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ABSTRACT
Background: Chronic kidney disease (CKD) is a condition associated with

progressive loss of kidney function and kidney damage. The two common causes of

CKD are diabetes mellitus and hypertension. Other causes of CKD also include

polycystic kidney disease, obstructive uropathy and primary glomerulonephritis.

The receptor for advanced glycation end-products (RAGE) is a multi-ligand cell

surface receptor of the immunoglobulin superfamily and it has been associated with

kidney disease in both non-diabetic and diabetic patients. Presently, data on the

association between RAGE polymorphisms and CKD in the Malaysian population

is limited, while numerous studies have reported associations of RAGE

polymorphisms with diabetic complications in other populations. The present study

aims to explore the possibility of using RAGE polymorphisms as candidate markers

of CKD in Malaysian population by using association analysis.

Methods: A total of 102 non-diabetic CKD patients, 204 diabetic CKD patients and

345 healthy controls were enrolled in the study. DNA isolated from blood samples

were subjected to genotyping of RAGE G82S, -374T/A, -429T/C, 1704G/T and

2184A/G polymorphisms using real-time polymerase chain reaction (PCR). The

63-bp deletion, a polymorphism in the RAGE gene promoter, was genotyped using

conventional PCR method and visualized using agarose gel electrophoresis. The

collective frequencies of genotypes with at least one copy of the minor alleles of the

four polymorphisms were compared between the non-diabetic CKD patients,

diabetic CKD patients and healthy controls.

Results: After adjustment of age, gender and ethnic groups in binary logistic

regression analysis, the G82S CT + TT genotypes were associated with non-diabetic

CKD patients when compared with diabetic CKD patients (p = 0.015, OR = 1.896,

95% CI = 1.132–3.176). After further adjustment of CKD comorbidities, the G82S

CT + TT genotypes were still associated with non-diabetic CKD patients when

compared with diabetic CKD patients (p = 0.011, OR = 2.024, 95% CI = 1.178–

3.476). However, it cannot be suggested that G82S polymorphism was associated

with CKD in non-diabetic patients in this study. This is because there were no

significant differences in the frequencies of G82S CT + TT genotypes between

non-diabetic CKD patients and healthy controls. In addition, the RAGE -374T/A,
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-429T/C, 1704G/T, 2184A/G and 63-bp deletion polymorphisms were also not

associated with non-diabetic CKD patients and diabetic CKD patients in this study.

Conclusion: The G82S, -374T/A, -429T/C, 1704G/T, 2184A/G and 63-bp deletion

polymorphisms examined in this study were not associated with chronic kidney

disease in the Malaysian patients.

Subjects Diabetes and Endocrinology, Nephrology, Medical Genetics

Keywords Chronic kidney disease, RAGE, Polymorphisms

INTRODUCTION
Chronic kidney disease (CKD) is a general term for heterogeneous renal disorders which

is characterized by progressive kidney damage and estimated glomerular filtration rate

(eGFR) of less than 60 ml/min/1.73 m2 for three months or more (Levey et al., 2003;

Stevens & Levey, 2009). CKD is an increasing health problem in Malaysia. In 2013, the

prevalence of kidney failure patients requiring hemodialysis and peritoneal dialysis was

970 per million population (pmp) and 95 pmp respectively. In Malaysia, the prevalence of

kidney failure has doubled over the last decade (National Renal Registry, 2014). The two

common causes of kidney failure in Malaysia are diabetes mellitus and hypertension, with

other causes being polycystic kidney disease, obstructive uropathy and chronic

glomerulonephritis (National Renal Registry, 2014).

Receptor for advanced glycation end-products (RAGE) is a multi-ligand cell surface

receptor of the immunoglobulin superfamily. The receptors bind to advanced glycation

end-products (AGEs), certain members of S100/calgranulin, amphoterin, amyloid b-sheet
fibrils, and advanced oxidation protein products (Kalea, Schmidt & Hudson, 2009;

Ramasamy, Yan & Schmidt, 2009). The interaction between RAGE and its ligand triggers

signal transduction which results in various cellular effects such as inflammation,

oxidative stress, altered gene expression and apoptosis (Kalea, Schmidt & Hudson, 2009;

Xie et al., 2013). Furthermore, RAGE has also been studied in association with

pathogenesis of kidney diseases in animal models (Myint et al., 2006; Guo et al., 2008;

Reiniger et al., 2010).

