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Abstract: Functional Near-Infrared Spectroscopy (fNIRS) is a hemodynamic modality in
human cognitive workload assessment receiving popularity due to its easier implementation,
non-invasiveness, low cost and other benefits from the signal-processing point of view. Wearable
wireless fNIRS systems used in research have promisingly shown that fNIRS could be used in
cognitive workload assessment in out-of-the-lab scenarios, such as in operators’ cognitive workload
monitoring. In such a scenario, the wearability of the system is a significant factor affecting user
comfort. In this respect, the wearability of the system can be improved if it is possible to minimize an
fNIRS system without much compromise of the cognitive workload detection accuracy. In this study,
cognitive workload-related hemodynamic changes were acquired using an fNIRS system covering
the whole forehead, which is the region of interest in most cognitive workload-monitoring studies.
A machine learning approach was applied to explore how the mean accuracy of the cognitive workload
classification accuracy varied across various sensing locations on the forehead such as the Left, Mid,
Right, Left-Mid, Right-Mid and Whole forehead. The statistical significance analysis result showed
that the Mid location could result in significant cognitive workload classification accuracy compared
to Whole forehead sensing, with a statistically insignificant difference in the mean accuracy. Thus,
the wearable fNIRS system can be improved in terms of wearability by optimizing the sensor location,
considering the sensing of the Mid location on the forehead for cognitive workload monitoring.

Keywords: sensor location optimization; Functional Near-Infrared Spectroscopy (fNIRS); hemodynamics;
wireless wearable fNIRS; machine learning; linear SVM; cognitive workload monitoring

1. Introduction

The invention of the wheel introduced a new role for humankind, the operator. This job
requires humans to take into account the current state of the system being operated and the current
environmental situation the system is in, and to then perform cognitively assessed actuating commands
to operate the system effectively and safely. From riding a bicycle to operating an aircraft, these jobs
exert various levels of cognitive load on the operator depending on the systems. The safety of the
human users accompanying the operator is highly dependent on the continuous cognitive effort of the
operator, which is also denoted as the cognitive workload on the operator. For instance, a study on
aviation crashes [1] based on 329 major airline crashes claimed that 38% of the crashes were probably
caused due to pilot error. Thus, ensuring a balanced and continuous human operator’s cognitive effort
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via monitoring an operator’s cognitive workload could improve the safety of such mission-critical
operations by reducing the probability of human error.

In an effort to improve safety by assessing and balancing operators’ cognitive workload, subjective
tests, such as [2] NASA-TLX, have been used widely, which can only be performed after the operator
has completed the task and based on his experience during the task. The technological advancement
in the modalities named Functional Magnetic Resonance Imaging (fMRI), Electroencephalography
(EEG) and Functional Near-Infrared Spectroscopy (fNIRS) in about the last three decades brings a new
dimension to cognitive workload monitoring. Now, it can be even monitored while the operator is
performing the task. Several studies [3–6] on cognitive workload assessment have already promisingly
showed that physiological signals acquired using fMRI, EEG, and fNIRS or a combination of these
modalities [7,8], which are faster than the subjective tests, can be used to monitor cognitive workloads.

The increased neural activity [9] due to the increased cognitive workload increases the oxygen
consumption in the cerebral cortex, which is later regulated by the brain’s control mechanism called
glial regulation [10]. This blood oxygen-dependent phenomenon can be measured using fMRI [11].
Although fMRI is considered as the de facto standard in detecting cerebral regional blood oxygen
concentration change, the technological limitations such as the huge size, high cost, high system
complexity, high artefact susceptibility, and low temporal resolution greatly reduce its usability in
out-of-the-lab environments. On the other hand, fNIRS is a less expensive technology with higher
portability and higher temporal resolution but with a comparable result to fMRI [12–16] in the detection
of local cerebral oxygenation changes, although there is some compromise of the signal-to-noise ratio
(SNR) and spatial resolution. In the case of EEG application in cognitive workload assessment [5,17,18],
though it is capable of a high temporal resolution, it is less portable and less immune to ambient
electrical noise. This drawback due to electrical noise is not present in fNIRS due to its optical nature
of technological implementation.

In research into operators’ cognitive workload assessment, fNIRS has successfully been used in
various studies in actual or simulated environments, such as car driving [19,20], train driving [21] and
flight simulation [22]. The recent studies relating to cognitive tasks [23,24] demonstrated that even
wearable fNIRS systems can detect hemodynamic changes associated with the cognitive workload.
Moreover, the wearability of the fNIRS system enables such experiments to be conducted in real-life
scenarios, such as during walking, driving a vehicle and outdoor navigation [19,23–26]. These studies
are highly influential in the field of engineering applications utilizing the knowledge from cognitive
science via fNIRS and also experimentally prove that fNIRS can be implemented in out-of-the-lab
situations. All the above experiments were conducted using systems that sensed the whole forehead
for cognitive workload detection. In that case, the wearability of the system would significantly
degrade the applicability of the modality. In other words, wearing a system on the forehead for several
minutes or hours may be acceptable in the case of experiments. However, in the case of the practical
application of fNIRS for operators’ cognitive workload detection during their whole-day working
period, the wearability of the system with respect to the system dimensions, weight and duration of
operation on a single battery recharge are challenges to be taken into account. The research question is
how to improve the wearability of fNIRS devices for lengthy cognitive workload monitoring while
maintaining the assessment accuracy. In this regard, we hypothesized that the size of a wearable
fNIRS system could be minimized while maintaining a high cognitive workload detection accuracy.
The graphical abstract of this study is depicted by Figure 1.
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Figure 1. Graphical abstract of the study.

