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A 3D image‑based modelling 
approach for understanding 
spatiotemporal processes 
in phosphorus fertiliser dissolution, 
soil buffering and uptake by plant 
roots
K. A. Williams1,2, D. M. McKay Fletcher1, C. Petroselli1, S. A. Ruiz1 & T. Roose1*

Phosphorus (P) is a key yield-limiting nutrient for crops, but the main source of P fertiliser is finite. 
Therefore, efficient fertilisation is crucial. Optimal P application requires understanding of the 
dynamic processes affecting P availability to plants, including fertiliser dissolution rate and soil buffer 
power. However, standard soil testing methods sample at fixed time points, preventing a mechanistic 
understanding of P uptake variability. We used image-based modelling to investigate the effects of 
fertiliser dissolution rate and soil buffer power on P uptake by wheat roots imaged using X-ray CT. 
We modelled uptake based on 1-day, 1-week, and 14-week dissolution of a fixed quantity of total P 
for two common soil buffer powers. We found rapid fertiliser dissolution increased short-term root 
uptake, but total uptake from 1-week matched 1-day dissolution. We quantified the large effects 
root system architecture had on P uptake, finding that there were trade-offs between total P uptake 
and uptake per unit root length, representing a carbon investment/phosphorus uptake balance. 
These results provide a starting point for predictive modelling of uptake from different P fertilisers in 
different soils. With the addition of further X-ray CT image datasets and a wider range of conditions, 
our simulation approach could be developed further for rapid trialling of fertiliser-soil combinations to 
inform field-scale trials or management.

Phosphorus (P) is a key limiting nutrient for plant growth1,2. To keep up with global food demand, phosphate 
fertiliser is applied to fields at a rate of nearly 50,000,000 tonnes each year, and the demand for P is growing at 
a rate of around 2.2% a year3. However, most of the global P fertiliser supply is mined from rock phosphate, a 
resource so limited that it could run out entirely in just over 250 years or sooner depending on how demand 
grows4. Despite this growing threat, modern agriculture often applies excessive fertiliser quantities with the goal 
of maximising short term yields5. Not only is this an inefficient use of the increasingly-scarce resource, it can 
also lead to a saturation of P in the soil which can cause P run-off and leaching into water sources with serious 
environmental consequences. To ensure sustainable use of P in agriculture, strategies are required to decrease 
unnecessary P fertilisation and increase plant uptake from the fertiliser (fertiliser use efficiency) while maintain-
ing high yields and nutritious crops5,6.

Approaches to increase fertiliser efficiency typically make improvements to at least one of the ‘4Rs’: the right 
nutrient source, the right rate of application, the right time of application, and the right place7. This requires an 
understanding of how different fertilisers respond to different soils, how soluble they are, and what that means 
for its availability to plants. While conventional experimental approaches can test overall efficacy of a particular 
application on final crop yields, they provide limited insight into the dynamic processes that influence how 
effective a particular fertiliser in a particular environment can be8. An understanding of the early dynamics of P 
availability is particularly important given yield is known to depend on early P uptake9.
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The availability of P to plants is largely determined by the buffering of phosphates to soil constituents; this is 
high due to the low solubility of P minerals and fast adsorption of P onto soil particles. This reduces the distance 
that P moves in the soil and ultimately limits the uptake of P by plant roots1,10. Thus, the P uptake from soil and 
added fertilisers is often inefficient1. In the context of fertilisation, P availability is also affected by the solubility 
of the fertiliser9. Some fertilisers such as triple-super phosphate (TSP) dissolve rapidly in water11, while others, 
such as struvite, dissolve much more slowly, as only 30% of the mass of struvite pellets dissolved after a 14 week 
experiment in soil12. Solubility in water is not necessarily indicative of how effective a fertiliser will be in an agri-
cultural context since typical agricultural soils are often unsaturated and contain a complex mixture of biological 
and abiotic components that affect dissolution rate and dispersal13.

Due to the numerous processes affecting P availability it is not clear if faster fertiliser dissolution necessarily 
results in higher plant uptake. For example, a highly soluble fertiliser could release its P before roots are within 
range and the P could become immobilized to soil particles before the plant has the chance to use it14. Nkebiwe 
et al.15 found that fertiliser sources with fast dissolution had greater yield and nutrient uptake compared to slow 
dissolution fertilisers. In contrast, other researchers9 found fertiliser recovery was similar between diammonium 
phosphate (DAP), which is a relatively soluble source, and struvite for spring wheat at harvest.

Precision application of fertilisers requires an understanding of dissolution rates, sorption onto soil, plant 
availability, and potential run-off. Fertilisers with different dissolution rates aim to target either rapid release 
for immediate plant uptake or sustained release, with some claiming to only release fertiliser in the presence of 
plant roots. There is a current focus on alternative P sources from recycled materials and methods to increase P 
availability to plants that include coating soluble pellets9,16. These slow release fertilisers have potential benefits 
in reducing runoff17, and some are considered more sustainable due to their recycled sources. However, the effi-
cacy of these different fertilisers varies between studies, with some indicating that slow release fertilisers can be 
highly effective18,19, and others suggesting that they are insufficient20. Some of these differences are likely due to 
experimental designs21, soil variability, and variation in root architectures22. Additionally, plants have different 
nutrient requirements at different stages of growth. They need a large amount of P early in growth, so a P fertiliser 
that dissolves more slowly may not provide enough P at the critical time and may be less effective in terms of 
increased yield9,20,23. Finally, P that is bound to soil may resolubilise and become available again. However, this 
is seldom considered in the context of agricultural systems24. Therefore, the trade-offs between rapid release vs 
sustained release are not fully understood.

