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Gene transcription is a highly stochastic and dynamic process. As a result,

the mRNA copy number of a given gene is heterogeneous both between

cells and across time. We present a framework to model gene transcription

in populations of cells with time-varying (stochastic or deterministic) tran-

scription and degradation rates. Such rates can be understood as upstream

cellular drives representing the effect of different aspects of the cellular

environment. We show that the full solution of the master equation contains

two components: a model-specific, upstream effective drive, which encapsu-

lates the effect of cellular drives (e.g. entrainment, periodicity or promoter

randomness) and a downstream transcriptional Poissonian part, which is

common to all models. Our analytical framework treats cell-to-cell and

dynamic variability consistently, unifying several approaches in the lite-

rature. We apply the obtained solution to characterize different models of

experimental relevance, and to explain the influence on gene transcription

of synchrony, stationarity, ergodicity, as well as the effect of time scales

and other dynamic characteristics of drives. We also show how the solution

can be applied to the analysis of noise sources in single-cell data, and to

reduce the computational cost of stochastic simulations.
1. Introduction
Gene transcription, the cellular mechanism through which DNA is copied into

mRNA transcripts, is a complex, stochastic process involving small numbers of

molecules [1]. As a result, the number of mRNA copies for most genes is

highly heterogeneous over time within each cell, and across cells in a population

[2–4]. Such fundamental randomness is biologically relevant: it underpins the

cell-to-cell variability linked with phenotypic outcomes and cell decisions [5–9].

The full mathematical analysis of gene expression variability requires the

solution of master equations. Given a gene transcription model, its master

equation (ME) is a differential–difference equation that describes the evolution

of P(n, t), the probability of having n mRNA molecules in a single cell at time t.
However, MEs are problematic to solve, both analytically and numerically, due

to the difficulties associated with discrete stochastic variables—the number of

molecules n is an integer [10]. Most existing analytical solutions of the ME

are specific to particular models and are typically obtained via the probability

generating function under stationarity assumptions [11–15]. A few other sol-

utions include the decaying time dependence describing the relaxation

transient towards stationarity from a given initial distribution [16–19]. In the

usual situation when analytical solutions are intractable, the first few moments

of the distribution are approximated, usually at stationarity, although error

bounds are difficult to obtain under closure schemes [20,21]. Alternatively,

full stochastic simulations are used, yet the computational cost to sample P(n,

t) at each t is often impractical, and many methods lead to estimation bias in

practice [22].
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The emergence of accurate time-course measurements of

mRNA counts in single cells [3,4,23–25] has revealed the

high dynamic variability of gene expression both at the

single-cell and population levels. This variability has several

sources. Cells express genes heterogeneously [4,26] and

hence models need to capture intercellular variability; but

cells are also subjected to time-varying inputs of a stochastic

and/or deterministic nature, either from their environment or

from regulatory gene networks inside the cell. Therefore,

standard ME models with stationary solutions, which also

tacitly assume that gene expression is uncorrelated bet-

ween cells, cannot capture fully such sources of variability.

Mathematically, ME models must be able to describe time-

dependent gene transcription in single cells within an

inhomogeneous population, i.e. they must allow a varying

degree of synchrony and of cell-to-cell variability across the

population. In addition, they must be able to account for

non-stationary dynamic variability due to upstream biolo-

gical drives, such as circadian rhythms and cell cycle [27,28],

external signalling [29], or stimulus-induced modulation or

entrainment [30,31].

Recent techniques to model cell-to-cell correlations have

used the marginalization of extrinsic components [32],

mixed-effects models [33] or deterministic rate parameters

[34]. Several of the results correspond to deterministic rates

and are well known in queuing theory [35]. However, full sol-

utions of the ME that capture temporal heterogeneity as well

as variability in parameters, from the single-cell to the popu-

lation level, are yet to be explored, and could help unravel in

conjunction with experiments how the dynamics of upstream

drives within a biological network affect gene transcription.

Here, we consider a simple, yet generic, framework for the

solution of the ME of gene transcription and degradation for

single cells under upstream drives, i.e. when the transcription

and degradation parameters are time-dependent functions or

stochastic variables. We show that the exact solution P(n, t)
for such a model naturally decouples into two parts: a discrete

transcriptional Poissonian downstream component, which is

common to all transcription models of this kind, and a

model-specific continuous component, which describes the

dynamics of the parameters reflecting the upstream variation.

To obtain the full solution P(n, t), one only needs to calculate

the probability density for the model-specific upstream

drive, which we show corresponds to a continuous variable

satisfying a linear random differential equation directly related

to traditional differential rate equations of chemical kinetics.

Our results can thus be thought of as a generalization of the

Poisson representation [36,37] (originally defined as an ansatz
with constant rate parameters) to allow for both time-varying

and stochastic rates in transcription–degradation systems. Our

work also departs from the work of Jahnke & Huisinga [34] by

allowing the presence of cell-to-cell variability (or uncertainty)

in the dynamical drive.

Below, we present the full properties of the general

solution, and we derive the relationship of the observable

time-varying moments with the moments of the dynamic

upstream component. Because our framework treats dyna-

mic and population variability consistently, we clarify the

different effects of variability in the drives by considering

the Fano factor across the population and across time. To illus-

trate the utility of our approach, we present analytical and

numerical analyses of several models from the literature,

which are shown to simply correspond to different upstream
drives, deterministic or stochastic. These examples highlight

our modelling approach: a flexible solvable model with

upstream dynamic variability, reflecting the generic hypoth-

esis that experimentally observed outputs are usually driven

by fluctuating, usually unmeasurable and uncertain, upstream

intra- and extracellular signals. Our framework provides a

means to characterize such upstream variability, dynamical

and population-wide, and we provide examples of its use

for computational biology and data analysis in relation

to experiments.
2. The master equation for gene transcription in
populations of cells with upstream drives

2.1. Notation and formulation of the problem
To study gene expression in a single cell with time-dependent

upstream drives, we consider the stochastic process in con-

tinuous time t, N ¼ fNt [ N: t � 0g, where Nt is a discrete

random variable describing the number of mRNA molecules

in the cell. We look to obtain the probability mass function,

P(n, t)UPr(Nt ¼ n).

The mRNA copy number increases via transcription

events and decreases via degradation events but, impor-

tantly, we acknowledge that the observed gene reflects the

dynamic variability of intra- and extracellular processes and

that cells are heterogeneous. Thus, the transcription and

degradation rates can depend on time and can be different

for each cell (figure 1). To account for such variability, we

describe transcription and degradation rates as stochastic

processes M ¼ fMt [ Rþ: t � 0g and L ¼ fLt [ Rþ: t � 0g,
without specifying any functional form except requiring

that M and L do not depend on the number of mRNA

molecules already present. Deterministic time-varying

transcription–degradation rates, with or without cell-to-cell

correlations, are a particular case of this definition.

Following standard notation in the stochastic processes

literature, Mt and Lt denote the random variables at time t.
To simplify notation, however, we depart from standard

notation and denote the sample paths (i.e. realizations) of

M and L by fmðtÞgt�0 and flðtÞgt�0, respectively, thinking

of them as particular functions of time describing the tran-

scription and degradation rates under the changing cellular

state and environmental conditions in an ‘example’ cell

(figure 1). The sample paths of other random variables are

denoted similarly, e.g. the sample paths of Nt are fnðtÞgt�0.

The sample paths fmðtÞgt�0 and flðtÞgt�0 represent cellu-
lar drives encapsulating the variability across time and

across the population consistently. This formulation unifies

several models in the literature, which implicitly or explicitly

assume time-varying transcription and/or degradation

processes [4,16,38–42], and can be shown to correspond to

particular types of dynamic upstream variability. In addition,

the framework allows us to specify cell-to-cell correlations

across the population, which we refer to as the ‘degree of syn-

chrony’. A population will be perfectly synchronous when the

sample paths of the drives for every cell in the population

are identical, i.e. if Mt and Lt have zero variance. If, however,

transcription and/or degradation rates differ between cells,

Mt and Lt themselves emerge from a probability density:

the wider the density, the more asynchronous the cellular

drives (figure 1).
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Figure 1. Single-cell gene transcription under upstream drives. The transcription of each cell i takes place under particular cellular drives fmiðtÞgt�0 and
fliðtÞgt�0, representing time-varying transcription and degradation rates. Both cellular drives are combined into the upstream effective drive fxiðtÞgt�0,
which dictates the long-term probability distribution describing the stochastic gene expression fniðtÞgt�0 within each cell (2.10). When there is cell-to-cell varia-
bility in the population, the cellular drives are described by processes M and L leading to the upstream effective drive X. The probability distribution of the
population corresponds to the mixture of the upstream process X and the Poissonian downstream transcriptional component, as given by (2.14). Increased synchrony
in the population implies decreased ensemble variability of the random variables Mt, Lt, Xt and Nt. (Online version in colour.)
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Our aim is to obtain the probability distribution of the copy

number Nt under upstream time-varying cellular drives Mt and

Lt, themselves containing stochastic parameters reflecting cell-
to-cell variability. We proceed in two steps: first, we obtain the

solution for the perfectly synchronous system without cell-to-

cell variability; then we consider the general asynchronous case.
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2.2. Perfectly synchronous population
As a first step to the solution of the general case, consider

a population of cells with perfectly synchronous transcrip-

tion and degradation rate functions, M ¼ fmðtÞgt�0 and

L ¼ flðtÞgt�0; i.e. the transcription and degradation processes

are defined by the same sample path for the whole popu-

lation and the stochastic processes M and L have zero

variance at all times (figure 1).

