxidant protein NRF2. These data suggest that

resveratrol is activating both SIRT and an antioxidant effect, although it is not clear which of

the 2 are important for the reactivation of the arrested embryos.

The antioxidant vitamin C failed to reactivate arrested embryos (S7A Fig), which suggests

an antioxidant effect is not the main factor for embryo reactivation. Hence, resveratrol may be

reactivating development by modulating SIRTs. We next treated arrested embryos with a sec-

ond SIRT activator NR that does not have reported antioxidant capability. NAD+ availability

is a rate-limiting step for SIRT activity, and SIRTs can be activated by NR that is converted to

NAD+ and increases the activity of SIRT1 and SIRT3 in cells [63]. When arrested embryos

were treated with NR, in an effect similar to resveratrol, they were reactivated and would pro-

ceed through development and a few embryos reached a blastocyst-like state (Fig 5D and 5E).

As NR and resveratrol can phenocopy, it suggests that the antioxidant activity of resveratrol is

not required, and the dominant pathway in the reactivation of arrested embryos is the activa-

tion of SIRTs.

SIRT enzymes have a key role in controlling the balance of glycolytic, oxidative, and fatty

acid metabolic processes in somatic cells [63,64]. The developing human embryo undergoes

significant changes in the metabolic pathways utilized at each embryonic stage. However,

these metabolic changes remain somewhat unclear due to the difficulty of directly assaying

metabolic products in small numbers of cells [65]. Briefly, from the zygote to the morula,

embryos use a form of oxidative metabolism based on pyruvate. In the preimplantation blasto-

cyst, embryos convert to a balanced glycolytic/oxidative phosphorylation-based metabolism

using glucose as a fuel source, before transitioning to glycolysis in the low oxygen environment

after implantation [65]. Studies in human and mouse naïve and primed PSCs, which resemble

the preimplantation and the postimplantation epiblast, respectively [66], suggest that HIF1A

and the balance between SIRT1 and SIRT2 activity is important [67,68].

To explore metabolism in the arrested embryos, we would ideally measure the metabolic

products directly. However, this is infeasible with current technology, which requires hun-

dreds or thousands of embryos for mass spectrometry-based approaches [69,70]. Hence, we

attempted to infer metabolic state based upon RNA-seq data. This approach is fraught with

difficulty as metabolic enzymes generally have high steady-state levels of mRNA that do not

respond to changes in metabolism. Consequently, we infer metabolism based on the changes

in RNA levels of sets of metabolic-associated transcripts. GSEA indeed suggested that glucose

metabolism was up-regulated and oxidative phosphorylation was down-regulated in Type II

arrested embryos (Fig 5F). GSEA for resveratrol-treated embryos also supported increased

expression of oxidative phosphorylation genes when we compared the resveratrol-treated

embryos to Types II or III arrested embryos (Figs 5G, 5H, S8A, and S8B). We employed a

Number of embryos that remain in an arrested state or recommenced development (including those embryos that fragment). Embryos were either left untreated or

treated with NR. The total number of embryos in the control group is 32 and 24 in the NR-treated group. Underlying data can be found in S1 Data. (E) Bar chart showing

the number of arrested embryos that would reinitiate development (including embryos that would ultimately fragment). The total number of embryos in the control

group is 32 and 24 in the NR-treated group. Underlying data can be found in S1 Data. (F) GSEA for up- and down-regulated genes in Type II versus morula comparison.

Underlying data can be found in S5 Data. (G) GSEA for up- and down-regulated genes in resveratrol versus Type II arrested embryos. Underlying data can be found in

S5 Data. (H) 2D dot plot showing the sum of the Z-scores for the genes in the indicated KEGG categories. The x-axis scores the glycolysis/gluconeogenesis pathway, the

y-axis the oxidative phosphorylation pathway. Each dot in the plot is a cell/embryo, and the top and right axis have the kernel density for each group of cells. The

resveratrol-treated embryos have a filled-in color (pink) for emphasis. The locations of the arrested and resveratrol-treated embryos are indicated by dashed lines and

labels, and the normal developmental states are indicated by labels. Underlying data can be found in S1 Data. (I) Heatmap showing the expression of select oxidative

phosphorylation genes. Underlying data can be found in S1 Data. (J) Heatmap showing the expression of select glycolytic metabolic genes. Underlying data can be found

in S1 Data. GSEA, gene set enrichment analysis; NR, nicotinamide riboside.

https://doi.org/10.1371/journal.pbio.3001682.g005
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technique that used the sum of Z-scores for a set of genes to infer pathway activity. Plotting the

sum of Z-scores of oxidative phosphorylation versus glycolysis/gluconeogenesis gene sets sug-

gested that resveratrol was pushing cells toward increased glycolytic metabolism, whereas all

the arrested cells had reduced glycolysis (and variable levels of oxidative phosphorylation) (Fig

5H). This is illustrated by the RNA levels of oxidative phosphorylation and glycolysis genes

that were higher in resveratrol-treated embryos (Figs 5I, 5J, and S8C). It should be noted

though that resveratrol had not returned the reactivated embryos to a completely normal

expression state, and there remain several hundred genes that are significantly differentially

expressed between resveratrol-treated and E5 (early blastocyst) embryo cells, including many

biological pathways that remain low (S8D and S8E Fig). Similarly, overall pattern of metabo-

lism had not reached the same state as normal E4 and E5 embryos (Fig 5H).