To rigorously assess the function of different fertilisers applied at different stages in plant development, it is 
important to understand how the P movement and availability evolves over time. However, standard soil field 
protocols often only provide snapshots and can lack the capacity to disentangle small-scale biogeochemical 
processes and proximity of roots to fertilisers. Recent studies have begun to focus on these processes at greater 
spatial and temporal resolution using soil solution sampling techniques such as suction cups25 and microdialysis 
sensors8,11,26. These studies have provided new insights into the P dynamics in soil and highlighted the need to 
revisit and update our preconceptions of these processes at fundamentally relevant scales.

While experimental approaches can provide some spatial and temporal resolution, modelling approaches 
can fill in measurement gaps and allow us to test different scenarios more rapidly. This could provide a comple-
mentary approach to focus and enhance more costly and time consuming field trials. Image-based modelling 
(using experimental images to define the geometry of models) offers vital advantages over models where root 
structure are represented by parameters or functions for the problem of assessing fertiliser dissolution rates and 
P availability and can complement results from imaging studies27. When using the latter modelling approach, 
root geometry including proximity to high P sources is averaged and thus important processes for fertiliser effi-
ciency are overlooked. In particular, the details of root competition for the same soil/fertiliser P supply within a 
discretised area/length are averaged without consideration for localised root interactions27. With image-based 
modelling, not only is explicit root fertiliser proximity calculated from experimental data, but competition 
between roots (of the same plant) for local P supplies are simulated22, allowing accurate assessment of P uptake 
efficiency, in the sense of unit of P absorbed per unit of photosynthate spent of root growth, from fertilisers. 
Including such geometric detail in image-based models comes at large computational cost. Thus, image-based 
models are less suitable for research questions where multiple-physics and/or larger spatial scales need to be 
considered, and models that represent roots by parameters or functions are the preferred modelling approach27.

This study investigated the fundamental processes governing the efficacy of different P fertiliser dissolution 
rates and developed a protocol that could be used to test a range of different fertiliser and soil conditions, which 
can be used to predict efficient fertiliser applications in space, time and quantity given soil and fertiliser proper-
ties. To this aim, we developed an image-based modelling approach to investigate how P dissolution rates and 
soil buffering affect P availability to plant roots. We used X-ray CT data from a previous study12 and compared 
anatomically the root systems of spring wheat plants treated with a fertiliser pellet. We then assessed P uptake 
from the fertiliser pellet using image-based modelling assuming a range of model fertiliser dissolution rates 
(similar to TSP or struvite) and soil P sorption properties. We aimed to quantify the effect of fertiliser dissolu-
tion on plant uptake of P from the pellet, and investigate the role of root system architecture and pellet location 
in these processes. We expected the benefit of the fertiliser pellet to be more noticeable in the high buffering soil 
due to lower available P in the bulk soil. We also expected that there would be more variability in P uptake in the 
high buffering soil because low P mobility would cause greater local variation in P concentrations.

Methods
Experimental setup.  The experimental system for X-ray CT imaging12 was a PVC column with a diameter 
of 110 mm and height of 500 mm. The column was filled with a P-deficient (Olsen P = 12.6 mg l−1) sandy loam 
textured Eutric Cambisol taken from depths between 0–15  cm depth (Ahp horizon) collected from a freely 
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draining grassland located in Abergwyngregyn, UK (53°14′ N, 4°01′ W) and sieved to pass 5 mm. The columns 
were sufficiently large to allow the plants to grow to maturity. The cylindrical shape and relatively narrow diam-
eter facilitated XCT imaging. Single spring wheat plants (Triticum aestivum L. cv Granary; KWS UK Ltd., Thri-
plow Hertfordshire, UK) were grown in each column. See Ahmed, et al.12 for full experimental setup including 
water, light, and actual fertiliser conditions. Three replicates were analysed.

XCT imaging.  Columns were imaged using a custom-design micro-focus Nikon ‘hutch’ μCT scanner (Nikon 
Metrology Europe, Leuven, Belgium) at 14 weeks post-planting. For each column, image data were acquired 
using an energy of 150 kV, and a power of 15.15 W. 3142 projections were collected over 360° rotation using a flat 
panel detector with 2048 × 2048 pixels, and the voxel size was 60 μm. The average scan time for each column was 
56 min. Reconstructions were carried out using a proprietary filtered back-projection algorithm implemented 
in CTPro 3D (Nikon Metrology, Tring, UK).