In the perfectly synchronous case, we have an immigra-

tion–death process with reaction diagram

;�!mðtÞmRNA�!lðtÞ ;, ð2:1Þ

and its ME is standard:

d

dt
Pðn, tjfmðtÞgt[½0,t�,flðtÞgt[½0,t�Þ

¼ mðtÞPðn� 1, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�Þ

þ ðnþ 1ÞlðtÞPðnþ 1, tjfmðtÞgt[½0,t�,flðtÞgt[½0,t�Þ

� (mðtÞ þ nlðtÞ)Pðn, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�Þ, ð2:2Þ

where Pðn, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�Þ denotes the probability

of having n mRNAs at time t for the given history of the

cellular drives fmðtÞgt[½0,t� and flðtÞgt[½0,t�.

Using the probability generating function

Gðz, tÞ ¼
X1
n¼0

znPðn, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�Þ,

we transform the ME (2.2) into

@G
@t
¼ ðz� 1ÞmðtÞG� ðz� 1ÞlðtÞ @G

@z
:

Without loss of generality, let us first consider an initial

condition with n0 mRNA molecules. Using the method of

characteristics, we obtain the solution

Gðz, tjn0Þ ¼ [ðz� 1Þe�
Ð t

0
lðtÞ dt þ 1]n0 exðtÞðz�1Þ, ð2:3Þ

which is given in terms of

xðtÞ :¼
ðt

0

mðtÞe�
Ð t

t
lðt0Þ dt0

dt: ð2:4Þ

We will refer to the time-varying continuous function x(t) as

the effective drive, as it integrates the effect of both cellular drives.

Note that solution (2.3) can be rewritten as the product of

two probability generating functions:

Gðz, tjn0Þ ¼: GBinðz, tjn0ÞGPoiðz, tÞ,

corresponding to a binomial and a Poisson distribution,

respectively. Hence, for the perfectly synchronous case, the

solution is given by

Nt ¼ Nic
t jn0 þNs

t , with ð2:5Þ

Nic
t jn0 �Bin(n0, e

�
Ð t

0
lðtÞ dt

) ð2:6Þ
and Ns

t �Poi(xðtÞ), ð2:7Þ

where Nic
t jn0 is a binomial random variable with n0 trials and

success probability e
�
Ð t

0
lðtÞdt

, and Ns
t is a Poisson random

variable with parameter x(t). The physical interpretation of

this breakdown is that Nic
t describes the mRNA transcripts

that were initially present in the cell and still remain at time

t, whereas Ns
t describes the number of mRNAs transcribed

since t ¼ 0.
Since Nic
t and Ns

t are independent, it is easy to read off the

first two moments directly:

E½NtjfmðtÞgt[½0,t�,flðtÞgt[½0,t�,n0�

¼ E[Nic
t jn0]þE[Ns

t ]¼ n0e
�
Ð t

0
lðtÞ dtþxðtÞ;

VarðNtjfmðtÞgt[½0,t�,flðtÞgt[½0,t�,n0Þ

¼VarðNic
t jn0ÞþVarðNs

t Þ ¼ n0e
�
Ð t

0
lðtÞ dt

(1� e
�
Ð t

0
lðtÞ dt

)þxðtÞ:

From (2.5)–(2.7), the full distribution is

Pðn, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�, n0Þ ¼ PrðNic
t þNs

t ¼ njn0Þ

¼
Xn

k¼0

PrðNic
t ¼ kjn0ÞPrðNs

t ¼ n� kÞ

¼
Xn

k¼0

n0

k

� �
(e
�
Ð t

0
lðtÞ dt

)k(1� e
�
Ð t

0
lðtÞ dt

)n0�k xðtÞn�k

ðn� kÞ! e�xðtÞ:

ð2:8Þ

This mathematical form is well known when the rates

are constant [37,43], and a classical result in queueing

theory [35]. We also remark that the solution with time-

dependent rates (2.8) is the one-gene case of the main result

in Jahnke & Huisinga [34].

If the initial state is itself described by a random variable

N0 with its own probability distribution, we apply the law

of total probability to obtain the solution in full generality

as follows (see appendix A):

Pðn, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�Þ

¼
X

n0

P(n, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�, n0)PrðN0 ¼ n0Þ

¼
Xn

k¼0

PrðNs
t ¼ n� kÞPrðNic

t ¼ kÞ, ð2:9Þ

where Ns
t is distributed according to (2.5)–(2.7), and

PrðNic
t ¼ kÞ is the mixture of the time-dependent binomial dis-

tribution (2.5) and the distribution of the initial condition N0.
2.2.1. The initial transient ‘burn in’ period
For biologically realistic degradation rates flðtÞgt�0, the

contribution from the initial condition (Nic
t ) decreases expo-

nentially. Hence, as time grows, the transcripts present at

t ¼ 0 degrade, and the population is expected to be composed

of mRNAs transcribed after t ¼ 0.

If the initial distribution of N0 is not the stationary distribution

of the ME (or, more generally, not equal to the attracting distri-

bution of the ME, as defined in appendix A), there is an initial

time dependence of P(n, t) lasting over a time scale Tic (given

by
Ð Tic

0 lðtÞ dt � 1), which corresponds to a ‘burn-in’ transient

associated with the decay of the initial condition. We remark

that the time-dependence described in [16–19] corresponds

only to this ‘burn-in’ transient (see also figure 7).

On the other hand, when the initial distribution of N0 is

the stationary distribution (or the attracting distribution) of

the ME, the component containing the initial condition

(Nic
t ) and the long-term component (Ns

t ) balance each

other at every point in time, maintaining stationarity (or the

attracting distribution), as shown analytically in appendix A.
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2.2.2. The long-term behaviour of the solution
In this work, we focus on the time dependence of P(n, t)
induced through non-stationarity of the parameters and/or

correlated behaviour of the cells within the population.

Hence, for the remainder of the paper, we neglect the

transient terms. Consequently, for perfectly synchronous cel-

lular drives, the solution of the ME (2.2) is a Poisson random

variable with time-dependent rate equal to the effective

upstream drive, x(t):

½NtjxðtÞ� � ½Ns
t jxðtÞ��PoiðxðtÞÞ,

with distribution

Pðn, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�Þ ¼ Pðn, tjxðtÞÞ

¼ xðtÞn

n!
e�xðtÞ, ð2:10Þ

which makes explicit the dependence on the history of the

sample paths fmðtÞgt[½0,t�, flðtÞgt[½0,t�, which is encapsulated

in the value of the effective drive x(t) at time t.
Indeed, from (2.4) it follows that the sample path fxðtÞgt�0

satisfies a first-order linear ordinary differential equation

with time-varying coefficients:

dx

dt
þ lðtÞx ¼ mðtÞ, ð2:11Þ

which is the rate law for a chemical reaction with zeroth-order

production with rate m(t), and first-order degradation with rate

l(t) per mRNA molecule. For biologically realistic (i.e. positive

and finite) cellular drives, x(t) is a continuous function.
2.3. The general asynchronous case: cell-to-cell
variability in the cellular drives

Consider now the general case where different sample paths

for the cellular drives are possible, i.e. we allow explicitly for

the transcription and degradation rates to vary from cell to

cell. The cell population will have some degree of asyn-

chrony, hence Mt and Lt have non-zero variance for at least

some t � 0. The transcription and degradation rates are

then described by stochastic processes M and L:

;�!Mt
mRNA�!Lt ;, ð2:12Þ

and the collection of all differential equations of the form

(2.11) is represented formally by the random differential

equation1

dXt

dt
þ LtXt ¼Mt: ð2:13Þ

Equations of this form appear in many sciences, and a large

body of classical results allows us to determine fXt
(x, t) the

probability density function of the upstream process Xt

[44–46]. Below, we use such results to obtain fXtðx, tÞ for

biologically relevant models.

Note that from equation (2.10) and the law of total prob-

ability, it follows that the probability mass function for the

random variable Nt under cellular drives described by the

random processes M and L is given by the Poisson mixture
(or compound) distribution:

Pðn, tÞ ¼ PXt ðn, tÞ ¼
ð

xn

n!
e�xfXtðx, tÞ dx, ð2:14Þ

where the density fXtðx, tÞ of the effective drive Xt (to be

determined) can be understood as a mixing density. The
notation PXtðn, tÞ recalls explicitly the dependence of the

solution on the density of Xt, but we drop this reference

and use P(n, t) below to simplify notation. The problem of

solving the full ME is thus reduced to finding the mixing den-

sity fXtðx, tÞ. Note that, for synchronous drives, we have

fXtðx, tÞ ¼ dðxðtÞ � xÞ, where d is the Dirac delta function,

and (2.14) reduces to (2.10).

Equation (2.14) also shows that there are two separate

sources of variability in gene expression, contributing to the

distribution of Nt. One source of variability is the Poisson

nature of transcription and degradation, common to every

model of the form considered here; the second source is the

time variation or uncertainty in the cellular drives, encapsu-

lated in the upstream process Xt describing the ‘degree of

synchrony’ between cells and/or their variability over time.

In this sense, equation (2.14) connects with the concept of

separable ‘intrinsic’ and ‘extrinsic’ components of gene

expression noise pioneered by Swain et al. [47–50].