The human RAGE gene is located in the major histocompatibility complex (MHC)

class III region on chromosome 6p21.3 (Kalea, Schmidt & Hudson, 2009). Numerous

polymorphisms have been identified in the promoter region, exons and introns of the

RAGE gene (Hudson, Stickland & Grant, 1998; Hudson et al., 2001; Kanková et al., 2001).

Many studies have reported on the associations of the common RAGE polymorphisms

such as G82S, -374T/A, -429T/C, 1704G/T, 2184A/G and 2250G/Awith the development

of diabetic nephropathy (Matsunaga-Irie et al., 2004; Prevost et al., 2005; Kanková et al.,

2005; Lindholm et al., 2006). Moreover, several RAGE polymorphisms have also been

investigated in association with lupus nephritis (Martens et al., 2012).

Given the associations of several RAGE polymorphisms with kidney diseases in the

published literature, the present study aims to explore the possibility of using RAGE

polymorphisms as candidate markers of CKD in Malaysian population by using
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association analysis. This study investigates the G82S, -374T/A, -429T/C, 1704G/T,
2184A/G and 63-bp deletion polymorphisms based on their effects on RAGE expression

and function which potentially affect CKD pathogenesis: (i) G82S polymorphism is a

missense mutation in exon 3 of the RAGE gene which potentially regulates RAGE function

(Kalea, Schmidt & Hudson, 2009), (ii) the polymorphisms in the transcriptional start site

of RAGE such as -374T/A, -429T/C and 63-bp deletion polymorphisms regulate the

transcription of RAGE (Hudson et al., 2001), and (iii) the 1704G/T polymorphism and

2184A/G polymorphism may be responsible for alternative splicing that produces

endogenous secretory RAGE which is cytoprotective against RAGE ligands (Yonekura

et al., 2003; Schlueter et al., 2003).

MATERIALS AND METHODS
Subject recruitment
CKD patients (40–75-year-old) whose eGFR were less than 60 ml/min/1.73 m2 were

recruited from University Malaya Medical Centre (UMMC), Kuala Lumpur between

September 2013 and November 2014. To further confirm their CKD status, the eGFR of the

patients for the past six months were checked to be constantly less than 60 ml/min/1.73 m2.

Estimated GFR was determined using the Modified 4-variable Modification of Diet in Renal

Disease (MDRD) study equation (Levey et al., 2006). The eGFR was measured on the day of

recruitment and the average eGFR of each patient group was calculated. Patients with acute

kidney injury which is reversible and kidney transplant recipients whose renal function

has reverted to satisfying levels were excluded, as this study aims to investigate kidney

diseases which are progressive in nature. Diabetic CKD patients were those with type 2

diabetes (n = 204) and non-diabetic CKD patients comprised of patients with hypertension

(54), chronic glomerulonephritis (26), obstructive uropathy (9), analgesic nephropathy (7),

polycystic kidney disease (4), urate nephropathy (1) and renal tubular acidosis (1). Healthy

controls (35–65-year-old, n = 345) were recruited from blood donors without diabetes,

hypertension, heart disease and kidney disease. Peripheral venous blood (3–6 ml) was

collected in EDTA tubes for DNA analysis.

This study was approved by the Medical Ethics Committee UMMC (reference number:

982.17) in accordance with the Declaration of Helsinki. Verbal and written informed

consent were also obtained from all patients and healthy controls before blood

collection.

DNA extraction and genotyping using commercial polymorphism
genotyping assays
Blood specimens were kept at -20 �C until DNA extraction. DNA was extracted using an

in-house modified salting out procedure (Miller, Dykes & Polesky, 1988). Genotyping for

the RAGE G82S, -374T/A, -429T/C, 1704G/T and 2184A/G polymorphisms were

performed using the TaqMan� Single Nucleotide Polymorphism (SNP) Genotyping

Assays (Life Technologies, Carlsbad, CA, USA) (Table 1) according to the manufacturer’s

instructions. Briefly, 1 ml of diluted DNA sample, 5 ml of 2X TaqMan� GTXpressTM

Master Mix (Life Technologies, Carlsbad, CA, USA), 0.5 ml of 20X TaqMan� SNP
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Genotyping Assays and 3.5 ml of DNase-free double-distilled water were mixed to obtain a

10 ml SNP genotyping reaction for each DNA sample.