Image processing.  Roots were segmented from the surrounding soil using a custom workflow, with a 
combination of non-local means filtering, grey value thresholds, morphological filters, and shape-based filters 
implemented in a combination of the FIJI distribution of ImageJ28,29, a free, open-source software package for 
image processing and analysis, and Dragonfly (ORS, Quebec, Canada), a commercial software package for image 
processing, analysis, and visualisation (Figs. S1 and S2). Exact values used for these datasets for variables such 
as greyscale thresholds are provided but may need to be adjusted for other experiments where soils or X-ray set-
tings differ. Image stacks were first converted to 8bit using a fixed grey value range (− 20 to 80 in the 32 bit range 
which was found to include most of the data without overexposing the brighter regions) in order to reduce com-
putational time. A non-local means filter30 was then applied, using a damping parameter h = 0.106, a half window 
size B = 2, and a search window size W = 5 which removed much of the image noise while preserving edges of 
roots. After filtering, the soil particles were segmented from the background using a fixed greyscale threshold of 
107, where values above 107 are ‘soil’ and below 107 are ‘not soil’. Each soil particle was surrounded by a region 
of pixels with grey values that were lower than the soil but higher than the air, due to partial volume effects. This 
region happens to coincide closely with the grey values associated with roots and it was therefore important to 
remove these voxels. Therefore, a 2-pixel 3D dilation, implemented in the MorphoLibJ plugin for ImageJ31 was 
used to include those pixels within the regions classified as ‘soil’. The ‘soil’ regions were then removed from the 
original greyscale image in order to segment the roots. The roots were over segmented from the greyscale ‘not 
soil’ image using a second fixed grey value threshold of 89, where values above 89 were classified as ‘root’ and 
values below 89 were classified as ‘not root’. A 1 pixel 3D opening function was used to remove small elements 
of noise, followed by a 2 pixel 3D closing function to connect small gaps in the root system. Following this 
process, the binarised image was saved as a stack of TIFFs then imported into Dragonfly. In Dragonfly, a con-
nected components analysis identified parts of the image that were connected and labelled them. The number 
of voxels and the aspect ratios of each labelled object were measured. The largest parts of the root systems were 
selected manually, while smaller and disconnected roots were identified as those objects that were greater than 
1000 voxels and had an aspect ratio of less than 0.05 (i.e. were long and thin). Due to imaging constraints (60 µm 
resolution) and processing throughput (1 pixel opening operation), any roots smaller than 180 µm will not be 
visible in the image.

Root measurements.  Segmented root systems were measured using the BoneJ plugin of ImageJ32 (Fig. S3). 
Each root system was skeletonised (thinned to a single line of pixels) using the ‘Skeletonize 2D/3D’ tool. In 
thicker parts of the segmented roots, artificial loops formed in the skeleton (an artefact which would lead to 
significant over measurement of length density). Thus, the skeletons were cleaned of artificial loops by filling the 
holes (i.e. filling the loops) in 2D and reskeletonising so that the loop was now a single central pixel (Fig. S3). 
The root length density was measured by counting the number of white (root skeleton) pixels in each slice and 
dividing by the volume of soil in the slice to give a measure of root length density in mm of root per cm3 soil.

Root length density with distance from pellet was measured to aide interpretation of the modelling results. 
The exact positions of the fertiliser pellets were difficult to assess since they disintegrated over time. However, 
their relative depth from the surface was measured from images taken at the start of the experiment where 
at least one pellet could be seen clearly for each treatment. All pellets were approximately 240 mm (400 XCT 
slices) from the soil surface and therefore this depth was chosen to represent the fertiliser pellet depth. The 
exact radial positions of each pellet were unknown, but P sources representing the pellets were added in silico 
as detailed below in the modelling section. This ‘pellet’ was then used as the basis for a distance transform using 
‘Exact Distance Transform 3D’ in ImageJ (Fig. S4). Greyscale thresholds were applied to segment the distance 
transform at intervals of 2 mm with respect to the pellet (see Supplementary Material). The pixels in the skeleton 
image were then counted in each of the distance regions and this was used to calculate a root length per cm3. 
Root diameters were measured using the “Thickness” tool within BoneJ which uses a sphere fitting approach to 
calculate mean diameter of structures.

To measure the mean distance from the pellet to the roots, the skeleton of the roots was multiplied with the 
distance map of the pellet, and the mean grey value calculated across the stack. Lastly, a proxy for the extent that 
a root system architecture had explored was assessed by computing the mean distance between soil (i.e. each 
voxel within the soil domain) and its nearest root. This we refer to as mean soil–root distance and is calculated 
using the mean grey value of a distance transform from the roots (Fig. S5).

Image based modelling.  We developed an image-based model to allow us to better resolve spatial and 
temporal transport of P fertiliser. The model enabled inferences for unmeasured quantities in the study such as 
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P concentrations in the soil and root P uptake. Furthermore, the modelled system was used to simulate different 
fertiliser solubilities for different root system architectures. The classical Nye–Tinker–Barber model was used 
to represent P movement in a 3D homogeneous-soil domain containing 14-week root systems1. The roots and 
fertiliser pellets were treated as surfaces extracted from the XCT images in the soil domain (shown in Fig. 1), 
with Michaelis–Menten kinetics as the root boundary condition to represent P uptake1 and decaying P flux as 
the fertiliser boundary condition to represent fertiliser dissolution. More precisely, let � ⊂ R