Yet rather than considering moments, the full distribution

P(n, t) is separable into a model-dependent ‘upstream com-

ponent’ given by fXtðx, tÞ, and a downstream transcriptional

‘Poisson component’ common to all models of this type.
3. The effective upstream drive in gene
transcription models

The generic model of gene transcription and degradation

with time-dependent drives introduced above provides a uni-

fying framework for several models previously considered in

isolation. In this section, we exemplify the tools to obtain the

density of the effective drive fXtðx, tÞ analytically or numerically

through relevant examples.
3.1. Gene transcription under upstream drives
with static randomness

In this first section, we consider models of gene transcription

where the upstream drives are deterministic, yet with

random parameters representing cell variability.
3.1.1. Random entrainment to upstream sinusoidal drives:
random phase offset in transcription or degradation rates

Equation (2.13) can sometimes be solved directly to obtain

fXtðx, tÞ from a transformation of the random variables Mt

and Lt. We now show two such examples, where we

explore the effect of entrainment of gene transcription and

degradation to an upstream periodic drive [51].

First, consider a model of gene transcription of the

form (2.12) with a transcription rate given by a sinusoidal

function and where each cell has a random phase. This

random entrainment (RE) model is a simple representation of

a cell population with transcription entrained to an upstream

rhythmic signal, yet with a random phase offset for each cell:

Mt :¼ m
1þ cosðvtþFÞ

2

and Lt :¼ 1,

9>=
>; ð3:1Þ

where m and v are given constants and F is a (static) random

variable describing cell-to-cell variability (or uncertainty).
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Figure 2. Gene transcription under the RE model (3.1) with constant degradation rate and transcription rates entrained to an upstream sinusoidal signal with v ¼
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show (top to bottom): sample paths of the effective drive, X; its density fXt ðx, tÞ given by equation (3.2); sample paths of the number of mRNAs, N; and the full
solution of the ME P(n, t). (Online version in colour.)
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Solving equation (2.13) in this case, we obtain

Xt ¼
mð1þ v2 þ cosðvtþFÞ þ v sinðvtþFÞÞ

2ð1þ v2Þ

¼ Bþ A sinðvtþF�Þ,

where A ¼ m=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2
p

, B ¼ m/2 and F� ¼ Fþ arctanð1=vÞ.
Suppose F* is uniformly distributed on [2r, r], r � p.

Inverting the sine with F* restricted to [2r, r], we obtain

fXtðx, tÞ ¼ kðtÞ

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � ðx� BÞ2

q , ð3:2Þ

where kðtÞ [ f0, 1, 2g is the number of solutions of

sin u ¼ ðx� BÞ=A for u [ ðvt� r,vtþ rÞ. As the phase distribu-

tion of the drives becomes narrower, the upstream variability

disappears: r! 0) fXtðx, tÞ ! dððBþ A sinvtÞ � xÞ. In this

limit, all cells follow the entraining drive exactly, and P(n, t)
becomes a Poisson distribution at all times.

Figure 2 depicts fXt for r ¼ 0 (no cell-to-cell phase vari-

ation, figure 2a and for r ¼ p/2, and r ¼ p (increasingly

wider uniform distribution of phases, figure 2b,c). The full

distribution P(n, t) is obtained using (3.2) and (2.14).

Second, let us consider the same model of entrainment to

an upstream sinusoidal signal with a random offset, but this

time via the degradation rate:

Mt :¼ m
and Lt :¼ bþ a cosðvtþFÞ,

)
ð3:3Þ

where m, a, b and v are given constants, and F is a (static)

random variable.

Equation (2.13) can be solved approximately [51] to give

Xt ¼ Bþ A sinðvtþF�Þ,

where A¼2ma
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðv=bÞ2

q
=½2ðb2þv2Þ�a2�,B¼Ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðv=bÞ2

q
=a,
and F� ¼ Fþ pþ arctanðb=vÞ. As before, if F* is uniform on

[2r, r], r � p, the density of the effective drive takes the same

form (3.2) as above.

3.1.2. Upstream Kuramoto promoters with varying degree
of synchronization

As an illustrative computational example, we study a popu-

lation of cells whose promoter strengths display a degree of

synchronization across the population. To model this upstream

synchronization, consider the Kuramoto promoter model, where

the promoter strength of each cell i depends on an oscillatory

phase ui(t), and cells are coupled via a Kuramoto model

[52–54]. We then have a model of the form (2.12) with

Mt :¼ m
bþ cos (Qðt; VÞ)

2

and Lt :¼ 1:

9>=
>; ð3:4Þ

Here m and b are constants and fuiðtÞgC
i¼1 are the phase vari-

ables for the C cells governed by the globally coupled

Kuramoto model:

dui

dt
¼ vi þ

K
C

XC

j¼1

sinðuj � uiÞ, ð3:5Þ

where K is the coupling parameter and the intrinsic frequency

of each cell, vi, is drawn from the random distribution

V � N ð0, 0:052Þ. The Kuramoto model allows us to tune the

degree of synchrony through the coupling K: for small K, the

cells do not display synchrony since they all have a slightly

different intrinsic frequency; as K is increased, the population

becomes more synchronized.

This model is a simple representation of nonlinear syn-

chronization processes in cell populations with intrinsic

heterogeneity [55–58]. In figure 6a, we show how the

sample paths change as the degree of synchrony increases,
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Figure 3. Asynchronous stochastic promoter switching models correspond to
upstream stochastic processes. The promoter cycles between the discrete
states, transitioning stochastically with rates as indicated: (a) the standard
2-state random telegraph model; (b) the 3-state refractory promoter
model. (Online version in colour.)
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3.2. Asynchronous transcription under stochastic
multistate promoters

In the previous section, we obtained fXtðx, tÞ by capitalizing on

the precise knowledge of the sample paths of M and L to solve

(2.13) explicitly. In other cases, we can obtain fXt ðx, tÞ by

following the usual procedure of writing down an evolution

equation for the probability density of an expanded state that

is Markovian, followed by marginalization. More specifically,

let the vector process Y prescribe the upstream drives, so

that M ¼MðY, tÞ and L ¼ LðY, tÞ, and consider the expanded

state Xt :¼ ðXt, YtÞ. Note that since Y is upstream, it prescribes

X (and not vice versa). We can then write the evolution

equation for the joint probability density fXt
ðx, y, tÞ:

@

@t
fXt
ðx, y, tÞ ¼ � @

@x
[(mðy, tÞ � lðy, tÞx) fXt

ðx, y, tÞ]

þ LYt
[ fXt
ðx, y, tÞ], ð3:6Þ

which follows from conservation of probability. In equation

(3.6), the differential operator for X, which follows from

(2.13), is the first jump moment [59] conditional upon Yt ¼ y

(and hence upon Mt ¼ mðy, tÞ and Lt ¼ lðy, tÞ); the second

term LYt
½:� is the infinitesimal generator of the upstream pro-

cesses. In particular, for continuous stochastic processes

LYt
½:� is of Fokker–Planck type, and for Markov chains

LYt
½:� is a transition rate matrix. The desired density fXtðx, tÞ

can then be obtained via marginalization.

Equation (3.6) can be employed to analyse the widely

used class of transcription models with asynchronous,

random promoter switching between discrete states, where

each state has different transcription and degradation rates

representing different levels of promoter activity due to, for

example, transcription factor binding or chromatin remodel-

ling [40]. A classic example is the random telegraph (RT)

model, first used by Ko in 1991 [60] to explain cell-to-cell

heterogeneity and bursty transcription (figure 3a).

In our framework, such random promoter switching can

be understood as an upstream stochastic process driving tran-

scription as follows. Let us assume that the promoter can

attain D states s, and each state has constant transcrip-

tion rate ms and constant degradation rate ‘s. The state

of the promoter is described by a random process

S ¼ fSt [ f1, 2, . . . ,Dg: t � 0g, with sample paths denoted

by f6ðtÞgt�0, and its evolution is governed by the D-state

Markov chain with transition rate ksr from state r to state s.

The state of the promoter St ¼ s prescribes that Mt ¼ ms and

Lt ¼ ‘s. Hence, the sample paths of M and L are a succes-

sion of step functions with heights ms and ‘s, respectively,

occurring at exponentially distributed random times.

As described above, we expand the state space of the

cellular drives to include the promoter state Xt ¼ fXt, Stg.
The evolution equation (3.6) is then given by D coupled

equations:

@

@t
fXt , St ðx, s, tÞ ¼ � @

@x
[ðms � lsxÞfXt ,Stðx, s, tÞ]

þ
XD

j¼1

ksjfXt ,Stðx,j,tÞ �
XD

j¼1

k jsfXt ,Stðx, s, tÞ

and s ¼ 1, 2, . . . ,D,

9>>>>>>>=
>>>>>>>;
ð3:7Þ
which can be thought of as a set of multistate Fokker–

Planck–Kolmogorov equations [59]. Marginalization then

leads to the density of the effective drive:

fXt ðx, tÞ ¼
XD

s¼1

fXt ,St ðx, s, tÞ, ð3:8Þ

and the full ME solution is obtained from (3.8) and (2.14).

We illustrate this approach more explicitly with two

examples (figure 3): a rederivation of the known solution of

the standard RT model; and the solution of the 3-state cyclic

model with a refractory state. Results for other promoter

architectures are discussed in [61].
3.2.1. The random telegraph model (2 states)
Although the RT model has been solved by several methods

[16,38,39], we briefly rederive its solution within the above

framework to clarify its generalization to other promoter

architectures.

