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A critical step in understanding how a genome functions is determining which transcription factors (TFs) regulate each
gene. Accordingly, extensive effort has been devoted to mapping TF networks. In Saccharomyces cerevisiae, protein–DNA
interactions have been identified for most TFs by ChIP-chip, and expression profiling has been done on strains deleted for
most TFs. These studies revealed that there is little overlap between the genes whose promoters are bound by a TF and
those whose expression changes when the TF is deleted, leaving us without a definitive TF network for any eukaryote and
without an efficient method for mapping functional TF networks. This paper describes NetProphet, a novel algorithm that
improves the efficiency of network mapping from gene expression data. NetProphet exploits a fundamental observation
about the nature of TF networks: The response to disrupting or overexpressing a TF is strongest on its direct targets and
dissipates rapidly as it propagates through the network. Using S. cerevisiae data, we show that NetProphet can predict
thousands of direct, functional regulatory interactions, using only gene expression data. The targets that NetProphet
predicts for a TF are at least as likely to have sites matching the TF’s binding specificity as the targets implicated by ChIP.
Unlike most ChIP targets, the NetProphet targets also show evidence of functional regulation. This suggests a surprising
conclusion: The best way to begin mapping direct, functional TF-promoter interactions may not be by measuring binding.
We also show that NetProphet yields new insights into the functions of several yeast TFs, including a well-studied TF, Cbf1,
and a completely unstudied TF, Eds1.

[Supplemental material is available for this article.]

Genome sequencing is now a routine matter, and the vast majority

of protein coding genes in human and major model organisms

have been identified. A natural next step is to identify the tran-

scription factors (TFs) that regulate the expression of each gene.

Accordingly, a great deal of effort has been devoted to mapping TF

networks. The best mapped eukaryotic TF network is that of the

budding yeast Saccharomyces cerevisiae, where protein–DNA inter-

actions have been identified for most yeast transcription factors by

ChIP-chip (Lee et al. 2002; Harbison et al. 2004) and expression

profiling has been done on strains deleted for most TFs (Hu et al.

2007; Reimand et al. 2010). Nonetheless, the TF network of yeast is

still far from completely mapped. We calculated that at least 97.5%

of yeast genes are regulated, in the sense that their transcript levels

respond to deletion or overexpression of some TF, but at most 45%

respond to perturbation of any TF that is known to bind their

promoter regions (see Supplemental Methods). In general, the

genes whose promoters are bound by a TF according to ChIP-chip

experiments and those whose expression level responds to per-

turbation of the same TF show little overlap—typically 3%–5%

(Gitter et al. 2009). At least 55% of yeast genes do not fall into that

overlap for any TF and thus have no functional, direct regulator

implicated by available genome-wide data sets.

Algorithms for mapping TF networks from gene expression

data have been a focus of intensive research. An annual community

effort to evaluate such algorithms, known as DREAM (Dialogue for

Reverse Engineering Assessments and Methods), has been held six

times (Stolovitzky et al. 2009; Prill et al. 2010). DREAM evaluations

have included both simulated data and experimental data on small

networks. These evaluations have fostered a motivated computa-

tional community, but the results do not appear to have inspired

widespread adoption of network mapping algorithms for biological

inquiry.

In order to improve the efficiency of TF network mapping

from gene expression data, we developed a novel algorithm called

NetProphet. In this paper, we describe NetProphet and demon-

strate its value for biological inquiry. We compare the networks it

infers to existing ChIP-chip networks and to networks inferred by

two algorithms that have won DREAM competitions (Inferelator

and Genie3) by using the genome-wide data sets available for

yeast: expression data on strains in which nearly every TF has been

deleted and/or overexpressed, curated databases of TF targets im-

plicated by available ChIP data sets, and databases of position

weight matrix (PWM) models for TF sequence specificity. To our

knowledge, this is the first evaluation of expression-based network

mapping against an objective, comprehensive set of physical TF-

DNA interactions. We also take the unusual step of evaluating

NetProphet by its ability to discover novel biology.

Algorithms for mapping TF networks from gene expression

data can be broadly classified into those that exploit coexpression

and those that exploit differential expression (DE). Coexpression

approaches can be as simple as measuring the correlation or mu-

tual information between the expression profiles of TFs and po-

tential target genes (Butte and Kohane 2000; Faith et al. 2007). Al-

ternatively, they can use multivariate predictor functions (Bonneau

et al. 2006; Marbach et al. 2009; Huynh-Thu et al. 2010). In either
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case, coexpression analysis can only make predictions for TFs

whose expression varies sufficiently in the available expression

profiles. Algorithms that exploit DE typically construct networks

with regulatory edges from each TF to all the genes that are dif-

ferentially expressed when the TF is deleted (Hu et al. 2007; Pinna

et al. 2010), overexpressed, or otherwise perturbed. Some edges in

this network reflect direct binding of the TF to the target (the

intended result), while others reflect indirect effects of perturbing

the TF (which are considered false positives). In order to reduce the

number of edges that reflect indirect effects, edges are often re-

moved until there is only one path from each TF to each target that

is affected by perturbing the TF.

Coexpression and DE have complementary strengths and

weaknesses. Coexpression can identify targets of TFs that have not

been individually perturbed. This greatly increases the range of

expression profiling data that can be used and opens up the pos-

sibility of analyzing all TFs, regardless of the data set. DE creates

variation in the expression of a TF by direct experimental in-

tervention, rather than relying on chance, and it does not risk

confusing correlation with causation.

NetProphet capitalizes on the complementarity of the coex-

pression and DE strategies by combining them. The coexpression

component enables NetProphet to exploit any expression data

source, including environmental perturbations that affect many

TFs simultaneously, and to predict the targets of TFs that have not

been individually perturbed in the available expression profiles.