3 represent the soil 
in the column. We assume the soil is homogenous with constant volumetric water content φl = 0.3 [m3

soil liquid 
m−3

bulk] and constant volumetric soil solid content φs = 0.6 [m3
soil solid m−3

bulk] to be consistent with the model 
of McKay Fletcher et al.8, however, it is likely the water content varied in the experiment. The boundary of the 
soil consists of the edge of the column, Ŵe , the root surfaces, Ŵr , and the fertiliser surfaces Ŵf  which are shown 
in Fig. 1. Due to the small Péclet number for P in soil33, movement of P in the soil is assumed to be governed by 
diffusion only. The linear adsorption–desorption reaction of P onto soil surfaces is assumed to be in equilibrium 
so adsorbed P can be approximated by P in solution using the buffer power, b, the ratio of sorption and desorp-
tion rates1. Let Pl(x, t) [µmol m−3

soil liquid] represent the concentration of P in soil solution, then the movement 
of P in homogeneous soil is governed by the equation

where b = 40 (low buffering soil8) or 519 (high buffering soil11) [–] is the buffer power of Pl in this soil, defined as 
b =

k1
k2

 , where k1 [s−1] and k2 [s−1] are the adsorption desorption rates in the first-order kinetics describing soil 
sorption respectively. D = 7× 10−10 [m2 s−1] is diffusion coefficient of P in soil solution and f = 0.3 [–] is the 
geometric impedance to diffusion from the soil structure1. At the edge of the soil column we impose a no-flux 
boundary condition so P cannot leave the domain

where is n is the outward pointing unit normal to the surface.
On the root surfaces we impose Michaelis–Menten kinetics as the boundary condition representing the 

absorption of P by the roots. Since the 14 week root surfaces are stationary (i.e. root growth is not modelled) we 
use a step function to activate the roots once they have reached the fertiliser pellet depth,

where FP = 3.26× 10−2 [µmol m−2 s−1] is the maximum possible root P uptake rate, KP = 5.8× 103 [µmol m−3] is 
P concentration when the root uptake rate is half FP1 and t∗[s] is the time the roots reach the depth of the pellet as 
calculated from the X-ray CT scans (6 weeks). Since only the 14 week root system is used as the geometry for the 

(1)φl(1+ b)
∂Pl

∂t
= ∇ ·

(

Dφl f∇Pl
)

, x ∈ �,

(2)n ·
(

Dφl f∇Pl
)

= 0, x ∈ Ŵe ,

(3)n ·
(

Dφl f∇Pl
)

=
−FPPl

KP + Pl
H
(

t − t∗
)

, x ∈ Ŵr .

Figure 1.   Visual description of 3D image-based modelling domain and model progression. The surface 
boundaries representing the edge of the pot and internal artificial boundaries where we subsample the image, 
Ŵe are shown on (a); the fertiliser surface, Ŵf on (b); and the root surfaces, Ŵr on (c). (a) The initial state of the 
model with the roots deactivated and the fertiliser pellet primed to start dissolution; (b) In the first 6 weeks the 
roots remain inactive but the fertiliser pellet releases phosphorus into the soil which diffuses over this period; 
(c) After 6 weeks the roots reached the pellet (as calculated from the time-resolved XCT-data) and the roots are 
activated and take-up phosphorus from the soil. The phosphorus continues to diffuse in the soil. Purple shading 
is for illustrative purposes only.
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model, the Heaviside function, H(t) , is used to activate root uptake at t∗ . With this representation of root uptake, 
model results only measure P uptake from 6 to 14 weeks, see Fig. 1 for a visual description of root activation. A 
fertiliser pellet is assumed to release its entire P content ( Pfert = 450 µmol, determined experimentally) either 
over the 14-week simulation (representing a slow-release pellet such as struvite), 1-week or 1-day (fast release 
pellet such as TSP) with the release rate decaying exponentially in time34,

where J0 [mol m−2 s−1] is the initial release rate (at t = 0 ) of P from the pellet and τ = 14 weeks, 1 week or1 day. 
J0 is calculated to match the total P flux from a fertiliser pellet over τ days for all treatments. The total flux is set 
to Pfert and by assuming each pellet to be a sphere with radius of 2 mm with equal P flux from each surface this 
results in flux expression J0 =

Pfert
Aτ(1−e−1)

 , where A is the surface area of the 2 mm sphere representing the fertiliser 
pellet. The initial concentration of P in soil solution is assumed to be uniform in the soil and is chosen depending 
on the buffer power of the soil so that the total soil P is same between different simulations. For the low buffering 
case ( b = 40 ) the initial P in solution concentration is chosen as Pl(x, t = 0) = P0 where 
P0 = 2.53× 105 µmol m−3 soil solution as calculated from another study using the same soil35. To ensure the 
same total amount of P in the soil between the low and high buffering case, when b = 519 the initial P concentra-
tion in the high buffering soil is 0.02 μmol m−3, calculated as

where P0 is the initial condition in the low buffering soil, bl = 40 is low buffer power and bh = 519 is the high 
buffer power.