Finally, in our analysis of metabolism, we noticed that resveratrol also up-regulated fatty

acid metabolism-related genes (S8B, S9A, and S9B Figs). This is reminiscent of the situation

in mouse hepatocyte cells, where the loss of Sirt1 leads to reduced fatty acid oxidation, due to

deregulation of PPAR-genes [71], and agrees with several studies that show resveratrol acti-

vates SIRT1 to decrease lipogenesis and increase fatty acid oxidation in many cellular contexts

[72]. Overall, our data suggest that arrested embryos erroneously maintain an oxidative phos-

phorylation-biased metabolism and low levels of fatty acid oxidation and glycolysis (S9C Fig).

Inferred transcriptional regulation in arrested human embryos

We next explored transcriptional regulation in the arrested embryos. The direct assay of TF

binding to the genome is currently impractical in human embryos. To date, TF binding in sin-

gle cells has only been mapped using a system that involves transposons to introduce novel

insertions that can then be recovered from RNA-seq data [73]. This technique requires trans-

gene transfection and is thus impractical in arrested embryos. Chromatin accessibility has

been performed in single cells [74]; however, for an individual cell, the data remain extremely

sparse and chromatin accessibility binding is determined by pooling data from relatively large

numbers of similar single cells to reconstruct chromatin accessibility. Hence, we reverted to an

approach that takes advantage of the fact that TF binding is rich around the transcription start

sites (TSSs) of DE genes [75,76]. In total, we found many TF motifs enriched in the DE genes

in each type of arrest (S10A Fig). To understand the pattern of transcriptional regulation, we

focused on TF families known to regulate quiescence/senescence and metabolism. The TF

FOXO1 is a major regulator of senescence in somatic cells and works partly by down-regulat-

ing MYC activity [77]. FOXO1 mRNA varied, and was significantly down-regulated in Type I

embryos, unchanged in Type II and significantly up-regulated in Type III (S10B Fig). How-

ever, the FOXO1 TF-binding motif was significantly enriched in the promoters of all 3 types of

arrested embryos (Fig 6A). This suggests that while the mRNA levels of FOXO1 vary, FOX-

family activity is increased in the arrested embryos. The MYC motif was enriched in Types I

and III DE genes, and MYC target genes were down-regulated in Types II and III arrested

embryos (Fig 6B). This agrees with the observation that MYC activity is low in diapause and

senescent mouse blastocysts [78]. High levels of RUNX-family TF activity has been linked with

senescence in stem cells [79], and a RUNX-family motif was enriched in all DE genes (Fig 6A).

Overall, this TF-binding inference suggests that 3 TFs implicated in senescence, MYC, FOX,

and RUNX families, are active in the arrested embryos.

Finally, we looked at the transcriptional and signaling pathways in the resveratrol-treated

arrested embryos versus the Type III arrested embryos (as the Type III arrested embryos are

developmentally closest to resveratrol-treated embryos). Motif enrichment and GSEA in

arrested embryos suggested the up-regulation of HIF-family TFs (Fig 6A), and the HIF
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pathway genes were up-regulated in resveratrol-treated embryos (Fig 6C). This agrees with a

HIF1a-driven switch from oxidative phosphorylation-based metabolism to glycolytic, as previ-

ously seen in naïve and primed mouse and human PSCs [68]. This was supported by the

enrichment of PPAR-family TF motifs in the arrested DE genes (Fig 6A), which is in agree-

ment with PPAR-deregulation in Sirt1 knockouts in mouse [71].

Discussion

Human (and primate) embryos are surprisingly poor at developing in vitro when compared

with other mammalian species. The poor developmental capacity of human embryos has

major implications for IVF. Here, we show that the arrested embryos enter a senescent-like

state. The arrested embryos down-regulated histones, ribosomes, and RNA processing

machinery, and for TF activity p53, FOX, RUNX were up-regulated, while MYC activity was

down-regulated. We classified the arrested embryos into 3 types based on gene expression (Fig

6D). Type I appear to have failed the MZT, while Types II and III appear to have metabolic

problems.

There are similarities and differences between the 3 types of arrest, they all arrest and

acquire a senescent-like molecular program. Type I fail to correctly regulate MZT genes,

which, based on deregulation of TEs we speculate is due to problems in epigenetic regulation.