The DE component enables NetProphet to exploit the power of

targeted TF perturbations (see Results). For every TF and every pos-

sible target gene, NetProphet computes a confidence score that

combines a number representing its coexpression analysis with

a number representing its DE analysis. The coexpression number is

a LASSO regression coefficient reflecting the degree to which coex-

pression patterns allow the level of the putative target to be pre-

dicted from that of the TF. This is similar to the calculation done by

Inferelator (Bonneau et al. 2006), a method that has performed very

well in DREAM assessments (Greenfield et al. 2010; Madar et al.

2010) and that we compare to NetProphet below (see Methods for

differences). The DE number is the log odds that the putative target

is differentially expressed when the TF is perturbed, given the

available replicate expression profiles (see Methods). NetProphet

then ranks all possible TF-target interactions by a confidence score

that is, roughly speaking, a weighted sum of the coexpression

number, the DE number, and their product. This method of in-

tegrating coexpression and DE is both simple and, empirically,

very effective.

A surprising insight that we gained from these studies is that

the most efficient way to start mapping a network of functional TF-

DNA interactions may not be by measuring binding directly with

methods like ChIP. Our results suggest that an expression-based

approach like NetProphet can identify thousands of direct TF-DNA

interactions with accuracy at least as good as that of existing ChIP-

chip data. Whereas ChIP-chip reveals nonfunctional as well as

functional binding, the NetProphet approach reveals only func-

tional binding. Furthermore, the NetProphet approach is easier

to scale up than in vivo binding experiments, and it requires less

specialized expertise. Binding studies are a valuable complement

that make the map more complete, but the most efficient path to

a network map may start with the NetProphet approach.

Another surprising finding from this study is that the strength

of evidence supporting a gene’s response to perturbation of a TF is

a good predictor of whether the gene is a direct target of the TF (see

Methods). This reveals something about the fundamental nature

of signal propagation in TF networks: The response to a TF per-

turbation tends to dissipate rapidly. This rapid dissipation of the

effects of variations in TF level may help explain how cells tolerate

noise in the expression of TFs.

Results
We ran NetProphet using a comprehensive collection of micro-

array expression profiling data on yeast TF deletion mutants (Hu

et al. 2007) and analyzed the results as described below (the com-

plete NetProphet output can be found in Supplemental Table S1).

Top NetProphet predictions identify direct binding potential
better than ChIP data does

The top 4000 regulatory links predicted by NetProphet comprise

219 distinct TFs regulating 1744 distinct targets. We evaluated

these links in a two-stage process. First, we evaluated the potential

of each TF to bind each of its predicted targets by using a position

weight matrix (PWM) model of its binding specificity. Second, we

made the same calculation for all regulatory links implicated by

ChIP experiments, regardless of NetProphet score. We then set

high-, medium-, and low-stringency thresholds for support by

each PWM. At each stringency level, the percentage of ChIP-

implicated targets supported by PWMs serves to calibrate the

NetProphet results, allowing us to determine what should count as

a good outcome for NetProphet. Of the top 4000 regulatory links

predicted by NetProphet, 1408 involved a regulator that had been

studied by ChIP-chip or ChIP-seq (Lee et al. 2002; Harbison et al.

2004; Balaji et al. 2006; Abdulrehman et al. 2011) and for which

a PWM was available in the UNIPROBE database (Gordan et al.

2011; Robasky and Bulyk 2011). These PWMs are based on in vitro

data obtained using protein-binding microarrays (PBMs), so they

are not influenced by either gene expression data or ChIP data. We

calculated the percentage of these predictions that are supported

by high binding potential using each of the three stringency levels

for PWM support (Fig. 1). A TF-target relationship was counted as

Figure 1. TF-promoter binding potential for the top 4000 NetProphet
predictions (red), all direct targets implicated by ChIP hits in the Yeastract
or Tnet data bases (blue), and targets implicated by ChIP hits that are also
predicted by NetProphet (green). The high stringency threshold for each
PWM was set such that ;10% of ChIP-implicated targets have PWM scores
exceeding the threshold and hence count as ‘‘PWM supported.’’ The me-
dium and low stringency thresholds were set such that ;33% and ;50%
of ChIP-implicated targets for each TF have PWM scores exceeding the
threshold, respectively. For the high, medium, and low stringency PWM
cutoffs, chance inclusion was 6.4%, 22.1%, and 36.8%, respectively.
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supported when the promoter of the tar-

get contained a single high-scoring PWM

hit or a number of individually signifi-

cant hits whose total score was exception-

ally high (see Methods). Similar results were

obtained using PWMs based on in vivo data

and manual curation (see Supplemental

Fig. S1; Spivak and Stormo 2012).

We also created 1000 random net-

works of the same topology by randomly

permuting node labels in the adjacency

matrix. Only two of these had as many

PWM-supported interactions as NetProphet,

indicating that NetProphet’s strong per-

formance is based on choosing specific

interactions with above-chance accuracy

(P = 0.002), in addition to choosing a good

network topology.

We were surprised to find that the

top NetProphet predictions are supported

by binding potential at a higher rate than

the ChIP-implicated interactions (Fisher’s

exact P < 10�9 at the most stringent level of PWM support).

NetProphet predictions are also supported by conserved binding

sites at a higher rate than ChIP hits (Fisher’s exact P < 10�8) (Sup-

plemental Fig. S2). This is remarkable, given that NetProphet uses

only gene expression data and knows nothing about binding,

PWMs, or promoter sequences, while ChIP experiments measure

binding directly. ChIP hits that are also NetProphet predictions are

much more likely to be supported by high binding potential than

ChIP hits in general (Fig. 1), indicating that NetProphet analysis

adds value for predicting direct targets of TFs that have already

been subjected to ChIP.