Consider the standard RT model (figure 3a), with promoter

switching stochastically between the active state son¼ 1, with

constant transcription rate m1 ¼m, and the inactive state

soff¼ 0, where no transcription takes place, m0¼ 0. The tran-

sition rates between the two states are k10¼ kon and k01¼

koff. Without loss of generality, we assume

‘1 ¼ ‘0 ¼ lðtÞ ; 1. The transcription model is of the form

(2.12) with

Mt :¼ mSt

and Lt :¼ 1,

)
ð3:9Þ

where S ¼ fSt [ f0, 1g: t � 0g with waiting times drawn

from exponential distributions: toff � expð1=konÞ and

ton � expð1=koffÞ.
Let Zt ¼ Xt=m, and let us denote fonðz, tÞ :¼ fZt , Stðz, son, tÞ

and foffðz, tÞ :¼ fZt , St ðz, soff, tÞ, with z [ ð0, 1Þ. Then the
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multistate Fokker–Planck–Kolmogorov equations (3.7) are

@fon

@t
¼ � @

@z
[ð1� zÞfon]� kofffon þ konfoff,

@foff

@t
¼ � @

@z
[�zfoff]þ kofffon � konfoff

and fZt ¼ fon þ foff,

with integral conditions
Ð 1

0 fonðz, tÞ dz ¼ PðSt ¼ sonÞ andÐ 1
0 foffðz, tÞ dz ¼ PðSt ¼ soffÞ.

At stationarity, it then follows [62] that

fZtðzÞ ¼
zkon�1ð1� zÞkoff�1

B(kon, koffÞ
, ð3:10Þ

where Bða, bÞ ¼ GðaÞGðbÞ=Gðaþ bÞ is the Beta function. In

other words, at stationarity, the normalized effective drive

is described by a Beta distribution:

Zt � Beta(kon, koff), 8t:

Using (3.10) and (2.14), we obtain that the full stationary

solution is the Poisson–Beta mixture:

PðnÞ ¼
ð1

0

ðmzÞn

n!
e�mz zkon�1ð1� zÞkoff�1

B(kon, koffÞ
dz

¼ Gðkon þ nÞ
GðkonÞ

Gðkon þ koffÞ
Gðkon þ koff þ nÞ

mn

Gðnþ 1Þ

�1 F1(kon þ n, kon þ koff þ n; �m),

9>>>>>>>=
>>>>>>>;

ð3:11Þ

where 1F1(a, b; z) is the confluent hypergeometric function [63].

3.2.2. The refractory promoter model (3 states)
In the standard RT model, the waiting times in each state are

exponentially distributed. In recent years, time-course data

have shown that toff does not conform to an exponential distri-

bution, leading some authors to incorporate a second inactive

(refractory) state, which needs to be cycled through before

returning to the active state [42,64]. The net ‘OFF’ time is then

the sum of two exponentially distributed waiting times.

In this refractory promoter model (figure 3b), the promoter

switches through the states s*, s1 and s2 with rates k*, k1 and

k2, respectively. Transcription takes place at constant rate m
only when the promoter is in the active state s* and, without

loss of generality, we assume a constant degradation rate

lðtÞ ; 1 for all states. This model is of the same form as

(3.9), and is solved similarly.

Making the change of variables Zt ¼ lXt=m ¼ Xt=m and,

using the notation fiðz, tÞ :¼ fZt ,St ðz, t, siÞ, the multistate

Fokker–Planck–Kolmogorov equations are

@f�
@t
¼ � @

@z
[ð1� zÞf�]� k�f� þ k2f2,

@f1
@t
¼ � @

@z
[�zf1]þ k�f� � k1f1,

@f2
@t
¼ � @

@z
[�zf2]þ k1f1 � k2f2

and fZt ¼ f� þ f1 þ f2

with three integral conditions
Ð 1

0 fiðzÞ dz ¼ PðS ¼ siÞ.
At stationarity, we find

fZt ðzÞ ¼ C1 zk1�1
2F1[að1Þþ , að1Þ� ; 1þ k1 � k2; z]

þ C2 zk2�1
2F1[að2Þþ , að2Þ� ; 1� k1 þ k2; z]

and að1Þ+ :¼ 1
2(2þ k1� k2� k�+d), að2Þ+ :¼ 1

2(2� k1 þ k2� k�+d),

where k�,ðk1 � k2Þ,d :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� � k1 � k2Þ2 � 4k1k2

q� �
� Z and
2F1(a, b; c; z) is the Gauss hypergeometric function [63]. The

full stationary solution P(n) is then obtained from (2.14).

For a detailed derivation (including expressions for the

integration constants C1 and C2), see appendix B.
3.3. Asynchronous multistate models with upstream
promoter modulation

Finally, we consider a model of gene transcription that incor-

porates features of models described in §§3.1 and 3.2. Such a

situation is of biological interest and appears when individ-

ual cells exhibit correlated dynamics in response to

upstream factors (e.g. changing environmental conditions,

drives or stimulations), but still maintain asynchrony in

internal processes, such as transcription factor binding

[32,65].

To illustrate this concept, we consider the modulated
random telegraph (MRT) model, a combination of the RE

model (3.1) and the RT model (3.9), i.e. the promoter strength

is modulated by an upstream sinusoidal drive with random

phase F, as in the RE model, yet the promoter switches

stochastically between active/inactive states with rates kon

and koff, as in the RT model. In this model, the transcription

rate is correlated across cells through the entrainment to

the upstream sinusoidal drive as a simple representation

for, for example, circadian gene expression:

Mt :¼ RtðFÞSt ¼ m
1þ cosðvtþFÞ

2
St

and Lt :¼ 1,

where m, v . 0 are constants; F is the random phase across

the cell population; and S ¼ fSt [ f0, 1g: t � 0g, with expo-

nential waiting times, describes the stochastic promoter

switching (figure 4a).

The solution of this model follows from the RT prob-

ability density (3.10) conditioned on the random phase F,

which prescribes the sample path frðt; fÞgt�0 of the promoter

strength R. The resulting scaled Beta distribution

fXtjFðx, tjfÞ ¼ xkon�1ðrðt; fÞ � xÞkoff�1

Bðkon, koffÞrðt; fÞkonþkoff�1

is then marginalized over the phase F to obtain the den-

sity fXtðx, tÞ of the effective drive. For instance, if the

phases are normally distributed F � N ð0,s2Þ, we have

(figure 4b)

fXtðx,tÞ¼
ð

fXtjFðx,tjfÞfFðfÞdf

¼
ð1

�1

xkon�1

Bðkon, koffÞ
(m=2 ½1þcosðwtþfÞ��x)koff�1

(m=2 ½1þcosðwtþfÞ�)konþkoff�1

e�f
2=2s

s
ffiffiffiffiffiffi
2p
p df:

As s! 1, the population becomes asynchronous in the

promoter strength, as well as in the state transitions, and

time dependence wanes (figure 4b).
4. Ensemble noise characteristics in time-varying
populations

In the previous sections, we were concerned with the full

time-dependent probability distribution P(n, t) for the

mRNA copy number N. However, in many circumstances

such detailed information is not required, and simpler
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Figure 4. (a) Modulated random telegraph model: each cell switches asynchronously between ‘ON’ and ‘OFF’ states, but the magnitude of the ‘ON’ transcription rate is
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characterizations based on ensemble averages (e.g. Fano

factor, coefficient of variation) are of interest. Simple corol-

laries from the Poisson mixture expression (2.14) allow us

to derive expressions for the ensemble moments and other

noise characteristics, as shown below. We remark that, in

this section, all the expectations are taken over the distri-

bution describing the cell population.
4.1. Time-dependent ensemble moments over the
distribution of cells

To quantify noise characteristics of gene expression in a

population, the ensemble moments E[Nk
t ], k [ N, t � 0 are

often determined via the probability generating function

[13,38,66] or by integrating the ME [21,40,67]. However, sta-

tionarity is usually assumed and the moments derived are

not suitable for time-varying systems. Here we use corollaries

of the Poisson mixture expression (2.14) to derive expressions

for the ensemble moments for time-varying systems under

upstream drives.
From (2.10), we have ½NtjXt ¼ x��PoiðxÞ; hence

E[Nk
t jXt ¼ x] ¼

Xk

r¼1

xrSðk, rÞ,

where Sðk, rÞ ¼
Xr

j¼0

r
j

� �
ð�1Þr�jjk

r!

are the Stirling numbers of the second kind [68]. The law of

total probability then gives

E[Nk
t ] ¼

Xk

r¼1

Sðk, rÞE[Xr
t ], ð4:1Þ

or, equivalently,

E[Nt]
E[N2

t ]

..

.

E[Nk
t ]

0
BBB@

1
CCCA ¼

Sð1, 1Þ 0 . . . 0
Sð2, 1Þ Sð2, 2Þ . . . 0

..

. ..
. . .

. ..
.

Sðk, 1Þ Sðk, 2Þ . . . Sðk, kÞ

0
BBB@

1
CCCA

E[Xt]
E[X2

t ]

..

.