Genotypes were determined by real-time polymerase chain reaction (PCR) using an

Applied Biosystems Fast 7500 Real-Time Thermal Cycler. The pre-PCR stage was 60 �C
for 1 min prior to the holding stage at 95 �C for 20 s. PCR conditions include 40 cycles of

denaturation at 95 �C for 3 s followed by annealing and elongation at 60 �C for 30 s with a

final post-PCR stage at 60 �C for 1 min. Results were analyzed using the Applied

Biosystems 7500 Fast Real-Time PCR System and Applied Biosystems TaqMan�

Genotyper Software.

Screening RAGE 63-bp deletion using conventional PCR method
The RAGE 63-bp deletion polymorphism was detected using conventional PCR method.

Briefly, 10 ml of final PCR reaction mixture contained 1X DreamTaq Buffer (Thermo

Scientific), 0.45 U DreamTaq DNA Polymerase (Thermo Scientific), 0.09 mM

deoxyribonucleotide triphosphate (dNTP) (Thermo Scientific), 0.22 mM forward primer,

0.22 mM reverse primer and 80 ng sample DNA. The sequences of forward primer and

reverse primer are 5′-GGGGCAGTTCTCTCCTCACT-3′ and 5′-CATGCCTTTGGGA

CAAGAGT-3′ respectively.

The PCR was performed with an initial incubation at 94 �C for 5 min, followed by

40 cycles consisting of 94 �C for 30 s, 63.3 �C for 40 s and 72 �C for 40 s. One cycle of final

extension at 72 �C for 5 min was programmed to complete the amplification. The PCR

products were visualized using electrophoresis on 1.5% agarose gels.

Statistical analyses
Hardy-Weinberg equilibrium calculator including analysis for ascertainment bias, a

web-tool (http://www.oege.org/software/hwe-mr-calc.shtml), was used to assess Hardy-

Weinberg equilibrium (HWE) for each RAGE polymorphism using Chi-squared test to

examine the differences in genotype distribution between observed and expected

frequencies (Rodriguez, Gaunt & Day, 2009). The significance of HWE deviation was set at

p < 0.05.

The statistical power of this unmatched case-control study was estimated using

Quanto, version 1.2 (Gauderman & Morrison, 2001). In this analysis, the statistical power

was calculated for comparing the frequency of genotype with at least one copy of the

Table 1 RAGE G82S, -374T/A, -429T/C, 1704G/T and 2184A/G polymorphism identification,

assay identification and location.

Polymorphism Polymorphism ID Assay ID* Location

G82S rs2070600 C__15867521_20 Chr.6: 32151443

-374T/A rs1800624 C___3293837_1_ Chr.6: 32152387

-429T/C rs1800625 C___8848033_1_ Chr.6: 32152442

1704G/T rs184003 C___2412456_10 Chr.6: 32150296

2184A/G rs3134940 Custom assay Chr.6: 32149816

Note:
* Assay ID of TaqMan� SNP Genotyping Assay (Life Technologies, Carlsbad, CA, USA).
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minor allele of each RAGE polymorphism between a pair of subject groups. The gene only

hypothesis and dominance inheritance mode were selected for power calculation.

Chi-squared test was used to detect the significant difference in each categorical

variable. The statistical significance of differences in mean values was analyzed using

independent t test or one-way analysis of variance (ANOVA). Binary logistic regression

analysis was used to estimate the probability of CKD development attributed to RAGE

polymorphism genotypes by adjusting the covariates such as age, gender, ethnic groups

and comorbidities of CKD. Odds ratio and 95% confidence interval were calculated.

These statistical analyses were performed using the Statistical Package for Social Sciences,

version 20 (SPSS Inc., Chicago, IL, USA). The significance level was set at p < 0.05.