NetProphet rank is predictive of support by binding potential
and by ChIP results

We wanted to investigate the degree to which the rank assigned

to a potential TF-target link by NetProphet corresponds to its

likelihood of being supported by independent evidence. Thus,

we calculated PWM support and ChIP support as a function of

NetProphet rank. Using the high-stringency threshold for PWM

support, we calculated the fraction of predictions supported for

the top 4000 NetProphet predictions, the next 4000, and so on

(Fig. 2A, solid green line). These are incremental evaluations of

predictions in a given range of NetProphet ranks, not cumulative

evaluations of all predictions above a given rank. There is a clear

trend in Figure 2A: potential links that are ranked more highly by

NetProphet are more likely to be supported by PWM evidence.

The analysis of ChIP support as a function of NetProphet rank

shows the same trend (Fig. 2B). Thus, NetProphet rank is a good

predictor of PWM and ChIP support.

The top 40,000 NetProphet predictions are enriched for PWM
and ChIP support

To determine the lowest rank at which NetProphet predictions are

better than chance, we tested each block of 4000 predictions for

significant enrichment in either PWM-supported interactions or

ChIP-supported interactions. The results showed significant en-

richment for both PWM support and ChIP support in all blocks of

edges down to rank 40,000, below which we did not test (Fig. 2).

For TFs that have been subjected to both ChIP and PBM studies, 9%

of the targets in the top 40,000 NetProphet predictions are sup-

ported by PBM-derived PWMs. For the same TFs, 9% of the targets

in the top 29,946 ChIP-implicated interactions are supported by

PBM-derived PWMs. Thus, the complete NetProphet network may

contain as many direct interactions as the complete ChIP-impli-

cated network.

Additional data improves lower ranked predictions

Previous studies have shown that TF overexpression data can be

complementary to deletion data and can help to identify direct

targets (Chua et al. 2006; Sopko et al. 2006), so we added profiling

data from cells grown in YPGal and overexpressing each of 55 TFs

(Chua et al. 2006). Since many genes are only expressed in stress

conditions, we also added profiling data from time courses of re-

sponses to multiple stressors (Gasch et al. 2000). Combined, these

additional data sets resulted in a marginal improvement in the

fraction of the top 4000 predictions supported by PWMs and ChIP

(Supplemental Fig. S3). Predictions ranked 24,000–40,000 showed

the greatest improvement.

To investigate the effects of having smaller data sets, we ran

NetProphet on subsamples of the data from Hu et al. (2007), com-

prising expression profiles from deletions of one-fourth, one-half,

or three-fourths of the TFs. For each input data set, we considered

TFs whose deletion profiles were or were not included in the data

separately (Supplemental Methods). For TFs whose deletion profiles

were included in the input data, adding more data comprising

deletion profiles for other TFs did not improve their predicted tar-

gets (not shown). For TFs whose deletion profiles were not included

in the input data, target prediction was less accurate overall but

adding more data improved prediction accuracy (as assessed by

PWM support) at all NetProphet ranks (Supplemental Fig. S4);

ChIP support did not change (data not shown).

To gain further insight into the interplay between data-set size

and NetProphet rank, we evaluated NetProphet’s LASSO regression

and DE components separately. The results showed that DE per-

forms substantially better than LASSO in terms of its top 4000 picks,

slightly better on ranks 4001–20,000 (at least by PWM support),

and about the same on 20,001–40,000 (Supplemental Fig. S5). By

Figure 2. Evidence supporting NetProphet predictions as a function of NetProphet rank. (A) Per-
centage of predictions supported by binding potential at the high stringency threshold (green, solid)
and expectation for randomly selected targets (green, dashed). (B) Percentage of NetProphet pre-
dictions supported by ChIP hits (blue, solid) and expectation for randomly selected targets (blue,
dashed). All points represent groups of NetProphet predictions that are significantly enriched for pre-
dictions with PWM support (panel A) or ChIP support (panel B), P < 0.05.
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combining DE and LASSO, NetProphet performs somewhat better

than DE on the top 4000 and on 20,001–40,000, and about the

same as DE on 4001–20,000. Thus, LASSO regression enhances

NetProphet accuracy in some rank ranges more than others, and the

extent of its contribution depends on how much data is available.

NetProphet rank predicts PWM and ChIP support better than
other methods tested

We compared the top 4000 NetProphet predictions to the top 4000

predictions from two other publicly available methods that have

won DREAM competitions, Inferelator (Bonneau et al. 2006;

Greenfield et al. 2010; Madar et al. 2010) and Genie 3 (Huynh-Thu

et al. 2010). The metrics used were percentage of interactions

supported by high-stringency PWM evidence, ChIP evidence, or

both (Fig. 3A). The NetProphet predictions received substantially

more support by all three metrics. To determine whether this good

performance was broadly distributed across TFs, we considered the

five most highly ranked targets of each TF and asked whether at

least one of the five was supported by PWM evidence, ChIP evi-

dence, or both. NetProphet was able to identify at least one correct

target for many more TFs than either of the other methods tested

(Fig. 3B). We found similar results when comparing NetProphet to

Inferelator and Genie3 on simulated data from the DREAM4

evaluation (Supplemental Fig. S6).

NetProphet predictions identify novel TF functions that cannot
be found by ChIP

After we validated NetProphet by both PWM and ChIP support, we

used it to predict TF functions that could not be identified using

existing ChIP data. For each TF, we performed Gene Ontology (GO)

enrichment analysis on all its targets in the top 10,000 interactions

ranked by NetProphet (see Methods and Supplemental Table S2).