E[Xk
t ]

0
BBB@

1
CCCA:

Therefore, the ensemble moments of the mRNA copy number

E[Nk
t ] can be obtained in terms of the moments of the
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effective drive E[Xk
t ], and vice versa. For instance, it follows

easily that E[Xt] ¼ E[Nt]; VarðXtÞ ¼ VarðNtÞ � E[Nt]; and

the skewness g1ðXtÞ ¼ ðE[N3
t ]� 3VarðNtÞ � 3E[Nt]VarðNtÞ�

E[Nt]
3Þ=ðVarðNtÞ � E[Nt]Þ3=2.
4.1.1. Decomposing the sources of noise
From equation (4.1), it follows that the variability of the

mRNA count Nt can be rewritten as

h2
NðtÞ :¼

VarðNtÞ
(E[Nt])

2
¼ 1

E[Nt]
þ VarðXtÞ

(E[Xt])
2
¼ h2

PoiðtÞ þ h2
upðtÞ, ð4:2Þ

i.e. it can be decomposed into a Poissonian (downstream)

component h2
PoiðtÞ and an upstream component h2

upðtÞ
linked to the variable Xt. Note, however, that our expressions

(4.1) provide decompositions for all moments, and not only

the mean and variance.

Expression (4.2) can be mapped onto the common

decomposition into ‘intrinsic’ and ‘extrinsic’ components

[48,49] if we note that, in our model, the ‘intrinsic’ com-

ponents are the downstream processes of transcription and

degradation, whose rates are affected by the ‘extrinsic’ varia-

bility due to upstream factors. Such upstream factors can be

biologically diverse, and can be both intra- and extracellular.

Therefore throughout this paper, we refer to ‘upstream/

downstream’ processes instead of ‘intrinsic/extrinsic’ noise,

to emphasize that upstream processes can reflect variability

that is internal to the cell as well as cell-to-cell variability.

For example, the asynchronous stochastic promoter switching
described in §3.2 is an upstream process here, which in the

literature might have been classed as ‘intrinsic’ (although in

fact, asynchronicity implies an assumption about cell-to-cell

variability). On the other hand, the modulated promoter

switching in §3.3 includes both ‘intrinsic’ and ‘extrinsic’

sources of variability, as usually classed in the literature. In

our framework, such processes are treated consistently as

‘upstream’ sources of variability.
4.1.2. Analysis of time-dependent moments
The relationship (4.1) between downstream and upstream

moments together with the dynamical equation (2.13) enables

us to solve for the time dependence of the moments of

mRNA counts in terms of the moments of the drive:

E[Nt] ¼ E[Xt] ¼
ðt

0

e�lðt�tÞE[Mt] dt; ð4:3Þ

and

E[N2
t ] ¼ E[Xt]þ E[X2

t ]

¼ E[Nt]þ
ðt

0

ðt

0

e�lð2t�t�sÞE[MtMs] dt ds,

ð4:4Þ

where for simplicity we have assumed a constant degradation

rate l. (For the most general case with degradation rate Lt,

see for example [45].) Therefore, the observed moments

E[Nk
t ] from the data can be used to infer the time-dependent

moments of the (usually unobserved) upstream drives.

As a motivating example, we consider a recent exper-

iment [29] measuring single-cell time courses of the
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Kuramoto order parameter r(t) measuring the cell synchrony, signalled by rðtÞ ! 1. (b) Ensemble Fano factor (averaged over the simulated time courses) against
coupling parameter K [ ð0, 0:4�. As K is increased, the oscillators become synchronized and the ensemble Fano factor decreases towards the Poisson value of unity.
(c) Scatter plot of the ensemble Fano factor against the order parameter r(t) (both averaged over the simulated time courses). As the oscillators become synchronized
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expression of gene csaA in Dictyostelium discoideum when

driven by a naturally oscillating extracellular cAMP signal.

Corrigan and Chubb found that while individual single-cell

time traces displayed no clear entrainment, with considerable

heterogeneity both across time and across the population,

there was a clear correlation between the external cAMP

phase (measured by proxy through the cell speed) and the

population-averaged, time-dependent level of csaA tran-

scripts. This suggests that E[Nt] could generate precision in

cell choices at the population level [29].

The experiment showed that the population-averaged

mRNA expression was approximately sinusoidal. Hence,

the data can be fitted to the function

E[Nt] ¼ b[1þ a sinðvtÞ]: ð4:5Þ

Assuming a constant degradation rate l, equations (2.13)

and (4.3) show that the upstream transcription rate is also

sinusoidal with the same frequency, yet with a modified

amplitude and a phase shift (figure 5):

E[Mt] ¼ b lþ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ l2

p
sin vtþ arctan

v

l

� �� �h i
: ð4:6Þ

This is similar to phase relationships in electrical and

electronic circuits.

Consistent with equation (4.6), the cAMP phase and E[Nt]

were measured experimentally to have the same frequency

v � 2p=5 � 1:26 min�1 [29]. The experiments also showed

that E[Nt] had a mean phase lag of 9p/10 (equivalent to a

delay of �2.25 min) after the cAMP signal. Using the degra-

dation rate l ¼ 0.04 min21 [69] for gene csaA, it follows that

the transcriptional phase lag is arctan ðv=lÞ ¼ 0:49p, and
signal transduction introduces a phase lag

D ≃ 9p=10� p=2 ¼ 2p=5, equivalent to a transduction delay

D=v ≃ 1 min. Hence our results can be used to adjudicate

the time scales linked to cAMP signal transduction within

the cell.

Our model also clarifies the effect of the degradation rate

l and frequency v in the observed responses. Given the

mRNA population average oscillating around a mean value

b (4.5), the (unobserved) transcription rate oscillates with

the same frequency v around a value bl and amplitude

scaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ l2

p
. The transcriptional phase lag

arctanðv=lÞ is bounded between 0 (when v=l! 0) and p/

2 (when v=l! 1). Hence, large degradation rates reduce

the phase lag and the amplitude of the mRNA oscillations

downstream (through the dimensionless factor v/l), and

reduce the mean value of mRNA expression independently

of v.

A similar analysis for the correlation function E[MtMs]

can be achieved by solving equation (4.4) numerically for

given data.
4.2. Time-dependent ensemble Fano factor: a measure
of synchrony in the population

A commonly used measure of variability in the population is

the ensemble Fano factor:

FanoðNtÞ :¼ VarðNtÞ
E[Nt]

, ð4:7Þ

which is unity for the Poisson distribution. Its use has been

popularized as a measure of the deviation from the stationary
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solution of the transcription of an unregulated gene with

constant rates [70,71], which is Poisson; hence with

FanoðNtÞ ; 1, 8t.
For time-varying systems, however, the ensemble Fano

factor conveys how the dynamic variability in single cells

combines at the population level. Indeed, Fano(Nt) can be

thought of as a measure of synchrony in the population at

time t. For instance, it follows from equation (2.10) that the

ensemble Fano factor for a population with perfectly synchro-

nous drives is always equal to one, FanoðNtÞ ; 1, 8t. Even if

the upstream drive x(t) changes in time, the population

remains synchronous and has a Poisson distribution at all

times. On the other hand, under the assumptions of our

model, when Fano(Nt) varies in time, it reflects a change in

the degree of synchrony between cells, as captured by the

upstream drive Xt. From (4.1) it follows that

FanoðNtÞ :¼
VarðNtÞ

E[Nt]
¼ VarðXtÞ þ E[Xt]

E[Xt]
¼ 1þ FanoðXtÞ:

Hence, the greater the synchrony at time t, the closer Fano(Nt)

is to unity, since the deviation from the Poisson distribution

emanates from the ensemble Fano factor of the upstream

drive Xt.

As an example, consider the Kuramoto promoter

model (3.4)–(3.5) introduced in §3.1.2, where the cells in

the population become more synchronized as the value

of the coupling K is increased. Figure 6 shows simulation

results for 100 cells with a range of couplings. The order

parameter rðtÞ [ ½0, 1� measures the phase coherence of the

oscillators at time t; as r(t) approaches 1, the degree of

synchrony increases. Using the Kuramoto numerics,

we calculate the ensemble Fano factor Fano(Nt) for the
transcription model. As seen in figure 6b,c, the more synchro-

nous the system is, the closer the Fano factor is to the Poisson

value, i.e. krðtÞl! 1) kFanoðNtÞl! 1.

Figure 6 also illustrates the computational advantages of

our method. The cost to approximate the time-varying

ensemble moments is drastically reduced by using (4.1),

because transcription and degradation events do not have

to be simulated. The sample paths of the effective drive

xi(t) were used to estimate the time-varying moments:

E[Nt] ¼ E[Xt] and VarðNtÞ ¼ VarðXtÞ þ E[Xt] (shown in

black). These correspond to the numerical simulation of

ODEs, and are far more efficient than sampling from

realizations ni(t) of the mRNA copy number.
5. Variability over time: stationarity and
ergodicity

Our results up to now have not assumed stationarity; in gen-

eral, the distribution (2.14) and moments (4.1) depend on

time. If the cells in the population are uncorrelated and

both M and L are stationary (i.e. their statistics do not

change over time), then fXtðx, tÞ tends to a stationary density

fXtðxÞ [45], and the full solution P(n, t) also tends to a stationary

distribution P(n).

Under such assumptions leading to stationarity, any time

dependence in P(n, t) only describes the ‘burn-in’ transient

from an initial condition towards the attracting stationary dis-

tribution, as discussed in §2.1. Several examples of such

transience have been studied in the literature, both in state

switching models with constant rate parameters [16–18],

and in a model with state-dependent rates [19], to describe

how the distribution P(n, t) settles to stationarity when the

process is started from an initial Kronecker delta distribution

Pðn, 0Þ ¼ dn0. Figure 7 and appendix A.2 analyse this transi-

ence explicitly for the RT model.

If, in addition to stationarity, we assume the cells to be

indistinguishable, the population is ergodic. In this case, the

distribution obtained from a single cell over a time T, as

T ! 1, is equivalent to the distribution obtained from a

time snapshot at stationarity of a population of C cells, as

C! 1, i.e.