The difference between Types II and III is less clear, although Type III has increased levels of

genes related to oxidative phosphorylation, compared to Types I and II. Resveratrol and NR

could partially overcome the arrest of the embryos; however, when we treated the arrested

embryos, we did not know the type of arrest. This may help explain why resveratrol or NR can

Fig 6. Transcriptional control of embryonic arrest. (A) Dot plot for enriched TF motifs in the DE genes in the indicated arrested

embryo types. Motif discovery was performed using HOMER with default settings [98] against the promoters (defined here as −1,000 bp

upstream of the TSS) of the DE genes in the indicated types of arrested embryo. The size of the circle indicates the percent of promoters

that had the motif, and the color indicates the enrichment p-value. (B) GSEA of Type II versus morula, this panel shows the

HALLMARK MYC-targets gene set. Underlying data can be found in S5 Data. (C) GSEA of resveratrol-treated embryos versus Type III

arrested embryos. Underlying data can be found in S5 Data. (D) Schematic model of the types of arrest and the underlying pathways

driving the arrest. Types I–III cells all enter a senescent-like state, driven by activated p53, and low MYC activity. Histones and

ribosomes are down-regulated and cell cycle activity is reduced. Type I arrested embryos harbor an MZT developmental error. Types II

and III embryos can be induced to recommence development by modulating SIRT activity. DE, differentially expressed; FAO, fatty acid

oxidation; GSEA, gene set enrichment analysis; M-decay, maternal RNA decay; MZT, maternal-to-zygotic transition; OXPHOS, oxidate

phosphorylation; TF, transcription factor; TSS, transcription start site; ZGA, zygotic genome activation.

https://doi.org/10.1371/journal.pbio.3001682.g006
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activate only a subset of arrested embryos. We speculate that resveratrol or NR is primarily

activating the Type II/III arrested embryos, by altering SIRT activity and metabolism. Con-

versely, we believe resveratrol or NR has little effect on Type I embryos, as they fail to complete

the MZT.

Limitations should be highlighted in this study. Firstly, our access to normal embryos is

extremely limited, and this limits some of the experiments performed. We were unable to per-

form immunostaining in control presumed normal embryos. This has consequences on some

of the conclusions in our study. For example, phospho-S15-p53 was high in the arrested

embryos (Fig 3G) and potentially it might be high in normal embryos; however, high phos-

pho-S15-p53 has not been reported in human or other species embryos. Secondly, most of the

data presented here takes the average of single embryos, which will blur gene expression signa-

tures. However, the MZT has been successfully characterized from single-embryo RNA-seq

data [4], and RNA-seq is capable of detecting rare transcripts and subtle changes in cell type in

bulk samples [20], for example, the level of differentiation in human ESCs can be estimated

from bulk RNA-seq [80].

Quiescence and senescence describe the ability of some cells to arrest and exit the cell cycle.

This phenomenon is best explored in somatic cells. Stress signals, such as UV irradiation, or

cellular oxidative stress led to the deregulation of cell cycle regulatory pathways. Sometimes

these activations result in senescence, which is irreversible. While active cycling and quies-

cence are normal cellular responses, senescence is associated with ageing and with disease

[50,81]. There are, however, differences between the arrested state in the embryos and senes-

cence in somatic cells. We observed increased p21 (CDKN1A) and phospho-S15-p53, but

FOXO1 expression was not up-regulated, although FOX-family TFs appear to be more active

in the arrested embryos than the normal embryos. The down-regulation of MYC activity is

reminiscent of the induction of diapause in mouse blastocysts [78]. Indeed, there are parallels

between the MYC-induced diapause-like state and the arrested embryos: In both cases, ribo-

some expression is reduced, cell cycle activity declines. However, diapause occurs at the blasto-

cyst stage, while the arrest seen here is pre-compaction, suggesting the biological process is

different.

Aneuploidies have been suggested to contribute to embryonic arrest. Human embryos have

high levels of aneuploidy, and as much as 73% of blastocysts are mosaic [27,82,83]. However,

while aneuploidy is highly deleterious for later postimplantation development [84], there is

mixed evidence before the blastocyst stage [34]. Indeed, aneuploid human embryos still

reached the blastocyst stage [85], and whole chromosome aneuploidies are mainly lethal post-

implantation [34]. Although, a screen for aneuploidy in human morula/blastocysts suggests

human embryos with very high levels of mosaicism are rare [33], suggesting a mechanism that

culls severe mosaic aneuploidies before compaction [30]. Nonetheless, while we cannot rule it

out, our data suggest that aneuploidy is not a dominant mechanism behind the embryonic

arrest of cleavage-stage embryos.