We then removed any GO terms that were enriched among the

targets implicated by existing ChIP data. Since there can be many

overlapping GO terms for a gene set, some of which are extremely

broad, we chose a single, specific GO term to represent sets of re-

dundant terms for the same genes. The results include 44 func-

tional annotations on 42 TFs.

Of the 44 functional annotations that could not be derived

from existing ChIP data, 29 (66%) were supported in the literature

by non-ChIP evidence, such as mutant phenotypes and protein-

protein interactions (Supplemental Table S3). Examples include

involvement of GCR1 and GCR2 in regulating hexose catabolism

(Clifton et al. 1978), DIG1 in pheromone response (Tedford et al.

1997), PHO2 in polyphosphate metabolism and dephosphorylation

(Ogawa et al. 2000), and SFP1 in glycolysis (Cipollina et al. 2008). In

two cases, we could find evidence supporting the function in other

species but not in S. cerevisiae (Table 1). For example, NetProphet

predicts that RIM101 regulates iron metabolism in cerevisiae. The

orthologous TF in Cryptococcus neoformans, a pathogenic fungus of

phylum Basidyomicota, is known to regulate iron metabolism

(O’Meara et al. 2010). Thirteen of the functional predictions are

completely novel (Table 1), including regulation of cytokinesis by

HAP2, HAP4, and HSF1, response to nitrogen starvation by SNF6,

and lysine biosynthesis by EDS1 (discussed below).

NetProphet identifies a novel biological function for Cbf1

NetProphet predicts that centromere binding factor 1 (Cbf1) acti-

vates genes involved in phosphate acquisition, including all three

repressible acid phosphatases (PHO5, PHO11, PHO12) and a re-

pressible alkaline phosphatase (PHO8). Cbf1 has long been known

to regulate sulfate metabolism (Kuras et al. 1996) but not phos-

phate metabolism, and the Cbf1 ChIP studies in the curated da-

tabases used for our computational analyses detected no signifi-

cant binding of Cbf1 to these phosphatase promoters. Recently, it

was found that Cbf1 binds the promoters of genes in the Pho4

regulon and regulates their expression (Zhou and O’Shea 2011).

However, Zhou and O’Shea found that Cbf1 represses acid phos-

phates while NetProphet predicts that it activates them. Following

up on this apparent discrepancy, we noticed that Zhou and

O’Shea’s experiments involved cultures grown in synthetic com-

plete medium with 10 mM inorganic phosphate (SC+10 mM Pi),

whereas the NetProphet predictions were based on microarray data

from cultures grown in YPD (Hu et al. 2007). YPD has ample or-

ganic phosphate that can be liberated by phosphatases but rela-

tively little free (i.e., inorganic) phosphate. To validate the pre-

dicted novel function of Cbf1 as an activator of phosphatases, we

assayed the expression of acid phosphatases from cultures of the

same strains used by Zhou and O’Shea, grown in either SC+10 mM

Pi or YPD (see Methods). The results showed that Cbf1 is a repressor

of acid phosphatases in SC+10 mM Pi, as reported by Zhou and

O’Shea (2011), but an activator of acid phosphatases in YPD, as

predicted by NetProphet (Fig. 4). Thus, rather than simply serving

as a repressor, Cbf1 serves to amplify the effect of medium on ex-

pression of phosphatases. The activating role of Cbf1 explains the

fact that the Cbf1 deletion mutant grows slowly in conditions

that derepress phosphatases but not in conditions that repress

Figure 3. Evaluation of top 4000 predictions from NetProphet (red), Inferelator (green), and GENIE3 (blue). (A) For each method, percentage of pre-
dictions supported by binding potential at the high stringency PWM threshold, ChIP data, or both. (B) Percentage of TFs for which at least one of the top five
targets predicted by each method is supported by either binding potential or ChIP hits or both. (See Supplemental Methods for additional details.)

Haynes et al.

1322 Genome Research
www.genome.org



phosphatases—if Cbf1 merely repressed phosphatases, then it

should not be needed in derepressing conditions.

NetProphet identifies a novel biological function for Eds1

Eds1 (‘‘Expression dependent on Slt2’’) is a putative zinc finger TF

homologous to Rgt1, a glucose-inactivated repressor of glucose

transporter genes. Eds1 currently has no known function and, to

the best of our knowledge, is not the subject of any papers. Existing

ChIP data on Eds1 identifies only three significant targets that do

not appear to have any common function. However, NetProphet

predicts that Eds1 is a highly specific repressor of lysine biosynthesis.

The top seven predicted targets of Eds1 are all in the pathway for

conversion of cytosolic citrate to lysine (Fig. 5A). Furthermore, these

seven targets encode proteins that catalyze seven of the eight

steps required for conversion of citrate to lysine (GO enrichment

P < 10�16). One of these steps is also part of the TCA cycle. To follow

up on this prediction, we computed the total score of all significant

matches to the Eds1 PWM in the promoters of all yeast genes.

Among all genes, the percentiles of the seven targets predicted

by NetProphet were 97% (LYS4), 97% (LYS9), 97% (CTP1), 87%

(ACO2), 77% (LYS12), 27% (LYS21), and 26% (LYS1). The mean

percentile was 72.5% and the probability of picking seven genes at

random with such a high mean percentile is <0.02, suggesting that

Eds1 binds at least some of these promoters directly.