RESULTS
The demographic data, eGFR and comorbidities of the study subjects are shown in

Table 2. Both non-diabetic CKD (Pb < 0.001) (Table 2) and diabetic CKD patients

(Pc < 0.001) (Table 2) were older compared to the healthy controls while there were no

significant differences in categorical variables such as gender and ethnic groups between

the study subject groups (P > 0.05) (Table 2). Comparison between non-diabetic CKD

and diabetic CKD patients showed significant difference in the eGFR levels (Pa = 0.001)

(Table 2). The CKD patients were also affected with comorbidities such as hypertension,

dyslipidemia, ischemic heart disease and stroke. Chi-squared analyses showed that there

were significantly more diabetic CKD patients with hypertension (Pa = 0.043) (Table 2)

and ischemic heart disease (Pa = 0.002) (Table 2) than non-diabetic CKD patients.

The collective frequencies of genotypes with at least one copy of the minor alleles of

G82S, -374T/A, -429T/C, 1704G/T, 2184A/G and 63-bp deletion polymorphisms in the

Malaysian CKD patients and healthy controls are shown in Table 3. Genotype

distributions of the six polymorphisms in the non-diabetic CKD, diabetic CKD and

healthy controls were in HWE except for the non-diabetic CKD patients with -429T/C
polymorphism, diabetic CKD patients with G82S and 1704G/T polymorphisms as well as

health controls with 2184A/G polymorphism (Supplementary Information, Table S1).

The frequencies of the genotypes with at least one copy of the G82S T allele (CT + TT

genotypes) were significantly higher in the non-diabetic CKD patients than in the diabetic

CKD patients (Table 3). Overall, 38.2% of the non-diabetic CKD patients carried at least

one copy of the G82S T allele. After adjustment of age, gender and ethnic groups, binary

logistic regression analysis indicated that the G82S CT + TT genotypes were associated

with non-diabetic CKD patients as compared with diabetic CKD patients (P = 0.015,

OR = 1.896, 95% CI = 1.132–3.176) (Table 3, Model 1). Further adjustment of CKD

comorbidities showed that the G82S CT + TT genotypes were still associated with non-

diabetic CKD patients as compared with diabetic CKD patients (P = 0.011, OR = 2.024,

95% CI = 1.178–3.476) (Table 3, Model 2). However, the G82S CT + TT genotypes

were not associated with non-diabetic CKD patients and diabetic CKD patients as

compared with healthy controls (P > 0.05) (Table 3).

The genotypes consisting the minor alleles of RAGE -374T/A, -429T/C, 1704G/T,
2184A/G and 63-bp deletion polymorphisms were also not associated with non-diabetic
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CKD patients and diabetic CKD patients (P > 0.05) (Table 3). Figure 1 shows the

representative gel image of electrophoresed PCR products with or without 63-bp deletion.

In this study, the study subjects with 63-bp deletion are heterozygous for the

Table 2 Demographic data, estimated glomerular filtration rate and comorbidities of non-diabetic chronic kidney disease (CKD) patients,

diabetic CKD patients and healthy controls.

Non-diabetic CKD patients Diabetic CKD patients Healthy controls

Pa Pb Pcn = 102 n = 204 n = 345

Age (years) 62.98 ± 8.70 64.61 ± 7.44 43.86 ± 6.30 0.141 < 0.001 < 0.001

Gender (male/female) 66/36 129/75 204/141 0.801 0.311 0.341

Ethnic groups (Malay/Indian/Chinese) 33/51/18 84/74/46 127/146/72 0.071 0.387 0.373

eGFR at recruitment (ml/min/1.73 m2) 32.51 ± 14.51 27.04 ± 11.81 Not available 0.001 – –

Hypertension (%) 73.5 83.3 Not available 0.043 – –

Dyslipidemia (%) 30.4 26.0 Not available 0.415 – –

Ischemic heart disease (%) 11.8 27.0 Not available 0.002 – –

Stroke (%) 3.9 5.9 Not available 0.468 – –

Note:
Data are expressed as mean ± standard deviation, except for categorical variables, which are reported as numbers or percentages. Pa, P-value for non-diabetic CKD
patients versus diabetic CKD patients; Pb, P-value for non-diabetic CKD patients versus healthy controls; Pc, P-value for diabetic CKD patients versus healthy controls.