We show that some arrested embryos can be induced to recommence development through

the application of 2 small molecules, resveratrol and NR, both can activate the sirtuin class of

deacetyltransferases. We speculate that these 2 drugs are altering the metabolic balance of the

embryos and are acting to push the embryos out of their senescent-like state. Metabolism in

human embryos is initially hypoxic and relies upon oxidative phosphorylation using pyruvate.

Indeed, human IVF grown embryos are sensitive to high levels of oxygen [86], and blastulation

rates are increased when oxygen was kept at 5% during embryo culture [87] (similar condi-

tions were used in this study). After implantation, glycolysis becomes the dominant metabolic

pathway. Resveratrol activates SIRT1, which has been reported to inhibit glycolysis in somatic

cells. However, paradoxically resveratrol-treated embryos had enhanced glycolytic pathways.
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There is some evidence to support a different role of SIRT1 in embryonic cells. For example,

Cha and colleagues showed that high SIRT1 expression is a feature of hPSCs that are primarily

glycolytic [67,88]. Cha and colleagues speculated that SIRT1 may be exerting these effects not

by directly regulating glycolytic enzymes, as occurs in somatic cells, but through an indirect

process involving SIRT2 acetylation of glycolytic enzymes [67,89]. We speculate that SIRT1 is

regulating fatty acid oxidation but not glycolysis in embryos, but the balance of these 2 pro-

cesses is crucial for the transition to the glycolytic environment in early implantation. Resvera-

trol treatment led to changes in fatty acid oxidation, which agrees with previous studies

showing a role for SIRT1 [71,72]. Our data suggest that the arrested embryos are failing to up-

regulate glycolytic-based or fatty acid oxidation metabolism.

Resveratrol and NR can reactivate development in a limited number of cases; however, the

reactivated embryos continue to show problems, such as persistent down-regulation of ribo-

somes and translation genes. A possible explanation is that resveratrol is forcing the embryos

into an unnatural state that reactivates development, but cellular problems persist. Overall, our

data indicate 2 primary mechanisms to explain arrested embryos (Fig 6D): A failure to cor-

rectly traverse the MZT (40% of arrested embryos) and a failure to regulate metabolic path-

ways (60% of arrested embryos).

Materials and methods

Human embryo collection

All patients received standard antagonist protocol for ovarian stimulation [90]. Patients were

injected with recombinant FSH (Gonal-F, Merck, Italy) on day 2 of their menstrual cycle with

a starting dose of 150 IU/d. Transvaginal ultrasound and blood E2 levels were used to monitor

follicle growth. When at least 2 follicles grew larger than 18 mm in diameter, 0.1 mg of gonado-

tropin releasing hormone agonist (Triptorelin, Ferring GmbH, Germany) and 4,000 IU of

human chorionic gonadotropin was injected as a trigger. Approximately 36 h after trigger,

transvaginal ultrasound-guided oocyte retrieval was performed under anesthesia.

In vitro fertilization of oocytes and culture of embryos

Fertilization and in vitro culture procedures were performed as previously described [91].

Briefly, oocyte cumulus complexes were identified and washed in G-IVF (Vitrolife, Sweden),

then inseminated with 50,000 to 100,000 normal motile spermatozoa, oocytes were examined

for successful fertilization after 16 to 18 h, zygotes with 2 pronuclei were allowed to continue

culture for 48 h in G1 PLUS medium. On day 3, embryos were observed for morphology and

blastomere numbers, embryos with 2 to 5 cells at day 3 were considered as possible arrested

embryos. Arrested embryos were cultured in G2 PLUS medium for a further day (Vitrolife,

Sweden), and if there was no further cell division then the embryos were defined as arrested.

Arrested embryos were left untreated or treated with solvent, resveratrol (MCE, United States

of America) or nicotinamide riboside/NR (Sigma-Aldrich, USA), in the resveratrol group,

embryos were cultured with 1 μm resveratrol for 6 h, and then transferred into fresh G2 PLUS

medium for 42 h. In the NR-treated embryos, embryos were cultured with 1 mM NR for 24 h,

and then transferred into fresh G2 PLUS for 24 h; in the control group, embryos were cultured

with fresh G2 PLUS for 48 h. Embryos were also treated with 0.5 μm rapamycin (Sigma-

Aldrich), 0.5 μm PD0325901 (Selleck), and 25 μg/ml vitamin C (Sigma-Aldrich), for 24 h, then

transferred into fresh G2 PLUS medium for a further 24 h. The morphology and blastomere

numbers were observed on days 4 and 5. Embryos were cultured in a tri-gas incubator with an

environment of 6% CO2, 5% O2, and 89% N2 at 37˚C.
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Immunofluorescence

After culture, embryos were fixed with 4% (w/v) paraformaldehyde for 30 min at room tem-

perature, followed by washing in PBS (phosphate-buffered saline) for 3 times. Embryos were

permeabilized in 0.5% Triton X-100 for 30 min at room temperature, and blocked with block-

ing buffer (Beyotime, China) for 1 h at 37˚C. Then, embryos were then incubated with anti-