PðnÞ ¼ kPðnÞl, ð5:1Þ

where PðnÞ :¼ lim
t!1

Pðn, tÞ

¼ lim
t!1

lim
C!1

1

C

XC

i¼1

xiðtÞ
n

n!
e�xiðtÞfXtðxiðtÞ, tÞ

¼
ð

xn

n!
e�xfXtðxÞ dx ð5:2Þ

and kPðnÞl :¼ lim
T!1

1

T

ðT

0

Pðn, tjxðtÞÞ dt

¼ lim
T!1

1

T

ðT

0

xðtÞn

n!
e�xðtÞ dt: ð5:3Þ

Here, k:l denotes time-averaging, and x(t) in equation (5.3) is

the sample path of the effective drive for a randomly chosen

cell. Therefore, under the assumption of ergodicity, the

averages computed over single-cell sample paths can be

used to estimate the stationary distribution of the population.
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5.1. Ergodic systems: stochastic versus deterministic
drives

It has been suggested that stochastic and periodic drives lead

to distinct properties in the noise characteristics within a cell

population [49]. We investigate the effect of different

temporal drives on the full distribution (2.14) under ergodi-

city using (5.1)–(5.3). Note that when x(t) is periodic with

period T, the limit in equation (5.3) is not required.

In figure 8, we show the time-averaged distribution kPðnÞl
for a cell under three different upstream drives m(t): (i) a con-

tinuous sinusoidal form; (ii) a discontinuous square wave

form; (iii) a RT form, which can be thought of as the stocha-

stic analogue of the square wave. In all cases, the drive

fmðtÞgt�0 [ ½0, 20� with the same period, or expected period,

T. For simplicity, we set lðtÞ ; 1.
As the period T is varied, the similarity between the distri-

butions under the three upstream drives varies considerably

(figure 8). At small T, the distributions under sinusoidal and

square wave forms are most similar; whereas at large T, the

distributions under square wave and RT forms become most

similar. In general, the distribution of the RT model has

longer tails (i.e. n low and high) as a consequence of long

(random) waiting times that allow the system to reach equili-

brium in the active and inactive states, although this effect is

less pronounced when the promoter switching is fast relative to

the time scales of transcription and degradation (e.g. T ¼ 1/5).

On the other hand, as T grows, the square wave and RT drives

are slow and the system is able to reach the equilibrium in both

active and inactive states. Hence the probability distributions

of the square wave and RT drives become similar, with a

more prominent bimodality.



40

20

0

12

8

4

0

10

8

6

4

2

0

cT
FF

{v
(t

)}
(t

1,
 t)

v
(t

)
T

FF
{v

(t
)}

((
t–

 W
,t

))

t

t

t

t1

(b)

(a)

(c)

Figure 9. The temporal Fano factor. (a) A sample path fnðtÞgt�0 of mRNA
counts from the (leaky) RT model. The time periods when the gene is in the
active state are shaded. (b) The temporal Fano factor (5.4), TFFfnðtÞg
ððt � W , TÞÞ, computed over a time window W of fixed length indicated by
the horizontal bars at each t. When W extends over a stationary section of the
sample path, TFF is close to unity, corresponding to the Poisson distribution
(black dashed line). (c) Heat map of the cTFF (5.5), cTFFfnðtÞgðt1, tÞ, defined
only for t � t1. Note the marked step pattern corresponding to the switching
times, indicated by dashed lines as a guide to the eye. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160833

14
5.2. The temporal Fano factor: windows of stationarity
in single-cell time-course data

The temporal Fano factor (TFF) is defined similarly to the

ensemble version (4.7), but is calculated from the variance

and mean of a single time series fnðtÞgt�0 over a time

window W U (t1, t2):

TFFfnðtÞgðWÞ :¼ knðtÞ2lt[W � knðtÞl2
t[W

knðtÞlt[W
: ð5:4Þ

In fact, this is the original definition of the Fano factor [72],

which is used in signal processing to estimate statistical fluc-

tuations of a count variable over a time window. Although Nt

is not a count variable (it decreases with degradation events),

the TFF can be used to detect windows of stationarity in

single-cell time courses.

Figure 9a shows a single-cell sample path fnðtÞgt�0 gener-

ated by the (leaky) RT model with constant degradation rate

l, and transcription rates m1. m0. 0 for the active and inac-

tive promoter states. The leaky RT model is equivalent to the

standard RT model, and switches between two states with

expectations m1/l and m0/l. In the time windows W between

promoter switching, fnðtÞgt[W can be considered almost at
stationarity and described by a Poisson distribution with

parameter m0/l (respectively, m1/l) in the inactive (respect-

ively, active) state. Hence TFFfnðtÞgðWÞ ≃ 1 across most of

the sample path, except over the short transients Wtrans

when the system is switching between states, where

TFFfnðtÞgðWtransÞ . 1 (figure 9b).

Alternatively, this information can be extracted robustly

from the cumulative Fano factor (cTFF):

cTFFfnðtÞgðt1, tÞ ¼ TFFfnðtÞg(ðt1, tÞ), t � t1 ð5:5Þ

which is computed over a growing window from a fixed

starting time t1. The cTFF is a cumulative moving average

giving an integrated description of how the stationary

regimes are attained between switching events indicated by

the step-like structure of the heat map in figure 9c.
6. Discussion
We have presented the solution of the ME for gene transcrip-

tion with upstream dynamical variability in a setting that

allows a unified treatment of a broad class of models,

enabling quantitative biologists to go beyond stationary

solutions when analysing noise sources in single-cell exper-

iments. As a complementary approach to the explicit

stochastic simulation of networks with many genes to

account for the variability in data, our work uses a parsimo-

nious transcription model of Poissonian type that includes

explicitly the effect of dynamical and cell-to-cell upstream

variability in the ME. We show that the solution to this

gene transcription–degradation model can be expressed as

a Poisson mixture form (2.14). This solution can be inter-

preted as the combination of an upstream component

(dynamic or static; deterministic or stochastic) with a down-

stream Poissonian immigration–death process. Since only

the upstream process is model-specific, different models are

solved by obtaining the different mixing densities fXt of the

upstream process. This generic mathematical structure can

describe both time-dependent snapshots across the popu-

lation, as well as the dynamical variability over single-cell

time courses in a coherent fashion.

The solution (2.14) can also be understood from the per-

spective of Gardiner and Chaturvedi’s Poisson representation
[36,37]. Originally, the Poisson representation was introduced

as an ansatz for asymptotic expansions of stationary systems,

and included only constant rate parameters. Hence the original

Poisson representation ansatz has not been used widely for

time-varying solutions [36]. In contrast, our time-dependent

Poisson mixture (2.14) is obtained here as a solution to a

non-stationary ME model, rather than backwards via basis

expansions, and the mixing density fXt has a physical interpret-

ation in terms of single-cell sample paths relatable to data.

In this respect, our preparatory result (2.8) for the perfectly

synchronous population can be thought of as an extension of

the ‘Poisson representation’ to include time-varying rate par-

ameters. Note also that this perfectly synchronous solution

(2.8) corresponds to a particular case of the multigene solution

obtained by Jahnke & Huisinga [34]. However, (2.8) does not

yet encapsulate the cell-to-cell variability. It is the full Poisson

mixture solution (2.14) that extends the scope of the time-

varying ‘Poisson representation’ a step further, by allowing

for stochastic rate parameters that can describe cell-to-cell

variability as well as dynamic variability.
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Our solution confers two broad advantages. The first is

pragmatic: since Xt is a continuous random variable satis-

fying a linear random differential equation, we can draw

upon the rich theory and analytical results for fXt , even for

non-stationary models, or we can use ODE and PDE solvers

as further options to solve the differential equation for fXt . If

simulations are still necessary, sampling P(n, tjM, L) directly

using stochastic simulation algorithms becomes computa-

tionally expensive, particularly if the upstream processes M
and L are time-varying [73]. Instead, we can sample fXtðx, tÞ
directly using the random differential equation (2.13), and

then obtain the full distribution via numerical integration

using (2.14). This approach leads to a significant reduction

in computational cost, as shown in figure 10.

Our approach can also be used to analyse noise characteris-

tics in conjunction with biological hypotheses. If measurements

of additional cellular variables (e.g. cell cycle) are available, they

can be incorporated as a source of variability for gene regulation

to test biological hypotheses computationallyagainst experimen-

tal data. Conversely, it is possible to discount the Poissonian

component from observed data, so as to fit different promoter

models to experimental data and perform model comparison

[61]. Our discussion of a recent experiment of gene expression

driven by cAMP signalling [29] exemplifies this approach.

The second advantage of our framework is conceptual.

Through the natural decoupling of the solution into a dis-

crete, Poisson component (downstream) and a continuous,

mixing component (upstream), we derive time-dependent

expressions for both ensemble and temporal moments,

recasting the concept of ‘intrinsic’/’extrinsic’ noise for

dynamic upstream cellular drives. Importantly, all upstream
variability gets effectively imbricated through the upstream

effective drive X, which can be interpreted in terms of a bio-

chemical differential rate equation. This analysis clarifies how

upstream fluctuations are combined to affect the probability

distribution of the mRNA copy number, providing further

intuition about the sources of noise and their temporal

characteristics. Indeed, stripping the model down to its

extrinsic component fXt can provide us with additional

understanding of its structure and time scales [61].