In follow-up experiments, we used QuantiGene to assay the

expression of EDS1, LYS4, LYS9, CTP1, ACO2, and LYS12 in a wild-

type strain (BY4741), the eds1D mutant from the yeast deletion

collection (YBR033W), and eds1D complemented with EDS1 under

the control of the tet02 promoter (Gari et al. 1997). The results

verified that EDS1 is deleted in YBR033W and that each of the five

lysine-associated genes is induced three- to fourfold relative to WT

(Fig. 5B). Furthermore, eds1:Ptet02-EDS1 complemented the eds1D

mutant, restoring WT expression levels to the five lysine genes and

demonstrating that their induction in eds1D was caused by the loss

of EDS1 rather than a collateral lesion.

Discussion
Mapping TF networks is a longstanding goal in genomics and

computational biology. Currently, the two chief sources of exper-

imental data for systematic network mapping are gene expression

data and in vivo TF-binding data. S. cerevisiae is the only eukaryote

for which we have nearly complete data sets of both types. How-

ever, these data sets do not agree very well, with typical overlaps of

3%–5% between the genes that respond to deletion of a TF and

those that the TF binds in ChIP assays. For the majority of TFs

(52%), the binding motif indicated by protein binding arrays is not

significantly enriched in the targets indicated by ChIP-chip

(Gordan et al. 2009). The failure of these methods to yield a con-

sistent map of functional, direct regulatory interactions leaves us

without an efficient, systematic means of producing such maps.

We set out to produce a practical, efficient, and systematic

method of TF network mapping that would be attractive for global

mapping (identifying direct targets of all TFs encoded in a genome)

or for mapping subnetworks that regulate specific physiologic re-

sponses. We assumed that any such mapping effort would require

generating expression and/or binding data. We also assumed it

would have a limited budget and might be carried out by scientists

whose main focus is not genomic technologies.

Table 1. Novel TF functions predicted by NetProphet but not by
existing ChIP data

Name NP # GO # Overlap P-value Description

EDS1 18 10 7 1 3 10�16 Lysine biosynthesis
CST6 595 167 49 1 3 10�11 Cytoplasmic translation
STB1 18 9 4 1 3 10�8 Siderophore transport
SWI4 40 250 11 9 3 10�7 Cell wall organization/

biogenesis
RIM101 62 80 8 2 3 10�6 Metal ion transport
SNF6 351 6 5 6 3 10�6 Cellular response to

nitrogen starvation
HSF1 66 11 4 6 3 10�6 Cytokinesis, completion

of separation
STP1 27 80 5 3 3 10�5 Metal ion transport
SNF2 245 6 4 5 3 10�5 Cellular response to

nitrogen starvation
RPN4 60 98 7 8 3 10�5 Response to pheromone
SIN4 505 34 11 1 3 10�4 Glycolysis
HAP2 67 114 7 4 3 10�4 Cytokinesis
ASH1 9 98 3 4 3 10�4 Response to pheromone
AFT1 112 8 3 4 3 10�4 Lysine biosynthesis
HAP4 18 11 2 5 3 10�4 Cytokinesis, completion

of separation

(NP #) Number of targets predicted by NetProphet; (GO #) number of
yeast genes in the indicated Gene Ontology (GO) Biological Process
category; (Overlap) number of genes in both the NetProphet target set
and the GO category; (P-value) probability of such a large overlap oc-
curring by chance; (Description) description of the GO category.

Figure 4. Effect of Cbf1 on expression of acid phosphatases in cells grown in synthetic complete medium with 10 mM inorganic phosphate (red) or on
cells grown in YPD (blue). (A) Expression of PHO5. (B) Combined expression of PHO11 and PHO12, which have so much sequence similarity that we were
not able to distinguish their transcripts. Error bars representing one standard error of the mean of two technical replicates were too small to be seen in the
figure.

Mapping functional transcription factor networks

Genome Research 1323
www.genome.org



The studies described above suggest that measuring physical

binding with methods such as ChIP may not be the most efficient

way to begin mapping a network of direct, functional TF-target

interactions. We described, validated, and applied a different ap-

proach based on perturbation of TF expression levels, followed by

expression profiling and NetProphet analysis. This approach has

several advantages over in vivo binding experiments:

1. For most organisms that can be grown in a laboratory, perturba-

tion of TF expression (by disruption, RNA interference, or over-

expression) and genome-wide expression profiling (by microarray

or RNA-seq) are basic, commodity methods that can be scaled to

dozens or hundreds of TFs without specialized expertise or

outsized budgets. Although great strides have been made in in

vivo binding analysis using methods such as ChIP-seq ( Johnson

et al. 2007; Landt et al. 2012), Bio-ChIP (van Werven and Timmers

2006), or Calling Cards (Wang et al. 2012), these are challenging

experiments that are not easily scaled to many TFs outside of

specialized genomics labs.

2. Most of the TF binding sites revealed by in vivo binding ex-

periments show no evidence of affecting transcription rates.

Even after binding experiments have been carried out, TF per-

turbation and expression profiling are required for determining

which of the genes that are bound by a TF are also regulated by it.

3. Whereas binding data contain limited information about

functional regulation, expression data carry substantial in-

formation about binding. For example, the top 4000 in-

teractions predicted by NetProphet were supported by PWM

models of binding specificity more often than the interactions

indicated by significant ChIP hits were (Fig. 1). Even the top

40,000, taken as a group, were supported by PWM models at the

same rate as the complete set of just under 30,000 ChIP-supported

interactions in the TNET and YEASTRACT databases.