SIRT1 antibody (1:100, Abcam, #ab189494, USA), anti-NRF2 antibody (1:100, Abcam,

#ab137550, USA), anti-phospho-AKT (Ser473) antibody (1:200, CST, #4060S, USA), anti-

phospho-P53 (Ser15) antibody (1:400, CST, #82530s, USA), or anti-p21 antibody (1:100,

Abcam, #ab109520 USA) at 4˚C overnight. Embryos were subsequently incubated with Alexa-

Fluor-488 secondary antibody (1:500, Abcam, # ab150077, USA) for 2 h at 37˚C, then washed

3 times. The DNA was stained with 4,6-diamino-2-phenyl indole (DAPI). Finally, the embryos

were suspended in a microdrop with blocking solution and photographed with a fluorescence

microscope (MetaSystems, Germany).

Single-embryo RNA-seq

Single-embryo RNA-seq was performed essentially as described [92]. Briefly, single embryos

were placed into 10 μl of SMART-seq2 lysis buffer (1 μl RNAse inhibitor, 0.2% (v/v) Triton X-

100) and stored at −80˚C before sequencing. Embryos were sequenced on an Illumina

sequencer according to the manufacturer’s instructions.

RNA-seq data analysis

RNA-seq data were analyzed essentially as described in [20], with the exception that the STAR

aligner was used [93], RSEM was replaced with scTE [21], and GENCODE v32 [94] was used

for the transcript annotations. Data were GC-content normalized with EDASeq [22]. Differen-

tial gene expression was determined using DESeq2 [95], genes were defined as significantly

DE if they changed by at least 4-fold, and had a q-value (Benjamini–Hochberg corrected p-

value) of 0.01 or less. GSEA was performed using fgsea, and all of the GSEAs shown in the

manuscript had a q-value (Bonferroni–Hochberg corrected p-value, from 10,000 permuta-

tions) of less than 0.05 [96]. CytoTRACE [25] was performed using default parameters on the

unnormalized raw tag count matrix (https://figshare.com/articles/dataset/Human_embryo_

normalized_gene_expression_data/19775992). Karyotype was estimated from the RNA-seq

data using the software from https://github.com/MarioniLab/Aneuploidy2017 [31]. The pre-

sumed normal samples are from a reanalysis of GSE66507 [18], PRJEB11202 [19], and

GSE36552 [17] embryo RNA-seq data. Other analysis was performed using glbase3 [97].

Statistics

Statistical analysis was used for the differential expression measures. Differential expression

was determined using DESeq2 [95], and minimum thresholds of>4-fold change, and a q-

value of 0.01 (Benjamini–Hochberg corrected p-value) was used to determine significantly dif-

ferent. For GSEA, a minimum q-value of 0.05 (Benjamini–Hochberg corrected p-value) was

considered significant, as estimated by random permutation by fgsea [96]. Significance was

also calculated from a 2-sided Welch’s t test for sets of genes.

Study approval

This study was approved by Ethical Approval Board (Approval number: 2020-866-75-01) of

the Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine and

Southern University of Science and Technology ethical committee (Approval number:
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2021SWX012). Arrested embryos used in this study were rejected embryos from normal IVF

procedures and were used with the patients informed, written consent. No normal control

embryos (non-arrested) were used in this study.

Supporting information

S1 Data. Values for several bar charts and figures in the manuscript, including: Raw data

for Figs 1A, 1B, 2H, 3B, 3C, 4A, 4B, 5D, 5E, 5H, 5I, 5J, S5A, S7A, S7C and S9A.

(XLSX)

S2 Data. Karyotype calculation result.

(XLSX)

S3 Data. All differentially regulated MZT genes, including gene rankings for GSEA plots.

(XLSX)

S4 Data. All differentially regulated genes/TEs identified in this study.

(XLSX)

S5 Data. Gene ranks for GSEA plots for all comparisons in this study.

(XLSX)

S1 Fig. (Related to Fig 2). Arrested embryos maintain developmental potential. (A) Cyto-

TRACE cell embedding manifold, colored by cell type and embryo stage (left) or by predicted

developmental order (right). A predicted developmental order score of 1.0 is less differenti-

ated, and a score of 0.0 is more. E = Embryonic-stage samples, as defined in [19], for this and

all subsequent figures. (B) Box plots of the predicted ordering from CytoTRACE for all cells/

embryos at the indicated stages, ordered by the mean developmental predicted ordering. Each

dot is a cell/embryo. (C) As in panel B, but only showing the stages from oocyte to morula.