Table 3 Association of RAGE G82S, -374T/A, -429T/C, 1704G/T, 2184A/G and 63-bp deletion polymorphisms with chronic kidney disease in

Malaysian population.

Polymorphism Allele 1/2 Subjects

Genotype

12 + 22

n (%) Comparison

Model 1 Model 2

P OR (95% CI) P OR (95% CI)

G82S C/T ND-CKD 39 (38.2) ND-CKD vs D-CKD 0.015 1.896 (1.132–3.176) 0.011 2.024 (1.178–3.476)

D-CKD 51 (25.0) ND-CKD vs HC 0.749 1.135 (0.522–2.467) 0.598 1.440 (0.372–5.576)

HC 90 (26.1) D-CKD vs HC 0.128 0.533 (0.237–1.199) 0.815 1.207 (0.249–5.863)

-374T/A T/A ND-CKD 22 (21.6) ND-CKD vs D-CKD 0.644 0.873 (0.490–1.554) 0.430 0.787 (0.435–1.425)

D-CKD 48 (23.5) ND-CKD vs HC 0.408 1.480 (0.585–3.743) 0.642 1.451 (0.302–6.967)

HC 83 (24.1) D-CKD vs HC 0.294 1.556 (0.682–3.551) 0.113 4.261 (0.710–25.567)

-429T/C T/C ND-CKD 16 (15.7) ND-CKD vs D-CKD 0.134 0.617 (0.328–1.160) 0.110 0.588 (0.306–1.128)

D-CKD 46 (22.6) ND-CKD vs HC 0.735 0.848 (0.326–2.205) 0.616 1.533 (0.288–8.159)

HC 81 (23.5) D-CKD vs HC 0.103 1.948 (0.874–4.342) 0.054 5.727 (0.972–33.731)

1704G/T G/T ND-CKD 42 (41.2) ND-CKD vs D-CKD 0.284 1.309 (0.799–2.143) 0.208 1.385 (0.835–2.299)

D-CKD 70 (34.3) ND-CKD vs HC 0.619 1.217 (0.562–2.636) 0.490 0.604 (0.144–2.527)

HC 125 (36.2) D-CKD vs HC 0.799 1.100 (0.529–2.287) 0.834 0.853 (0.193–3.763)

2184A/G A/G ND-CKD 16 (15.7) ND-CKD vs D-CKD 0.134 0.617 (0.328–1.160) 0.110 0.588 (0.306–1.128)

D-CKD 46 (22.6) ND-CKD vs HC 0.725 0.842 (0.324–2.189) 0.618 1.530 (0.287–8.144)

HC 82 (23.8) D-CKD vs HC 0.105 1.941 (0.871–4.324) 0.054 5.725 (0.971–33.741)

63-bp deletion _/del ND-CKD 4 (3.9) ND-CKD vs D-CKD 0.735 1.244 (0.352–4.392) 0.863 1.120 (0.308–4.069)

D-CKD 7 (3.4) ND-CKD vs HC 0.273 0.303 (0.036–2.560) 0.387 0.268 (0.014–5.283)

HC 24 (7.0) D-CKD vs HC 0.100 0.232 (0.041–1.320) 0.423 0.312 (0.018–5.393)

Note:
Model 1 adjusted for age, gender and ethnic groups. Model 2 extended Model 1 by also adjusting for comorbidities of CKD such as hypertension, dyslipidemia, ischemic
heart disease and stroke. Abbreviations in the table–P, P-value; OR, odd ratio; CI, confidence interval; ND-CKD, non-diabetic CKD; D-CKD, diabetic CKD; HC, healthy
control.
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polymorphism and none of the study subjects are homozygous for this particular

deletion.

DISCUSSION
Published studies have corroborated the role of RAGE in the development of diabetes-

associated renal diseases; for example, inhibition of RAGE through pharmacological

antagonism or gene deletion showed significant improvements in the pathological

features of diabetic nephropathy in animal models (Wendt et al., 2003; Reiniger et al.,

2010). In addition to diabetic nephropathy, RAGE is also associated with the pathogenesis

of non-diabetic renal diseases, for example, podocyte stress and glomerulosclerosis were

elicited in doxorubicin-treated mice, but these features were decreased in the homozygous

RAGE-null mice treated with doxorubicin (Guo et al., 2008). In view of the potential

pathological role of RAGE in kidney diseases, the associations of RAGE gene

polymorphisms with CKD were investigated in this study as the polymorphisms may be

fundamentally important in CKD development.