Meshing and numerical experiments.  As the root systems extracted from the X-ray CT scans were 
very large, simulations using the full root system geometry could not be obtained due to computer memory and 
processing limitations. Instead, each column was divided into 6 sectors each running the full length of the image 
stack and one sector was chosen at random to be used for simulations, as each sector is expected to contain 1 
fertiliser pellet. This process introduces an artificial boundary to � on which we impose a no-flux condition to 
obtain a symmetric solution in the whole domain, see Fig. 1. At 14-weeks the exact location of the fertiliser pel-
lets could not be determined due to disintegration. Instead, a 2 mm radius sphere was added to the geometries 
at 24 mm below the soil surface and 25 mm from the centre of the column in the centre of the chosen column 
sector to represent the fertiliser pellet.

We hypothesised that faster fertiliser dissolution would improve plant P uptake from the pellet, but root 
system architecture would play a large role in fertiliser uptake efficiency. Additionally, we expected the benefit 
of the fertiliser pellet to be more noticeable in the high buffering soil due to lower available P and the role of 
root system architecture to be more prominent due to low P mobility. To assess these hypothesis, the modelled 
dynamic uptake rate was quantified for a number of scenarios. For each buffer power and root system, four cases 
were simulated: Complete fertiliser dissolution takes 14-weeks ( τ = 14 weeks), 1-week ( τ = 1 week), 1-day 
( τ = 1 day) dissolution and Zero fertiliser (lim τ → 0) resulting in 24 simulations with 3 replicates for each dis-
solution regime and buffer power. Measurements of the model results include total P uptake over the 14 week 
simulation [µmol], uptake rate [µmol s−1] and P uptake efficiency, defined as either total uptake per root surface 
area [µmol m−2] or uptake rate per root surface area [µmol m−2 s−1].

The segmented roots, homogeneous soil and fertiliser pellet were then meshed using Simpleware ScanIP 
(Synopsys Inc, California, USA). The homogeneous-soil volume meshes typically had an element–volume ratio 
of 5.9× 10−6 average element quality of 0.7. The root and fertiliser surface mesh typically had element–area ratio 
of 9.8× 10−4 with an average element quality of 0.72. The simulations were solved in Comsol 5.5 (COMSOL 
Inc, Massachusetts, UK) using two bespoke computers with 528 GB of memory and 4 nodes each with 6 cores 
(AMD Opteron Processor 6344).

Statistics.  One way ANOVA was used to test for differences between means while two-sample t-tests were 
used for specific pairwise comparisons between means of model results. A threshold of p = 0.05 was chosen as 
significant. All statistics were calculated using scipy36.

Use of plants statement.  All local, national or international guidelines and legislation were adhered for 
the use of plants in this study.

Results
Imaged root length densities.  To model the P uptake, the whole image stack was divided into six equal 
sectors using the full depth of the stack and a sector from each stack was selected randomly. For measurements, 
and for modelling going forwards, results refer to the selected sector only. A P source was placed within the sec-
tor, in a location consistent with the depth of the experimental pellet, Fig. 2a visualizes this root system 01 and 
each root system (01, 02 and 03) can be seen in Fig. S6 in the Supplementary Information. The changing root 
length density with depth and distance from the in silico P source was measured within the sector modelled. 
The pattern of root length density with depth is similar between replicates (Fig. 2b, 01, 02, 03). With distance 
from the ‘P source’, root length density generally decreased (Fig. 2b). It should be noted that this is relative to 
the in silico placement of the P source to give context for the model results rather than a measure of actual root 

(4)n ·
(

Dφl f∇Pl
)

= J0exp(−t/τ), x ∈ Ŵf .

(5)Pl(x, t = 0) =
P0(1+ bl)

1+ bh
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responses. Two of the plants (01 and 02) had similar patterns of root length density with distance from the P 
source, while sample 03 had few roots within the first ~ 1 cm from the pellet, but a large number slightly further 
away at ~ 1.5 cm (Fig. 2c). Measurements of root surface area, how far each root surface is from the pellet and 
how far each soil volume is from a root can be found in Table 1. On average, sample 01’s roots are closest to the 
fertiliser pellet, followed by sample 03 then sample 02. However, sample 03 was the only treatment not to have 
roots immediately adjacent to the pellet, as indicated by the high minimum root-pellet distance. Although sam-
ple 02 had the lowest root surface area, its root system had explored more of the soil than any other treatment 
indicated by the lowest average soil–root distance (on average, how far is each piece of soil from its nearest root) 
(Table 1).

Modelled uptake trends.  In Fig. 3 the root uptake rates at select times are shown on the root geometry for 
the sample 01 root system. A large portion of the roots system is affected by the pellet in the low buffering soil 

Figure 2.   Visualization and root length density measurements in the randomised sectors. (a) 3D rendering 
of the sample 01 root system in the randomized sector. The approximated location of the fertiliser pellet 
is rendered in purple and the root are coloured by their distance from the fertiliser pellet. (b) Root length 
per depth. (c) Root length density with distance from estimated positions of fertiliser pellets (distances are 
maximum distances in the chosen range i.e. 1 cm = 0–1 cm) in 14 week old spring wheat plants.

Table 1.   Image analysis measurements of root surface area, average root distance from pellet and average 
soil distance from root in the sector selected for modelling. The maximum and minimum are also included to 
demonstrate the variation in the data.