Building a more comprehensive network

Once an initial map has been built by the NetProphet approach,

binding studies can be used to make it more comprehensive. Sev-

eral algorithms have been developed for inferring networks by

combining multiple data types. For example, Marbach et al. (2012)

and Beyer et al. (2006) both combined coexpression data with in

vivo binding data from ChIP, evolutionary conservation, and

PWM models of binding specificity. The latter can be derived by

several experimental methods, including protein binding arrays

(Zhu et al. 2009), Selex ( Jolma et al. 2010), and yeast one-hybrid

assays (Reece-Hoyes et al. 2011). Interestingly, the analysis by

Beyer et al. (2006), which included a comprehensive yeast ChIP

data set (Harbison et al. 2004), identified only 5245 TF-target re-

lationships that they considered ‘‘high confidence.’’ Neither this

analysis nor that of Marbach et al. (2012) used differential ex-

pression data, so adding NetProphet scores to the inputs they

combine has the potential to enhance their results substantially.

Key insight behind NetProphet

To determine whether the method of analyzing expression profiles

from TF perturbation studies matters, we applied NetProphet and

two highly regarded methods (Inferelator and Genie3) to the same

expression data set. The results showed a substantial accuracy

advantage for NetProphet (Fig. 3). Much of this advantage is due to

NetProphet’s global ranking of interactions by the likelihood that

the target is differentially expressed when the TF is perturbed. The

key insight is that the effect of deleting a TF is strongest on its direct

targets and diminishes rapidly as it propagates through the network.

This does not mean that only direct targets are differentially

expressed or even that the majority of the differentially expressed

genes are direct targets. Indeed, the typical approach to DE anal-

ysis—setting a threshold for significance and treating all signifi-

cant targets as equal—is not very useful for network mapping.

However, the direct targets show a stronger differential expression

effect, on average, than indirect targets. Because it exploits the

strength of differential expression, NetProphet does not need an

explicit mechanism for dealing with the fact that many indirect

targets are differentially expressed at statistically significant levels.

Algorithms based on a strength-of-DE ranking have been tried on

simulated data (Greenfield et al. 2010; Pinna et al. 2010; Yip et al.

2010), but the studies presented here are the first to demonstrate

that this approach is useful for inferring real TF networks from real

gene expression data.

The effects of data-set size and the importance of combining DE
with regression

We carried out a number of experiments to answer two intertwined

questions: ‘‘How important is it to have expression profiles for a lot

Figure 5. (A) The top seven NetProphet-predicted targets of Eds1 are all
in the pathway for conversion of cytosolic citrate to lysine. (B) Log2-fold
change of EDS1 and five lysine biosynthesis genes relative to wild-type cells
in an eds1 deletion mutant (two replicate cultures) and the same deletion
mutant complemented by overexpression of Eds1 under the control of the
tetO2 promoter (cultures of two independent transformants).
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of TF perturbations?’’ and ‘‘How important is it to use regression as

well as global ranking by probability of DE?’’ The results indicate

that NetProphet effectively predicts the targets of TFs whose de-

letions have been profiled even if the number of such TFs is small.

When the number of TF-deletion profiles is small, as it may be in

many focused studies of organisms other than yeast, NetProphet’s

effectiveness derives primarily from its DE-based ranking algo-

rithm. Adding deletion profiles of additional TFs to a data set im-

proves accuracy in two ways. First, it greatly improves the accuracy

of target prediction for the TFs deleted in the new data. Second, it

improves the accuracy of target prediction for all TFs for which

a deletion profile is not available. The latter effect is due entirely to

NetProphet’s LASSO regression algorithm. In Supplemental Table

S1, which shows NetProphet predictions based on all available

deletion profiles, there are many ChIP-supported predictions for

TFs whose deletion profiles are not available. Such predictions

could not be made by DE alone. The regression component also

makes it possible to improve accuracy by including expression

profiles that do not involve single-TF perturbations, such as pro-

files of strains grown in stress conditions.

Identifying novel TF functions

One of the applications of genome scale network mapping is dis-

covering the functions of TFs based on Gene Ontology (GO) terms

that are significantly overrepresented in the annotations of their

predicted targets. (In less-well-studied organisms, many target

genes can be confidently assigned GO terms by orthology.) Ap-

plying this approach to NetProphet predictions produced signifi-

cant enrichment of biological process terms for 239 of the 263

S. cerevisiae TFs (Supplemental Table S2). Even when we excluded

GO terms that were significant in ChIP-implicated targets of each

TF, we were left with 44 functions assigned to 42 TFs, of which 66%

were supported by mutant phenotypes or protein-protein interactions

and 34% were novel. This suggests that the majority of such infer-

ences are correct and highlights the fact that NetProphet analysis

provides valuable information even after most TFs have been ChIPed.

One novel prediction is that Cbf1 would activate expression

of certain phosphatases when cells are grown in YPD. We verified

this experimentally and showed that Cbf1 can best be understood

as amplifying the effect of inorganic phosphate availability on the

expression of phosphatases, rather than simply repressing or ac-

tivating them in response to phosphate availability. Another novel

prediction is that, Eds1, a TF with no known function, is a highly

specific repressor of genes involved in lysine biosynthesis (in-

cluding one that encodes an enzyme in the TCA cycle). We iden-

tified strong binding sites for Eds1 in the promoters of five of these

genes, and verified experimentally that deletion of EDS1 results in

substantial up-regulation of these five and complementation of

the EDS1 deletion restores wild-type expression levels. Eds1 is the

closest homolog of Rgt1, also a repressor, which regulates glucose

transporters. The promoter of EDS1 contains a significant binding

site for Mig1/Mig2, major enforcers of glucose repression whose

targets also include glucose transporters, and EDS1 is differentially

expressed in the mig1, mig2 double mutant but not in either single

mutant (Westholm et al. 2008). Thus, Eds1 may link lysine biosyn-

thesis to glucose availability and the fermentative/oxidative balance.