(D) Violin plots showing expression of 4-cell/8-cell-specific human genes. Underlying data

can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_gene_

expression_data/19775992. (E) Violin plots showing expression of 8-cell/E4-specific human

genes, i.e., developmental genes involved in the establishment of the blastocyst. Underlying

data can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_

gene_expression_data/19775992. (F) Heatmap of the Z-scores of expressions of the genes in

the 8-cell signature identified in [26]. Underlying data can be found in: https://figshare.com/

articles/dataset/Human_embryo_normalized_gene_expression_data/19775992. All of the pan-

els derived from CytoTRACE use non-normalized tag counts from: https://figshare.com/

articles/dataset/Human_embryo_normalized_gene_expression_data/19775992.

(PDF)

S2 Fig. (Related to Fig 2). Arrested embryos are (mainly) karyotypically normal. (A) Karyo-

type abnormalities estimated using the approach outlined in [31]. In these plots, each chromo-

some is plotted separately, and the gray dots are each cell/embryo in the indicated stage of

development or arrest. Red dots indicate when the gene expression on that chromosome

exceeds the Z-score threshold and is significantly over or under represented. Red dots are

indicative of aneuploidies, and those above the line suggest a gain of a chromosome or part of

a chromosome, and those below the line suggest a loss of a chromosome or part. (B) Bar chart

showing the predicted aneuploidies in the indicated developmental stages. Red bars indicate

cells/embryos with a predicted loss or gain of a chromosome, while those in gray are predicted

to be normal. (C) Percentage of the aneuploidies observed, broken down by chromosome in

the normal embryo dataset. (D) As in panel C, but only the arrested embryos. All of these
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panels use data underlying results from S2 Data.

(PDF)

S3 Fig. (Related to Fig 2). Type I arrested embryos have MZT problems. (A) Volcano plot

showing the fold-change versus significance when comparing 2-cell-stage embryos versus

8-cell-stage. Differential expression was calculated using DESeq2, and a minimum fold-change

of 4, and a q-value of 0.01 was considered significantly different. The q-value is the Bonfer-

roni–Hochberg multiple test corrected p-value. We defined “maternal RNA-clearance genes”

as those that were significantly down-regulated, and “major ZGA genes” as those that were up-

regulated. Significantly DE up-regulated genes are labeled in red and down-regulated genes in

blue. The number of genes passing the differential expression thresholds are marked on the

plot. DE genes/TEs are listed in S3 Data. (B) GSEA for the up- and down-regulated genes as

ranked in panel A. Underlying data can be found in S3 Data. (C) Violin plots for the expres-

sion of key major ZGA genes, DUX4, DUXA, and ZSCAN4. Significance is from a 2-sided

Welch’s t test. Underlying data can be found in: https://figshare.com/articles/dataset/Human_

embryo_normalized_gene_expression_data/19775992. (D) Violin plots for the expression of

critical maternal RNA clearance genes CNOT6L and PAN2. Significance is from a 2-sided

Welch’s t test. Underlying data can be found in: https://figshare.com/articles/dataset/Human_

embryo_normalized_gene_expression_data/19775992. DE, differentially expressed; GSEA,

gene set enrichment analysis; MZT, maternal-to-zygotic transition; TE, transposable element;

ZGA, zygotic genome activation.

(PDF)

S4 Fig. (Related to Fig 2). Transposable element expression is disturbed in Type I arrested

embryos. (A) Volcano plot for all genes when comparing Type I arrested embryos to 2-cell-

stage cells. Differential expression was calculated using DESeq2, and a minimum fold-change

of 4, and a q-value of 0.01 was considered significantly different. The q-value is the Bonfer-

roni–Hochberg multiple test corrected p-value. Significantly DE up-regulated genes are

labeled in red and down-regulated genes in blue. The number of genes passing the differential

expression thresholds are marked on the plot. DE genes are listed in S4 Data. (B) Volcano

plot, as in panel A, but only containing TE types, and comparing Type I arrested embryos to

2-cell-stage embryos (left volcano), or 8-cell-stage embryos (right volcano). DE TEs are listed

in S4 Data. (C) Volcano plot, as in panel A, but only containing TE types, and comparing

Type II arrested embryos to morula-stage embryos (left volcano), or Type III arrested embryos

versus E4 (early blastocyst)-stage embryos (right volcano). DE TEs are listed in S4 Data. (D)

Number of differentially regulated TE types for the indicated TEs, when comparing Type I

arrested embryos to 4-cell-stage embryos. DE TEs are listed in S4 Data. (E) Heatmaps of the

RNA-seq read tag density for all genomic copies of LINE L1HS copies (rows). Heatmaps are

the density of normalized tag counts (in reads per million) for each sample and are ranked by

the sum of each row for each heatmap. The raw data for this plot is available from GSA under

the accession HRA001406. The genome locations for the LINE L1HS are available for down-

load from the UCSC genome browser. (F) Heatmap for the expression of all differentially regu-

lated TEs in the Type I arrested embryos. The rows are the 315 TEs identified in panel B, the

columns are the arrested embryos and all stages form Oocyte to late blastocyst. The location of

the Type I embryos is indicated on the top row. DE TEs are listed in S4 Data. DE, differentially

expressed; TE, transposable element.