Root surface area (mm2)

Root–pellet distances (mm) Soil–root distances (mm)

Mean Min Max Mean Min Max

01 2888.6 31.14 0 74.84 8.54 0 27.54

02 1940.2 32.94 0.19 74.54 5.35 0 25.44

03 3724.2 32.04 1.78 67.44 7.97 0 27.44
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(Fig. 3a–f) compared to the high buffering soil (Fig. 3g–l). In the high buffering soil, root dense regions further 
from the pellet seem to drop in uptake rapidly as P is taken up from the soil.

In terms of total P uptakes over the 14-week simulation, there was no significant difference in either absolute 
P uptake or P uptake efficiency between the different fertiliser dissolution rates (one way ANOVA) (Fig. 4). How-
ever, any application of fertiliser significantly increased both P uptake and uptake efficiency in the low buffering 
soil (Student’s t test, two tailed, p = 0.0007 and 0.004 respectively) and only P uptake in the high buffering soil 
(p = 0.0067) compared to the zero fertiliser treatment. By adding the fertiliser, the total uptake was improved by 
104% in the low buffering soil and 63% in the high buffering soil on average. Introducing fertiliser also increased 
the variability in total uptake, but to a lesser extent the variability in uptake efficiency between the root systems 
compared to the zero fertiliser treatment, Fig. 4. Additionally, the mean-normalised standard deviations of total 
uptakes in the high buffering soil were each greater than the low buffering soil in all fertilisation treatments, 
but lower in the zero fertiliser treatment. These higher variations amongst root systems are consistent with our 
hypothesis that root system architecture is more important feature in high buffering soils than lower buffering 
soils for P fertilisation.

Modelled uptake dynamics.  Averaged values reported in Fig.  4 obscure some consistent differences 
between the treatments and replicates that can be detected using the combined modelling and imaging approach. 
When comparing P uptake rate dynamics of 1-week and 1-day dissolution with 14-week dissolution, we found 
faster dissolution led to greater absolute plant P uptake in both soils in all replicates (Fig. 5). However, 1-day dis-
solution only obtained a slightly higher uptake rate than 1-week in both soils (Fig. 5). Sample 02 had the steadiest 

Figure 3.   Visualisation of the root uptake rate evolution of the sample 01 root system for the 1-day and 14-week 
dissolution treatments. Pellet dissolution began at Day 0, root P uptake was switched on at Day 42. Day 43, 55 
and 75 are selected for visualisation purposes. (a–c) Show the low buffering soil with 1-day fertiliser dissolution. 
(d–f) Show the low buffering soil with 14-week fertiliser dissolution. (g–i) Show the high buffering soil with 
1-day fertiliser dissolution. (j–l) Show the high buffering soil with 14-week fertiliser dissolution.
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uptake rate (Fig. 5c,d) due to having the most evenly distributed roots within the soil, as indicated by mean soil–
root distances in Table 1. This may explain why sample 02 has the highest total uptake in the zero fertiliser case 
in the low buffering soil despite it having the lowest root surface area (Fig. 6a). Unlike the more densely packed 
roots, the roots of sample 02 have explored more soil and are not competing for the same soil P supply, thus have 
access to more of the total P. This effect is diminished in the high buffering soil since the depletion zones around 
roots are smaller in these low mobility zones and thus less likely to overlap with neighbouring roots (Fig. 6b).

When comparing between soils with different buffer powers, we found that absolute P uptake was almost an 
order of magnitude lower in the high buffering soil compared with the low buffering soil. This is consistent with 
previous knowledge regarding soil sorption capacity37, however, the relationship between buffer power and plant 
P uptake is not a linear transformation since the root uptake is non-linear.

Total uptake and efficiency per replicate.  When comparing the total P uptake between replicates, the 
uptake for sample 02 was lower than the uptake for sample 03 in each fertilised treatment in low buffering soil 
(Fig. 6a). However, in high buffering soil, the opposite was true. Sample 02 had greater P uptake than sample 03 
in all fertilised cases. Samples 01 and 02 showed a similar decrease in uptake when changing from high to low 
buffering, but sample 03 performed noticeably worse. Sample 03 has a high surface area, but the majority of its 
root length density is concentrated further away from the P source compared to the other two replicates (no 
roots are within 1.8 mm of the pellet, Table 1 and see Fig. 2c). Hence, when P mobility is reduced in the high 
buffering soil, much of sample 03’s root system has limited access to P from the pellet, which explains its poor 
relative performance in the high buffering soil.

However, different patterns emerge when we consider P uptake per root surface area, a measure of P uptake 
efficiency relative to plant carbon investment in its root system (Fig. 7). In terms of P uptake per root surface 
area, sample 02 is the most efficient root system for both soil types (it takes up the most P per root surface area), 
because it has the smallest surface area, but explores the most soil (Table 1). Due to its lower surface area, each 
root is competing less with other roots for P. This is particularly evident in the zero fertiliser case, compared with 

Figure 4.   Simulated total phosphorus uptakes integrated over the whole experiment for different P dissolution 
rates averaged across 3 root systems (a,b) and total uptakes per root surface area (c,d) over the fertiliser 
treatments. Error bars show standard deviation, n = 3. (a) Total uptake averages in the low buffering soil. (b) 
Total uptake averages in the high buffering soil. (c) Total uptake per root surface area averages in the low 
buffering soil. (d) Total uptake per root surface area averages in the high buffering soil. For visualisation 
purposes, root images show uptake rate at 43 days.
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the denser root systems. On the other hand, sample 03 performs poorly in both soils; particularly in the high 
buffering soil. This is because its dense root system means P is quickly depleted around the roots, but P mobility 
is too low for the fertiliser to reach this area due to the roots being further from the P source i.e. they are in the 
wrong place. Furthermore, the effective diffusion distance is expected to be reduced in the high buffering soil.