Testing other applications of network models

By comparing NetProphet predictions to ChIP data and to PWM

models of binding potential, we have demonstrated the applica-

tion of network models to predicting TF binding. Other important

applications for future studies are predicting gene expression and

phenotype in response to new TF perturbations. A good bench-

mark for predictive power is the ability to predict gene expression

and phenotype in double TF mutants using only data from single

mutants. Ideally, a network map should predict epistatic inter-

actions and thereby make it possible to predict expression in

a double mutant more accurately than the average of the expression

profiles of the two single mutants. Developing systematic network

mapping methods that reliably achieve this will require innovations

in both mapping and quantitative modeling. In the meantime,

network maps produced by the current version of NetProphet

correctly predict functional TF-promoter interactions and overall

TF functions using only gene expression data that can be generated

by scalable, commodity methods within modest budgets.

Methods

Materials
All chemicals were from Sigma-Aldrich. All kits were used accord-
ing to manufacturer recommendations unless otherwise specified.

Strains and growth conditions

All strains used in the CBF1 study, including cbf1D and the wild-
type parent strain, have been described (Zhou and O’Shea 2011)
and were kindly provided by the O’Shea lab.

Yeast microarray normalization and quantification

The microarray data used to map the yeast transcriptional network
was originally published in Hu et al. (2007) and later reanalyzed in
Reimand et al. (2010). We downloaded the raw GenePix files for each
of the 588 microarrays from the Longhorn Microarray Database
(Killion et al. 2003) and normalized this data following the scheme
described by Reimand et al. with minor modifications (see Sup-
plemental Methods).

ChIP data curation

A list of protein-DNA interactions in S. cerevisiae was compiled
from two sources: TNET (Babu et al. 2004) and YEASTRACT
(Abdulrehman et al. 2011). Taken together, TNET and YEASTRACT
include the results of several major ChIP studies (Svetlov and
Cooper 1995; Horak et al. 2002; Lee et al. 2002; Harbison et al.
2004; Luscombe et al. 2004; Teichmann and Babu 2004) as well as
many smaller studies. YEASTRACT is regularly updated to include
new ChIP data as it becomes available. TNET contains 12,873 in-
teractions over 157 TFs and 4410 target genes. YEASTRACT con-
tains 28,145 ChIP-supported interactions over 160 TFs and 5683
target genes. There was good agreement between these two
sources, with 11,073 interactions in common. We used the union
of TNET and YEASTRACT, which contained 29,945 interactions
covering 184 TFs and 5790 target genes. This union is referred to
below as the interactions in curated ChIP studies.

Estimating binding potential with position weight matrices

To establish binding site evidence for an interaction, the curated
PWMs from the UNIPROBE database (Gordan et al. 2011; Robasky
and Bulyk 2011) were scanned over the yeast promoters using
FIMO (Grant et al. 2011). A gene’s promoter region was defined as
extending from 800 bases upstream of the transcription start site
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(excluding sequence from neighboring open reading frames) to
200 bases downstream from the transcription start site. Binding sites
that were identified by FIMO at a P-value < 0.005 were considered in
subsequent analyses. Two models of binding were considered. For
each TF, the strong site model ranks promoters containing one or
more significant binding sites according to the negative log P-value
of the most significant site. The weak site model ranks promoters
containing one or more significant binding sites by the sum of
the negative log P-values for all significant sites in a promoter. If a
promoter is ranked in the top K promoters for one or both binding
models, it is considered to be supported by binding potential evi-
dence. Reasonable values of K are determined on a TF by TF basis.
For each TF, K is set such that a certain fraction of ChIP interactions
for that TF are recovered in the top K ranked promoters. Three
different binding potential stringencies were considered using this
formulation: high (;10% ChIP interactions recovered), medium
(;33% ChIP interactions recovered), and low (;50% ChIP inter-
actions recovered). At the high, medium, and low stringencies, the
random baselines (percentage of random TF-gene pairs supported
by binding potential) are 6.4%, 22.1%, and 36.8%, respectively.
This process was repeated using the curated PWMs from the ScerTF
database (Spivak and Stormo 2012), for which the random base-
lines at the high, medium, and low stringencies are 5.7%, 20.4%,
and 35.9%, respectively.

NetProphet

The NetProphet method for inferring a transcriptional network
from a gene expression data set combines the scores from two in-
dependent analyses. The first analysis is a sparse linear model that
predicts the expression of each gene as a function of the expression
of one or more transcriptional regulators. The second analysis as-
sesses differential expression on each expression profile in the data
set in which a specific regulatory gene has been perturbed (via
knockout, knockdown, or overexpression) compared to wild-type
control in the same growth condition. The two analyses are com-
bined through a weighted model averaging scheme.

LASSO regression is used to learn a sparse linear model that
predicts the jth gene’s expression level in measurement k, Yjk, from
a weighted combination of the regulators’ expression levels in
measurement k:

Yjk ¼ +
i

Bij � Xik;

where the Xik is the expression level of TF i in measurement k and
Bij is the coefficient that the LASSO procedure learns to describe
the influence of regulator i on gene j. (In other words, the Xik are the
subset of the Yjk for which gene i encodes a TF.) LASSO chooses the
influence coefficients that minimize the sum of the squared pre-
diction errors and a term called the L1 penalty:

argmin
B

+
jk

(Yjk � ( +
i

Bij �Xik))2 þ t +
ij

jBijj:

The L1 penalty is a ‘‘shrinkage term’’ that keeps the model sparse to
avoid overfitting. The L1 penalty is scaled, relative to the sum of
squared prediction errors, by a parameter t. When t is 0, the opti-
mization of B is equivalent to ordinary least squares regression. As
t grows, components of B are forced to zero, yielding a sparser so-
lution. In this application, we disallow autoregulation by prohib-
iting Bij from becoming nonzero when regulator i is encoded
by gene j. Unlike the typical LASSO regression carried out by
Inferelator, NetProphet uses a single, global weighting parameter

t for all target genes. This reduces the number of learned parame-
ters by more than 5000, thereby reducing the risk of overfitting
the data. Parameter t is determined using 10-fold cross-validation,
minimizing predictive error. We handle gene perturbations in the
regression by omitting measurements in which gene j has been
perturbed when fitting the coefficients Bij.