(PDF)

S5 Fig. (Related to Fig 3). Arrested embryos have reduced ribosome and nucleosome

expression. (A) Number of significantly DE genes (top chart) and TEs (bottom chart) (a fold-
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change of at least 4, and a Bonferroni–Hochberg corrected q-value of less than 0.01) in the

indicated comparisons. Underlying data can be found in S1 Data. (B) Volcano plots showing

all genes when comparing Type II versus morula (left) or Type III versus E4 (right)-stage

embryos. Differential expression was calculated using DESeq2, and a minimum fold-change of

4, and a q-value of 0.01 was considered significantly different. The q-value is the Bonferroni–

Hochberg multiple test corrected p-value. Significantly DE up-regulated genes are labeled in

red and down-regulated genes in blue. The number of genes passing the differential expression

thresholds are marked on the plot. DE genes are listed in S4 Data. (C) Violin plot for the

expression of selected histones. Significance is from a 2-sided Welch’s t test. Underlying data

can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_gene_

expression_data/19775992. n.s. = not significant. (D) Violin plot for selected large or small

ribosome subunits. Significance is from a 2-sided Welch’s t test. Underlying data can be found

in: https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/

19775992. (E) Heatmap of the expression of all histones/nucleosomes and selected senescence-

related genes (from the REACTOME category: SENESCENCE−ASSOCIATED SECRETORY

PHENOTYPE (SASP): REACTOME: R−HSA−2559582.2). Expression is presented as log2

NTC. Underlying data can be found in: https://figshare.com/articles/dataset/Human_

embryo_normalized_gene_expression_data/19775992. Heatmap of all significantly DE (fold-

change>4 and q-value <0.01) large ribosome subunits. Expression is presented as log2 NTC.

Underlying data can be found in: https://figshare.com/articles/dataset/Human_embryo_

normalized_gene_expression_data/19775992. (F) As in panel E, but for all significantly DE

small ribosome subunits. Underlying data can be found in: https://figshare.com/articles/

dataset/Human_embryo_normalized_gene_expression_data/19775992. DE, differentially

expressed; NTC, normalized tag count; TE, transposable element.

(PDF)

S6 Fig. (Related to Fig 3). Arrested embryos have decreased expression of cell cycle genes.

(A) Heatmap showing the expression of selected cell cycle–related genes. The cell/embryo

stage is indicated in the top, colored bar legend. Genes specifically expressed in G1/S or G2/M

to a cell cycle phase (as defined in [48]) are marked on the right-hand side of the heatmap.

Underlying data can be found in: https://figshare.com/articles/dataset/Human_embryo_

normalized_gene_expression_data/19775992. (B) Violin plots showing expression of cell

cycle–related gene, CCNB1, PCNA, and the tubulin subunits TUBA1A and TUBB4B. Signifi-

cance is from a 2-sided Welch’s t test. Underlying data can be found in: https://figshare.com/

articles/dataset/Human_embryo_normalized_gene_expression_data/19775992. (C) Violin

plot for the expression of TP53 (p53). Significance is from a 2-sided Welch’s t test. Underlying

data can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_

gene_expression_data/19775992. n.s. = not significant. (D) Heatmap for the expression of p53

target genes (HALLMARK_P53_PATHWAY set), ranked by the sum of the columns. Each

column is a single cell or embryo, and the arrested embryos are labeled in pink. Underlying

data can be found in: https://figshare.com/articles/dataset/Human_embryo_normalized_

gene_expression_data/19775992.

(PDF)

S7 Fig. (Related to Fig 4). Treatment of arrested embryos with small molecules, and resver-

atrol corrects developmental and cell cycle problems, but not ribosomes and nucleosome

expression. (A) Percentage of arrested embryos that recommenced development, and the

stage they reached, when treated with the indicated small molecules. Underlying data can be

found in S1 Data. (B) Violin plot showing the expression of the blastocyst-related genes

ESRRB and TFCP2L1 in the indicated embryonic stages and in arrested and resveratrol-treated

PLOS BIOLOGY Mechanisms behind the arrest of human embryos

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001682 June 30, 2022 21 / 29

https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001682.s011
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001682.s012
https://doi.org/10.1371/journal.pbio.3001682


embryos. Underlying data can be found in: https://figshare.com/articles/dataset/Human_

embryo_normalized_gene_expression_data/19775992. (C) Violin plots showing the distribu-

tion of Z-scores of expression for all the small and large ribosomes and histone genes in the

indicated embryonic stages and in arrested and resveratrol-treated embryos. Significance is

from a 2-sided Welch’s t test. Underlying data can be found in: https://figshare.com/articles/

dataset/Human_embryo_normalized_gene_expression_data/19775992. (D) Violin plots

showing the expression of the cell cycle–related genes PCNA and CCNA2 in the indicated

embryonic stages and in arrested and resveratrol-treated embryos. Significance is from a