Discussion
Based on the model results, when averaged across the different root systems, P uptake was similar between the 
different dissolution rates for the pellet. In fact, the only difference between the mean results is that P fertilisa-
tion is expected to lead to higher P uptake, which is perhaps an obvious result, but at least demonstrates that the 
fertiliser from the “pellet” is reaching the plant roots and affecting overall uptake. However, the major advantage 
of the image-based modelling approach used here is the ability to more thoroughly explore the variability over 
time and between different root systems, effectively allowing us to disentangle the sources of variation between 
replicates. This would not be possible using one dimensional models where root length density is a function of 
depth since these functions would be very similar between replicates in this study, see Fig. 2b. Faster dissolution 
rates had consistently higher uptake rates (Fig. 5), which would suggest that the rapid dissolution of fertilisers 
such as TSP11 would lead to higher P uptake compared with the slow dissolution of struvite12. This result helps 
explain the processes behind the results of Nkebiwe et al.15 who found that mobile fertiliser sources had greater 
yield and nutrient uptake compared to less mobile sources of fertiliser. Talboys et al.9 found that fertiliser recovery 
was similar between TSP (a relatively soluble source) and struvite for spring wheat at harvest, but that wheat 
plants fertilised with struvite developed significantly fewer mature grain heads than those fertilised with TSP. As 
with our model, they also found that early uptake of P was significantly reduced (39%) in the struvite despite total 
uptake being similar, and this may be the reason for differences in grain development. Talboys et al.9 therefore 
argue for a combination of slow-release and fast-release fertilisers to ensure the needs of the plant at different 

Figure 5.   Simulated uptake rate dynamics from 6 weeks until 14 weeks for both the low and high buffering 
soil. Root uptake was started at 6 weeks following dissolution of the fertiliser from day zero. Each soil has the 
same total quantity of P initially. The first column shows the low buffering case (buffer power 40) and the second 
shows the high buffering case (buffer power 519). Each row highlights one of the three root systems showing 
the 4 fertiliser dissolution cases: Zero fertiliser, 14-week dissolution, 1-week dissolution and 1-day dissolution 
within that soil type. (a) Low buffering soil with 01 root system. (b) High buffering soil with sample 01 root 
system. (c) Low buffering soil with sample 02 root system. (d) High buffering soil with sample 02 root system. 
(e) Low buffering soil with sample 03 root system. (f) High buffering soil with sample 03 root system. For 
visualisation purposes, root images show uptake rate at 43 days. The faded lines show the other root system 
measurements in each soil type to ease comparison between plants.
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times are being met. Our model could be further developed to identify the optimal combinations of the two 
types of fertiliser to provide appropriate levels of P to the plant.

Root system architecture and the distance between the pellet and the roots play a more prevalent role in high 
buffering soils, as the active region of root uptake and uptake variability is higher under these buffering conditions 
(Fig. 6). However, our results also demonstrate that the optimal root architecture may differ between different soil 
buffering conditions, as sample 03 had high total uptake in the low buffering soil but the lowest total P uptake of 
the replicates in the low buffering soil (Fig. 6). This was because sample 03 had a high root surface area, allowing 
uptake over a large surface, but the roots were more clumped and further away from the pellet so when diffusion 
was more limited (high buffering) the depleted regions near the dense root were not replenished by the fertiliser.

From our findings, root system architecture seems to be important for uptake efficiency (P uptake per root 
surface), more so than for total uptake. However, the traits that are most beneficial to uptake evolve over time, 
which could be easily overlooked on shorter term simulations8. In the zero fertiliser case, the root system with 
the highest surface area had the highest initial uptake rate, (Fig. 5) sample 03, which is in agreement with previ-
ous studies22. However, it was the exploration extent (here measured using mean soil–root distance, Table 1) 
that was most important for long term total P uptake. Although sample 02 starts with a lower uptake rate due to 
its lower surface area (Fig. 5), it has the highest total uptake over the whole period since it explores more of the 
soil (lower mean soil–root distances, Table 1) (Fig. 6a). Which of these strategies (high root surface area vs high 
soil exploration) is the most effective depends on which measure is most important. Results highlight a benefit 
for a sparsely distributed rooting system when there is little P more uniformly distributed throughout the soil. 
However, given high uptake in early growth is very important to crop yields38, the higher total uptake may be 

a    Low buffering

b    High buffering

Figure 6.   Simulated total P uptake integrated over the whole experiment in (a) low buffering soil (b) high 
buffering soil. Different cases represent P dissolving from a pellet over 1-day, 1-week, and 14-weeks, and a case 
with no added P fertiliser (zero fertiliser) for three different root systems (samples 01, 02, 03). For visualisation 
purposes, root images show uptake rate at 43 days.
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unable to compensate for reduced uptake early on. Single time point measurements of root length density or 
short-term simulations would not be able to capture these nuances that affect P uptake.