In addition to renal diseases, previous human population studies have shown that

RAGE polymorphisms were associated with cardiovascular diseases such as ischemic heart

disease and stroke (Zee et al., 2006; Poon et al., 2010). In order to investigate accurately the

association of RAGE polymorphisms with CKD, the comorbidities such as ischemic heart

disease, stroke and their risk factors (hypertension and dyslipidemia) were adjusted in

binary logistic regression analysis to eliminate their confounding effects.

In the present study, the G82S CT + TT genotypes were associated with non-diabetic

CKD patients when compared with diabetic CKD patients, but not with healthy controls.

1 2 3 4 5 6 7 8

474 bp (Without 63-bp dele�on)

411 bp (With 63-bp dele�on)

Figure 1 Representative gel image of electrophoresed PCR products with or without 63-bp deletion.

Lane 1: 100 bp DNA ladder; lane 2: non-template blank; lanes 3–5: selected DNA samples without 63-bp

deletion (containing a 474-bp band); lanes 6–8: selected DNA samples which are heterozygous for

63-bp deletion (containing a 474-bp band corresponding to sequence without 63-bp deletion and a

411-bp band corresponding to sequence with 63-bp deletion).
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Thus, it cannot be suggested that the T allele is associated with CKD in non-diabetic

patients in this study. Studies on the association between G82S polymorphism and kidney

disease have showed conflicting results. The frequency of genotype with at least one copy

of G82S T allele was significantly higher in type 1 diabetic patients with advanced

nephropathy compared with diabetic patients with less severe nephropathy or no

nephropathy in France and Belgium (Prevost et al., 2005). On the contrary, this

polymorphismwas not associated with type 1 diabetic nephropathy and lupus nephritis in

Denmark and the Netherlands respectively (Poirier et al., 2001; Martens et al., 2012).

The -374T/A, -429T/C, 1704G/T, 2184A/G and 63-bp deletion polymorphisms did not

show any association with non-diabetic CKD and diabetic CKD patients in this study.

However, published literature have reported contradictory results for these

polymorphisms. The -374T/A polymorphism was associated with diabetic complications

including diabetic nephropathy in a Swedish population (Lindholm et al., 2006) and has

also been implicated in more rapid decline of renal function in Italian CKD patients

(Baragetti et al., 2013). In contrast, this polymorphism was protective against albumin

excretion and cardiovascular disease in type 1 diabetic Finnish patients (Pettersson-

Fernholm et al., 2003).

Only limited reports are available on the associations of the RAGE -429T/C, 1704G/T,
2184A/G and 63-bp deletion polymorphisms with kidney diseases. In a linkage

disequilibrium analysis, the frequency of a haplotype containing the -429T/C and 2184A/G

polymorphisms were significantly higher in type 2 diabetic nephropathy (Kanková et al.,

2005). Furthermore, the 1704G/T polymorphism showed a significant association with type

2 diabetic patients developing nephropathy in a Japanese population (Matsunaga-Irie et al.,

2004). The 2184A/G polymorphism was associated with increased risk for diabetic

nephropathy in type 2 diabetic patients from Central Europe (Kaňková et al., 2007) but this

polymorphismwas reported to play a protective role against diabetic nephropathy inChinese

type 2 diabetic patients (Cai et al., 2015). Another study showed that the type 2 diabetic

patients with the 63-bp deletionmay be protected from diabetic nephropathy, but the type 1

diabetic patients with 63-bp deletion were at risk of diabetic nephropathy in a German

population (Rudofsky et al., 2004). In addition to diabetic nephropathy, the -374T/A,
-429T/C and 2184A/G polymorphisms were also associated with lupus nephritis, worsened

proteinuria and decreased renal function in a Dutch population (Martens et al., 2012).