2-sided Welch’s t test. Underlying data can be found in: https://figshare.com/articles/dataset/

Human_embryo_normalized_gene_expression_data/19775992. (E) Volcano plot showing all

significantly differentially expressed (fold-change >4 and q-value <0.01) for all genes and TEs

when comparing resveratrol-treated versus Type I arrested embryos. Differential expression

was calculated using DESeq2, and a minimum fold-change of 4, and a q-value of 0.01 was con-

sidered significantly different. The q-value is the Bonferroni–Hochberg multiple test corrected

p-value. Significantly DE up-regulated genes are labeled in red and down-regulated genes in

blue. The number of genes passing the differential expression thresholds are marked on the

plot. Underlying data can be found in S4 Data. (F) Plot showing the expression ranks of TEs

ordered by their expression. TEs for each embryo or cell were ranked by their total expression

and the curves were plotted. Normal embryos are indicated in gray (“Other”), and Types I–III

and resveratrol are in the indicated colors. Underlying data can be found in: https://figshare.

com/articles/dataset/Human_embryo_normalized_gene_expression_data/19775992. DE, dif-

ferentially expressed; TE, transposable element.

(PDF)

S8 Fig. (Related to Fig 5). Comparison of resveratrol-treated versus other embryonic cells.

(A) Volcano plot showing all significantly differentially expressed (fold-change >4 and q-

value <0.01) for all genes and TEs when comparing showing resveratrol versus Type II (left)

or Type III (right) arrested embryos. Differential expression was calculated using DESeq2, and

a minimum fold-change of 4, and a q-value of 0.01 was considered significantly different. The

q-value is the Bonferroni–Hochberg multiple test corrected p-value. Significantly DE up-regu-

lated genes are labeled in red and down-regulated genes in blue. The number of genes passing

the differential expression thresholds are marked on the plot. DE genes/TEs are listed in S4

Data. (B) GSEA showing significantly different terms for resveratrol versus Type II arrested

embryos. Underlying data can be found in S5 Data. (C) Violin plots showing the expression of

the indicated glycolysis-related genes ALDH1B1, GAPDH, PGM1, and PFKL. Significance is

from a 2-sided Welch’s t test. Underlying data can be found in: https://figshare.com/articles/

dataset/Human_embryo_normalized_gene_expression_data/19775992. n.s. = not significant.

(D) Volcano plots (as in panel A), but showing resveratrol-treated embryos versus E5-stage

embryos. DE genes are listed in S4 Data. (E) GSEA of the ranked DE genes from panel D.

Underlying data can be found in S5 Data. DE, differentially expressed; GSEA, gene set enrich-

ment analysis; TE, transposable element.

(PDF)

S9 Fig. (Related to Fig 5). Resveratrol up-regulates the expression of fatty acid metabolic

genes. (A) 2D dot plot showing the sum of the Z-scores for the genes in the indicated KEGG

categories. The x-axis scores the fatty acid metabolism pathway, the y-axis the oxidative phos-

phorylation pathway. Each dot in the plot is a cell/embryo, and the top and right axis have the

kernel density for each group of cells. The resveratrol-treated embryos have a filled in color

(pink) for emphasis. The arrested and resveratrol-treated embryos are indicated by dashed

lines, and the normal developmental states are indicated by labels. Underlying data can be
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found in S1 Data. (B) Violin plots showing the expression of selected fatty acid-related meta-

bolic genes. Significance is from a 2-sided Welch’s t test. Underlying data can be found in:

https://figshare.com/articles/dataset/Human_embryo_normalized_gene_expression_data/

19775992. (C) A model for the action of resveratrol and NR on SIRTs and metabolic pathways.

The dotted arrow between SIRT1 and glycolysis implies indirect regulation. NR, nicotinamide

riboside.

(PDF)

S10 Fig. (Related to Fig 6). Transcriptional regulation of embryonic arrest. (A) All signifi-

cantly enriched motifs in the Types I–III arrested embryos in the promoters of DE genes.

Motif discovery was performed using HOMER with default settings [98], against the promot-

ers (defined here as −1,000 bp upstream) of the DE genes in the indicated types of arrested-

embryo. The size of the circle indicates the percent of gene promoters that had the motif, and

the color indicates the p-value for enrichment. (B) Violin plot showing the expression of

FOXO1 in the indicated embryonic cell types. Significance is from a 2-sided Welch’s t test.

Underlying data can be found in: https://figshare.com/articles/dataset/Human_embryo_

normalized_gene_expression_data/19775992. n.s. = not significant. DE, differentially

expressed.

(PDF)
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