Finally, although we have concentrated here on the amenable

analytical solutions that can be obtained for the single gene case,

we remark that our solution could be extended to monomolecu-

lar multigene networks, by merging Jahnke & Huisinga’s result

[34] for synchronous networks with our mixture result for the

asynchronous case. Such a generalization could be implemented

computationally to reduce the cost of simulating stochastic net-

works. Such an extension will be the subject of future work.

The solutions of higher-order reaction systems obtained through

the Poisson representation ansatz could also be extended to

include stochastic rates. This approach could lead to deeper

understanding of models with and without feedback [74].
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Appendix A. The ‘burn-in’ transient towards
stationarity
In §2.1, it was stated that the contribution from the initial con-

dition Nic
t decreases exponentially for biophysically realistic

degradation rates flðtÞgt�0. As a result, the transcripts that

were present at t ¼ 0 are expected to degrade in finite time,

and the long-term population is expected to be composed

only of mRNA molecules that were transcribed since t ¼ 0.

Let the initial condition be described by a random vari-

able N0 with a given probability distribution. It follows

from equations (2.8)–(2.9) that

P(n, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�)

¼
X

n0

P(n, tjfmðtÞgt[½0,t�, flðtÞgt[½0,t�, n0)PrðN0 ¼ n0Þ

¼
X

n0

Xn

k¼0

PrðNic
t ¼ kjN0 ¼ n0ÞPrðNs

t ¼ n� kÞPrðN0 ¼ n0Þ

¼
Xn

k¼0

PrðNs
t ¼ n� kÞ

X
n0

PrðNic
t ¼ kjN0 ¼ n0ÞPrðN0 ¼ n0Þ

" #

¼
Xn

k¼0

PrðNs
t ¼ n� kÞPrðNic

t ¼ kÞ,

where Nic
t jn0 and Ns

t are distributed according to equations

(2.5)–(2.7), and PrðNic
t ¼ kÞ is the mixture of the time-

dependent binomial distribution (2.5) and the distribution

of the initial condition N0.
A.1. ‘Burn-in’ transience in the model with constant
transcription and degradation

A.1.1. The decay towards stationarity
To understand the ‘burn-in’ period more explicitly, consider

the simplest example of the gene transcription model (2.1)

with constant transcription and degradation rates m and l,

and assume that there are initially n0 mRNA transcripts.

Given that N0 � d0, n0
, the solution is given by

Nt ¼ Nic
t jn0 þNs

t , where
Nic

t jn0 � Bin(n0,e�lt)

and Ns
t � Poi

m

l
(1� e�lt)

� �
:

9>=
>; ðA 1Þ

Hence as t! 1, the distribution will tend towards Poi(m/l),

the stationary distribution of the population. This is a

well-known result in the literature [37,75].
A.1.2. Starting at stationarity: the time-dependent Nic
t and Ns

t

balance each other at all times
It is illustrative to consider the dynamics of this system when

the initial condition is chosen to be the stationary distribution.

In this case, the breakdown of Nt into the time-dependent

components Nic
t and Ns

t will need to reproduce the stationary

distribution at all times t . 0, with no ‘burn-in’ period.
To see this, let the initial distribution start at stationarity,

i.e. N0 � Poiðm=lÞ and

PrðN0 ¼ n0Þ ¼
m

l

� �n0 e�m=l

n0!
:

The distribution of Ns
t is still given by (A 1) and the contri-

bution of Nic
t is given by

PrðNic
t ¼kÞ¼

X1
n0¼k

PrðNic
t ¼kjN0¼n0ÞPrðN0¼n0Þ

¼
X1
n0¼k

n0

k

� �
ðe�ltÞkð1�e�ltÞn0�k m

l

� �n0 e�m=l

n0!

¼ðe�ltÞke�m=l
X1
r¼0

m

l

� �rþkð1�e�ltÞr

k!r!

¼ m

l

� �kðe�ltÞke�m=l

k!

X1
r¼0

m

l

� �rð1�e�ltÞr

r!

¼ m

l

� �kðe�ltÞk e�m=l

k!
em=lð1�e�ltÞ ¼ m

l
e�lt

� �ke�ðm=lÞe
�lt

k!
:

In other words, Nic
t � Poi(ðm=lÞe�ltÞ, which cancels the

contribution from Ns
t � Poi(m=l½1� e�lt�Þ. Therefore,

Nt � Poi
m

l

� �
, 8t:

This example shows that Nic
t and Ns

t will combine to reproduce a

stationary distribution at all times t . 0, when the system starts

at stationarity so that there is no ‘burn-in’ transient.
A.1.3. Starting the system at t ¼ �1

The same is true if the system is not stationary but we start

the system at t ¼ �1 with any initial condition. Then, for

t . 0, the system will be independent of the initial condition

and will be described by Ns
t .

Let us denote the state of the system for t . 0 by the

attracting distribution P*. Although PrðNs
t ¼ nÞ ¼ P�ðn, tÞ,

8n [ N, 8t . 0, we wish to distinguish P* from Ps because

we only have equality of the two distributions when the

system starts at t ¼ �1. Here P* can be thought of as an

inherent property of the system, analogous to the stable

point of a dynamical system that moves in time (sometimes

called a chronotaxic system [76]).

If PrðN0 ¼ n0Þ ¼ P�ðn0, 0Þ for all n0 in equation (2.9), the con-

tributions from Nic
t and Ns

t balance each other as they did in the

case of stationarity with N0 � Poiðm=lÞ, and we would have

Pðn, tÞ ¼ P�ðn, tÞ, 8n [ N, 8t . 0 (recall that the breakdown

Nt ¼ Nic
t þNs

t simply resolves the existing mRNA molecules

into those that were present at t¼ 0, and those that were tran-

scribed since t ¼ 0). Thus we only observe an initial transient

period if the initial distribution starts away from its attracting dis-

tribution at t¼ 0. In all other cases, the following mathematical

formulations are equivalent: (i) assume that the system was initi-

alized at t ¼ �1 and consider only Ns
t or (ii) use the initial

distribution P�ðn; 0Þ for all n at t ¼ 0, and consider Nic
t þNs

t .

In this work, we focus on the time dependence of P(n, t)
induced through non-stationarity of the parameters, and/or

synchronous behaviour of the cells within the population.

Hence, unless otherwise stated, in this work we assume

that the system was initialized at t ¼ �1 and that the distri-

bution of Ns
t is the attracting distribution P*(n, t) for all t . 0,

i.e. we neglect the contribution from Nic
t .
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A.2. ‘Burn-in’ transience in the random telegraph
model

A time-dependent solution of the probability generating function

for the RT model appeared in [16], although the explicit expres-

sion for P(n, t) was omitted. As discussed above, the RT model

represents asynchronous and stationary behaviour, hence

the time dependence appears only through convergence to the

stationary distribution from the initial condition. We include

the derivation here for completeness and to complement figure 7.

Consider the RT model depicted in figure 3a. Assuming

that every cell is initialized in the inactive state with n0 ¼ 0

mRNA molecules, the probability generating function for

the cell population is [16]

Gðz, tÞ ¼ Fsðz, tÞFsðz, tÞ � mkone�ðkonþkoffÞt

ðkon þ koffÞð1� kon � koffÞ
ð1� zÞ

� Fnsðz, tÞFnsðz, tÞ,

where Fsðz, tÞ :¼1F1½�kon,1� kon � koff; me�tð1� zÞ�,
Fsðz, tÞ :¼1F1½kon, kon þ koff; � mð1� zÞ�, Fnsðz, tÞ :¼1F1

½koff, 1þ kon þ koff; me�tð1� zÞ� and Fnsðz, tÞ :¼1F1½1� koff,

2� kon � koff; � mð1� zÞ�. Here 1F1(a, b; z) is the confluent

hypergeometric function [63].

Using the general Leibniz rule for differentiation, and

omitting other details, we obtain

Pðn, tÞ ¼ 1

n!

@nG
@zn jz¼0

¼ mn

n!

Xn

r¼0

n
r

� �
ð�1Þrð�konÞrðkonÞn�re

�rt

ð1� kon � koffÞrðkon þ koffÞn�r

�1 F1[�kon þ r, 1� kon � koff þ r; me�t]

� 1 F1[kon þ n� r, kon þ koff þ n� r; � m]

þ konm
nþ1e�ðkonþkoffÞt

ðkon þ koffÞð1� kon � koffÞn!

�
Xn

r¼0

n
r

� �
ð�1Þrð�koffÞrð1� koffÞn�re

�rt

ð1þ kon þ koffÞrð2� kon � koffÞn�r

� 1 F1[koff þ r, 1þ kon þ koff þ r; me�t]

�1 F1[1� koff þ n� r, 2� kon � koff þ n� r; � m]

� konm
ne�ðkonþkoffÞt

ðkon þ koffÞð1� kon � koffÞn!

�
Xn�1

r¼0

n� 1

r

� �
ð�1Þrð�koffÞrð1� koffÞn�1�re

�rt

ð1þ kon þ koffÞrð2� kon � koffÞn�1�r

� 1 F1[koff þ r, 1þ kon þ koff þ r; me�t]

�1 F1[�koff þ n� r, 1� kon � koff þ n� r; � m],

where ðaÞm :¼ aðaþ 1Þ . . . ðaþm� 1Þ is Pochhammer’s

function [63].

As z! 0, 1F1[a, b; z]! 1. Hence as t! 1, Pðn, tÞ ! PðnÞ,
and we recover the known stationary solution:

PðnÞ ¼ mn

n!