DE analysis is used to rank potential regulator-target inter-
actions based on the estimated probability that each gene changes
expression in response to the regulator deletion according to a log-
odds statistic:

LDið jÞ ¼ log
Pr FDið jÞ 6¼ 0ð Þ
Pr FDið jÞ ¼ 0ð Þ

� �
;

where FDi( j) is the true log2-fold change of gene j in the wild type
relative to a Di background. We compute LDi( j) using LIMMA,
which estimates the posterior log odds score by way of a moderated
t-statistic in which gene specific variances are shrunk toward
a common value as described (Smyth 2004, 2005). A signed con-
fidence score Dij is assigned to each potential regulator-target in-
teraction as follows:

Dij ¼
LDi( j) � sgn(YDi( j)) LDi( j) > 0

0 otherwise

�
:

Dij represents the signed confidence score that regulator i directly
regulates gene j, and YDi(j) is the observed log2-fold change of
gene j in the wild type relative to a Di background. The sign of Dij

indicates whether regulator i is repressing or activating gene j.
When it is more likely that gene j’s expression is unchanged in
the Di background (i.e., LDi(j) < 0), the interaction is assigned a
confidence score of 0. If the gene expression compendium con-
tains no measurements for the Di strain, Dij is set to zero for all j.

LASSO regression and DE analyses are combined using
a model averaging scheme. Before combining the score matrices
B (from regression) and D (from differential expression), each
matrix is normalized such that its values lie on the interval
[�1,1]. After normalization the combined scores, Mij, are com-
puted as follows:

Mij ¼ Bij

�� ��þ cb

� �
� Dij

�� ��þ cd

� �
� v

R(Bij ;Dij);

where cb and cd are constants that prevent Mij from becoming zero
when only one of the two individual scores is zero. The product of
the two analyses is scaled by v, which is a six-component vector
that weights the average differently according to the signs of Bij

and Dij which indicate the predicted regulatory influence (acti-
vating, repressing, or no influence). v is indexed as a function of Bij

and Dij as follows:

R(Bij;Dij) ¼

I Bij > 0; Dij > 0
II Bij < 0; Dij > 0
III Bij < 0; Dij < 0
IV Bij > 0; Dij < 0
B Bij 6¼0; Dij¼0
D Bij¼0; Dij 6¼0

8>>>>>><
>>>>>>:

:

In the absence of training data, cb and cd are set to 0.01 and v is set
to 1. Otherwise, the offset coefficients cb and cd and the weight vector
v are learned by cross-validation on the training data (labeled
interactions), maximizing the area under the precision recall
curve.
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GO enrichment analysis to detect novel TF function

GO process enrichment was performed using R Bioconductor
package GOstats (Falcon and Gentleman 2007). GO process en-
richment was performed for each TF’s targets as predicted by
NetProphet, using the top 10,000 predicted targets. GO process
enrichment was also performed over the set of targets identified for
each TF by curated ChIP studies. Processes that received a P-value
of 0.01 or less by NetProphet predictions and were not enriched
(P-value > 0.05) by ChIP data were considered to be novel relative
to ChIP. The novel processes identified for each TF were manually
curated to remove redundant and generic processes.

Expression profiling of Dcbf1

The wild-type and Dcbf1 strains (see Methods) were assessed for
acid phosphatase expression using a QuantiGene assay (Affyme-
trix). Briefly, 4-mL YPD overnight cultures were inoculated from
single colonies. The following day, cells were washed and trans-
ferred to 50 ml of media containing low or high levels of inorganic
phosphate (YPD or SC +10 mM Pi, respectively). The high phos-
phate media, SC + 10 mM Pi, was made according to the recipe
described in Zhou and O’Shea (2011). Cultures were inoculated at
a density selected to achieve OD between 0.3 and 0.6 the following
day, based on the doubling times determined for each strain/media
pairing. Cells were harvested the following day, and selected RNAs
were quantified using QuantiGene (Affymetrix) (see Supplemental
Methods).

Raw probe counts were background-normalized according to
the negative control probes (Affymetrix), and the background
corrected counts of PHO11+PHO12 (which could not be distin-
guished) and PHO5 were normalized by the geometric mean of the
background-corrected counts of three housekeeping genes: TFC1,
UBC6, and PDA1. The results of technical duplicates were averaged.

Expression profiling of Deds1

Four-milliliter YPD overnight cultures of wild type (BY4741), eds1D

(YBR033W), and eds1D complemented with EDS1 under the con-
trol of the tet02 promoter were inoculated from single colonies.
The following day, cells were washed and transferred to 30 ml SC +
2% glucose, grown overnight, synchronized to OD 0.5, and grown
for 4 h to approximately OD 0.8. After harvesting by centrifugation,
the cells were lysed. Crude lysate was quantified using QuantiGene
(Affymetrix) (see Supplemental Methods).

Background correction and normalization of EDS1, LYS4, LYS9,
CTP1, ACO2, and LYS12 were as described above.

Data access
No data suitable for submission to databases were produced;
however, the full QuantiGene data sets from which the data in
Figures 4 and 5B were extracted are provided as supplemental
spreadsheets.
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