In addition, the root traits that are beneficial for uptake efficiency (greater exploration) may not be beneficial 
for total P uptake. For example, in the fertilising cases sample 03 has higher total P uptake than sample 02 in 
the low buffering case but the worst uptake efficiency (Figs. 6 and 7). This is because sample 03 has more roots 
and, while increasing root volume is a good way to increase P uptake39, this should also be balanced with carbon 
investment40. This observation is important because optimal root traits may depend on which factor is yield 
limiting in a particular agricultural scenario. For example, growing corn in northern Europe may be limited 
by light but not P availability, thus photosynthate should be spent on above ground organs to maximise yield. 
In this case, assuming the soil has plenty of available P, high P uptake efficiency is preferable to total P uptake 
as this will allow greater investment in above ground material, which functions to increase carbon capture and 
therefore yield40. In this scenario, the sample 02 root system which has high uptake efficiency is optimal. On the 
other hand, where low P availability is the limiting factor rather than light, root systems which have high total 
P uptake would be preferable and the sample 01 root system is more optimal.

All the comparisons made in this study are between the same species and variety of plant, grown under the 
same conditions. As such, the study provides better controlled protocols than any field experiment can guarantee. 
Despite these controls, results highlight large variabilities. Given the variability seen even under these controlled 
conditions, we expect much greater differences would be observed between different species, varieties and envi-
ronments. In addition, plants have many different strategies to increase P uptake that are not considered by our 
present model, including organic-acid exudation, mycorrhizal symbioses and growing fine lateral roots and root 
hairs41,42. The roots we measured from the CT images were only those roots larger than an absolute minimum 
of 180 µm, due to the limitations of XCT imaging on samples at this scale. Therefore, fine roots and certainly 

a    Low buffering

b    High buffering

Figure 7.   Simulated total P uptake per root surface area integrated over the whole experiment in (a) low 
buffering soil (b) high buffering soil. Different cases represent P dissolving from a pellet over 1-day, 1-week, and 
14 weeks, and a case with no added P fertiliser (zero fertiliser) for three different root systems (samples 01, 02, 
03). For visualisation purposes, root images show uptake rate at 43 days.
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root hairs were missed in these analyses, and these roots are likely to be those that would respond to localised 
P since they are less costly to produce in terms of carbon41,42. The advantages of XCT imaging for maintaining 
geometric information e.g. about root distribution vs clustering outweigh the disadvantage in losing fine roots 
for this study, though future work should investigate the role of lateral roots and root hairs further. Soil moisture 
was assumed constant in the simulation, an assumption that is more relevant to laboratory experiments, where 
soil moisture is controlled, than to crops in the field. However, P movement is often assumed to be dominated 
by diffusion due its rapid sorption onto soil particles, and ignoring advection is a common simplification for 
P models43. Although the validity of this assumption for P has been brought into question by the recent study 
of Petroselli et al.11, who found evidence of advection when measuring P concentrations at increasing distance 
from a fertiliser pellet using microdialysis. However, the results were more likely explained by the advection of 
fertiliser particulates rather than of P in solution, which is outside the scope of this study. Including soil moisture 
equations to monitor the advection of P by water flow was not feasible in the current study due to the size of the 
computational mesh. Ultimately, there was a trade-off between the detail of the root systems and the complexity 
of mathematical model; we did not have available memory to solve both P advection–diffusion and soil moisture 
with Richards’ equation while using large and detailed model domains in reasonable time.

In conclusion, our spatially explicit and time-resolved model allowed investigation of the relative roles of root 
architecture, fertiliser dissolution rate, and soil buffer power in determining P uptake by a plant. More specifi-
cally, faster dissolution led to a higher short-term uptake rate, but we found diminishing returns with fertilisers 
dissolving within one week. In addition, while greater total root length increased total P uptake, smaller, more 
spread out root systems took up more P per unit root length and therefore may be considered more efficient, 
and the specific amount of root investment required might depend on variables such as availability of P, and 
availability of light and water. Monitoring over an extended time period is important since uptake can change 
through time, though early P uptake is known to be crucial for high yields. Finally, explicitly including the 
spatial distributions of the root systems highlights that the optimal balance of root exploration and root density 
is different in different soils with different buffer powers. These results provide the foundation for a predictive 
modelling approach to understanding uptake from different P fertilisers in different soils. This approach can 
be used to investigate sources of high variability within single cultivars, which is not identifiable under larger 
experimental conditions but is important for understanding the underlying processes rather than only average 
responses. In addition, it could be a highly valuable tool in rapid screening of different fertilisation approaches 
for specific soil properties, root architectures, and fertiliser properties, complementing and potentially informing 
more comprehensive field studies.

Data availability
All data supporting this study is openly available from the University of Southampton institutional research 
repository at https://​doi.​org/​10.​5258/​SOTON/​D1845.
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