ðkonÞn
ðkon þ koffÞn

1F1[kon þ n, kon þ koff þ n; � m]:

Appendix B. The stationary solution for the
refractory promoter model (three cyclic
promoter states)
As explained in §3.2.2, the stationary solution of the 3-state

cyclic model describing a refractory promoter is obtained
by solving the following set of equations:

d

dz
[ð1� zÞf�ðzÞ] ¼ �k�f�ðzÞ þ k2f2ðzÞ, ðB 1Þ

d

dz
[�zf1ðzÞ] ¼ �k1f1ðzÞ þ k�f�ðzÞ ðB 2Þ

and
d

dz
½�zf2ðzÞ� ¼ �k2f2ðzÞ þ k1f1ðzÞ, ðB 3Þ

to obtain an expression for fZ ¼ f� þ f1 þ f2.

Note that the transition matrix [ksr] containing the kinetic

constants on the right-hand side of equations (B 1)–(B 3) is

singular and hence l ¼ 0 is an eigenvalue. Furthermore, by

Gershgorin’s circle theorem the non-zero eigenvalues of [ksr]

have negative real parts, so a stationary solution always

exists, i.e. the probabilities pi ¼
Ð

x fiðxÞ dx of being in state

Si evolve to an equilibrium state given by the eigenvector p̂

associated with the eigenvalue l ¼ 0. Note that p̂ must be

normalized so that the elements sum to 1. It can easily be

shown that

pi ¼
ð1

0

fiðzÞ dz ¼ k1k2k�
kiðk2k� þ k1k� þ k1k2Þ

: ðB 4Þ

Now, integrating equations (B 1)–(B 3) and using equation

(B 4) we obtain the boundary values f1ð1Þ ¼ f2ð1Þ ¼ 0 and

f*(0) ¼ 0. Also, summing equations (B 1)–(B 3) and integrating

gives

� zf1ðzÞ � zf2ðzÞ þ ð1� zÞf�ðzÞ ¼ C, ðB 5Þ

where C is a constant. Equation (B 5) holds for all

z [ ½0; 1�, so we can substitute in z ¼ 0 or z ¼ 1 and use

the fact that f1(1) ¼ 0 and f1(1) ¼ 0, or f*(0) ¼ 0, to show that

C ¼ 0. Hence

fZðzÞ ¼ f1ðzÞ þ f2ðzÞ þ f�ðzÞ ¼
1

z
f�ðzÞ, ðB 6Þ

so we need only solve equations (B 1)–(B 3) for f*(z)f�ðzÞ, the

marginal probability density corresponding to the active

state. Using (B 6) and substituting into (B 1)–(B 3), we then

obtain the following equation for f*(z):

0 ¼ z2ð1� zÞf 00� ðzÞ þ z[ð�3þ k1 þ k2 þ k�Þzþ 1� k1 � k2]f 0�ðzÞ
þ [ð�1þ k1 þ k2 � k1k2 � k1k�Þzþ k1k2]f�ðzÞ:

ðB 7Þ

Set f ðzÞ ¼ zcuðzÞ, where c is a constant that we can choose, to

transform (B 7) into

0¼zcþ2ð1�zÞu00ðzÞþzcþ1[ð�3þK�2cÞzþ1�k1�k2þ2c]u0ðzÞ

þzc[ð�1þK� ~Kþð�2þK�cÞcÞzþk1k2�ðk1þk2Þcþc2]uðzÞ

where K :¼ k1 þ k2 þ k� and ~K :¼ k1k2 þ k1k� þ k2k�.
From here, we set the last term on the right-hand side to

zero by choosing c ¼ k1 or c ¼ k2. We can then divide

through by zc þ 1 to obtain an equation in the form of the

hypergeometric equation [63]. For example, for c ¼ k1

we obtain

0 ¼ zð1� zÞu00ðzÞ þ [ð�3� k1 þ k2 þ k�Þzþ 1þ k1 � k2]u0ðzÞ
þ [�1� k1 þ k2 þ k� � k2k�]uðzÞ:

When none of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 � k2 � k�Þ2 � 4k2k�

q
, k1 2 k2, or k* are

integers, we can write down the solution [63]

uðzÞ ¼ C1 2F1[að1Þþ , að1Þ� ; 1þ k1 � k2; z]

þ C2z�k1þk2
2F1[að2Þþ , að2Þ� ; 1� k1 þ k2; z],
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where C1 and C2 are constants of integration, 2F1[a, b; c; z] is the

Gauss hypergeometric function [63] and

að1Þ+ ¼
1

2
2þ k1 � k2 � k�+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� � k1 � k2Þ2 � 4k1k2

q� �

and

að2Þ+ ¼
1

2
2� k1 þ k2 � k�+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� � k1 � k2Þ2 � 4k1k2

q� �
:

The solutions for the other cases are similar and are also

given in [63]. Hence f�ðzÞ ¼ zk1 uðzÞ is given by

f�ðzÞ ¼ C1zk1
2F1[að1Þþ ,að1Þ� ; 1þ k1 � k2; z]

þ C2zk2
2F1[að2Þþ ,að2Þ� ; 1� k1 þ k2; z]:

The same expression for f*(z) is obtained if we choose c ¼ k2

instead, so finally we can write down the general solution

for fZðzÞ ¼ f�ðzÞ=z:

fZðzÞ ¼ C1zk1�1
2F1[að1Þþ , að1Þ� ; 1þ k1 � k2; z]

þ C2zk2�1
2F1[að2Þþ , að2Þ� ; 1� k1 þ k2; z]

¼ C1zk1�1ð1� zÞk��1

�2 F1[að1Þþ þ k� � 1, að1Þ� þ k� � 1; 1þ k1 � k2; z]

þ C2zk2�1ð1� zÞk��1

�2 F1[að2Þþ þ k� � 1, að2Þ� þ k� � 1; 1� k1 þ k2; z]: ðB 8Þ
Here, C1 and C2 are normalizing constants that ensure that

the integral constraints

ð1

0

f�ðzÞ dz ¼ p�

and

ð1

0

fZðzÞ dz ¼
ð1

0

1

z
f�ðzÞ dz ¼ 1

are satisfied. These constants are conveniently obtained from

a Mellin transform identity (see [77, p. 152]):

C1 ¼
Gðk2 � k1Þ
Gðk1ÞGðk2Þ

G(1þ k1 � að1Þþ )

G(1� að1Þþ )

G(1þ k1 � að1Þ� )

G(1� að1Þ� )

and C2 ¼
Gðk1 � k2Þ
Gðk1ÞGðk2Þ

G(1þ k2 � að2Þþ )

G(1� að2Þþ )

G(1þ k2 � að2Þ� )

G(1� að2Þ� )
,

where Gð:Þ is the Gamma function [63]. Equation (B 8) is

useful for comparisons with the 2-state RT model.
Endnote
1We do not use the term stochastic differential equation (SDE),
because SDEs are usually associated with random white noise.
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75. Brémaud P. 2001 Markov chains, Gibbs fields, Monte
Carlo simulation and queues. Berlin, Germany:
Springer.
76. Suprunenko YF, Clemson PT, Stefanovska A. 2013
Chronotaxic systems: a new class of selfsustained
nonautonomous oscillators. Phys. Rev. Lett. 111,
024101. (doi:10.1103/PhysRevLett.111.024101)

77. Slater LJ. 1966 Generalized hypergeometric
functions. Cambridge, UK: Cambridge University
Press.
l
ishi
ng.org
J.R.Soc.Interface

14:20160833

http://dx.doi.org/10.1103/PhysRev.72.26
http://dx.doi.org/10.1038/msb.2008.31
http://dx.doi.org/10.1038/msb.2008.31
http://dx.doi.org/10.1103/PhysRevE.90.052712
http://dx.doi.org/10.1103/PhysRevLett.111.024101

	Stochastic models of gene transcription with upstream drives: exact solution and sample path characterization
	Introduction
	The master equation for gene transcription in populations of cells with upstream drives
	Notation and formulation of the problem
	Perfectly synchronous population
	The initial transient &lsquo;burn in&rsquo; period
	The long-term behaviour of the solution

	The general asynchronous case: cell-to-cell variability in the cellular drives

	The effective upstream drive in gene transcription models
	Gene transcription under upstream drives with static randomness
	Random entrainment to upstream sinusoidal drives: random phase offset in transcription or degradation rates
	Upstream Kuramoto promoters with varying degree of synchronization

	Asynchronous transcription under stochastic multistate promoters
	The random telegraph model (2 states)
	The refractory promoter model (3 states)

	Asynchronous multistate models with upstream promoter modulation

	Ensemble noise characteristics in time-varying populations
	Time-dependent ensemble moments over the distribution of cells
	Decomposing the sources of noise
	Analysis of time-dependent moments

	Time-dependent ensemble Fano factor: a measure of synchrony in the population

	Variability over time: stationarity and ergodicity
	Ergodic systems: stochastic versus deterministic drives
	The temporal Fano factor: windows of stationarity in single-cell time-course data

	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgments
	Appendix A. The &lsquo;burn-in&rsquo; transient towards stationarity
	&lsquo;Burn-in&rsquo; transience in the model with constant transcription and degradation
	The decay towards stationarity
	Starting at stationarity: the time-dependent N_t^{{\rm ic}}  and N_t^s  balance each other at all times
	Starting the system at t = - \infty 
	&lsquo;Burn-in&rsquo; transience in the random telegraph model
	Appendix B. The stationary solution for the refractory promoter model (three cyclic promoter states)
	References