Although the RAGE polymorphisms investigated in this study were not associated with

CKD, published studies have demonstrated that some of these polymorphisms are

associated with altered expression and function of RAGE which may underlie disease

development. Several lines of evidence have suggested the importance of the G82S Tallele

in the mediation of RAGE-ligand binding and activation of downstream signaling

pathways. The G82S Tallele renders higher affinity of RAGE towards ligands such as AGEs

and S100/calgranulin (Hofmann et al., 2002; Osawa et al., 2007). Another study showed

that the RAGE protein with G82S polymorphism promoted N-linked glycosylation at the

Asparagine 81 site, which was associated with increased ligand binding and pro-

inflammatory NF-�B activation (Park, Kleffmann & Hessian, 2011). The deleterious

cellular effects resulting from increased ligand binding such as oxidative stress and
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inflammation (Kalea, Schmidt & Hudson, 2009) are fundamental to CKD development

(Ruiz et al., 2013).

The RAGE -374T/A, -429T/C and 63-bp deletion polymorphisms which occur in

the transcriptional start site of RAGE gene may affect the transcriptional regulation.

A published study showed that these polymorphisms resulted in an increase of

transcriptional activity (Hudson et al., 2001), indicating an enhanced expression of RAGE

which is associated with the progression and severity of renal dysfunction (Wendt et al.,

2003; Hou et al., 2004). However, the functional impact of 1704G/T and 2184A/G

polymorphisms remain to be elucidated.

Despite the evidence of RAGE polymorphisms associating with kidney diseases, the

selected RAGE polymorphisms were not associated with CKD in the present study. A

plausible explanation for this discrepancy is the ethnic and regional differences between

Malaysian and other populations. Malaysia is a unique country because of its multiracial

population which includes the Malays, Chinese and Indians who comprise the majority of

the population. These ethnic groups may not be genetically similar to other populations

worldwide. Two published reports have provided an example of this concept that the

association of 2184A/G polymorphism with type 2 diabetic nephropathy in Central

Europe (Kaňková et al., 2007) is contradictory to the decreased risk of type 2 diabetic

nephropathy in the Chinese (Cai et al., 2015). This highlights the possible influence of

ethno-regional difference on the association between polymorphism and disease. In

addition, RAGE polymorphisms may not be CKD-specific in Malaysian patients

according to the findings in this study. Given the conflicting findings in the association

studies, the relationship between RAGE polymorphisms and kidney diseases should be

interpreted with caution.

The main limitation of this study was the subjects who were recruited only from a

medical center may not be a representative of the general population. Current

sample size determined in a priori power analysis could detect significant

associations with 80% statistical power. During final analysis, however, most of the

comparisons were associated with low statistical power (Table S2). The low statistical

power could be attributed to the odds ratio which is very close to the null value,

small sample size and low frequency of risk allele because statistical power is

influenced by effect size, sample size and disease allele frequency (Gordon, 2005;

Schneider, 2013). The low statistical power in this study is likely due to the low risk

allele frequencies. For example, the risk allele frequencies of several RAGE gene

polymorphisms such as -374T/A, -429T/C and 2184A/G are lower in the Malaysian

populations compared with the Caucasian populations (Kanková et al., 2005;

Kalousová et al., 2007).

Baragetti et al. (2013) demonstrated in a prospective study that the A allele of -374T/A
polymorphism was associated with more rapid renal function decline. This suggests that

RAGE polymorphisms may affect CKD progression over a longer time span. Therefore,

the relationships between RAGE polymorphisms and CKD can be investigated using

prospective study design to validate the negative findings in the current study.

Furthermore, the polymorphisms of other genes such as transforming growth factor-b1
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(TGF-b1), non-muscle myosin heavy chain 9 (MYH9) and apolipoprotein L1 (APOL1)

have been shown in associations with kidney diseases (Freedman et al., 2009; Vuong et al.,

2009; Langefeld et al., 2015). These candidate genes would serve as promising tools for

CKD marker discovery.

CONCLUSION
Based on the current findings, the RAGE G82S, -374T/A, -429T/C, 1704G/T, 2184A/G
and 63-bp deletion polymorphisms are not qualified to be the markers of CKD in

Malaysian populations on the account of the null associations between these

polymorphisms and CKD. Therefore, it may not be useful to predict CKD using RAGE

polymorphisms in Malaysian patients.
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