During the cognitive load, the portion of the cognitive system that retains the information in
the short term, necessary for processing to accomplish the cognitive tasks, is known as the working
memory [27], which is widely assumed to be served by the Prefrontal Cortex (PFC) along with central
executive function. Several studies related to cognitive function conform with this assumption from the
observation of high hemodynamic activities in the PFC during the cognitive workloads [3,9,14,28,29].
This observation of regional cerebral activation during cognitive tasks leads to the implementation of the
fNIRS modality in assessing cognitive workload [6,30–32] by sensing the PFC optically. These studies
focused mainly on anatomically exploring the activation of the brain region by various cognitive
processes at deep or shallow depth from the skin. Thus, in such studies, the optimization of sensor
locations regarding the wearability of the fNIRS system was not considered. Thereafter, cognitive
workload assessment studies focused on fNIRS typically sense the entire front area to identify the
workload. To the best of the knowledge of the authors, there is no study addressing this problem of
optimization and determining whether it is necessary to sense the whole forehead for the successful
detection of cognitive workloads. Furthermore, the compromise of the precision of cognitive workload
detection if only a certain smaller portion of the forehead is sensed remains unaddressed.

2. Materials and Methods

2.1. Participants

Eight healthy volunteers (six males and two females), with no history of neurovascular and
cognitive disorders, participated in this study. The study was approved by the Institutional Review
Board (IRB-19-0091) of Florida International University, and signed informed consent was obtained
from all the subjects prior to the study.

2.2. Experimental Design

To induce a cognitive workload in human subjects, the n-back task is a widely used [6,7,28]
paradigm related to cognitive study in research, which was first demonstrated by Kirchner, W.K. [33].
In this paradigm, the subject observes a series of events during the testing period. If any of the events
match with n-events before then, the subject provides feedback, where n could be 1, 2, 3 and so forth,
depending on the requirement. As the target of this study is to explore how the detection accuracy for
cognitive workload varies due to the sensing location on the human forehead, a moderate level of
cognitive workload induction was applied, which is assumed to be represented by the 2-back test [34].
A free, open-source piece of software [35] named “Brain Workshop” was used to simulate the positional
2-back task, where a solid colored square changed its position randomly within a 3-by-3 grid every
two seconds (Figure 2 depicts this task paradigm). If the current position of the square matched its
position two events before, the subject pressed a button on the keyboard, and they did nothing if the
position did not match. In each session of recording, there were 24 events of the positional 2-back
task, which spanned 48 s, and afterward, there was 25 s of relaxing, when the subjects did nothing.
This relaxing period was considered as the Rest state [7]. The recording of each session started 10 s
prior to the start of the 2-back task, and this 10 s was used as the baseline of the diffused optical
signal in the conversion of the absorption of optical signals to hemodynamic change. Each subject
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did 10 such sessions, where the subjects relaxed for about 30 s between the sessions, and during these
periods, data were not recorded and the subjects were free to move. The sessions with less than 90%
accuracy for 2-back task performance were rejected during the recording [7], assuming less cognitive
involvement of the subject in the task.
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Figure 2. Positional 2-back test. Each event is 2 s long, and the task state lasts for 48 s. Afterward,
a 25 s Rest state followed, when the subjects did not move and remained visually affixed to the blank
computer screen.

2.3. Data Acquisition and Signal Processing

A wearable wireless fNIRS system developed at the Human Cyber-Physical Systems Lab at Florida
International University was used for data acquisition in the experiment. The system architecture
was based on the sensor system developed in [36–38] and modified to accommodate more channels
required to sense the whole forehead. The improved system consists of three light-emitting diodes
(LED) as a source of near-infrared (NIR) light, capable of multiwavelength (770 and 850 nm) emission,
and eight photodetectors (PD) as light detectors, where the source–detector distance is 3 cm, with 0.3 cm
variability. The differential path length (DPF) was 6.2 cm for 770 nm and 5.1 cm for 850 nm [39].
The LED and PD together form twelve channels for sensing, which are marked by channel numbers in
Figure 3a. The sensitivity map for the depicted channel arrangement is presented in Figure 3b, derived
from Homer2 Atlas Viewer [40,41]. The system covers the whole forehead for sensing, which is the
region of interest (ROI) in this study. This ROI is subdivided into five sub-locations named Left, Mid,
Right, Left-Mid and Right-Mid. Channels 1 to 4 sense the Left location on the forehead, Channels 5 to 8
sense the Mid location on the forehead, and the remaining Channels 9 to 12 sense the Right location on
the forehead. The locations stated as Left-Mid and Right-Mid consist of Channels 1 to 10 and Channels
3 to 12, respectively. The location name for the whole forehead sensing area is Whole in subsequent
descriptions. Each channel was sampled at a 25 Hz sampling rate. Additionally, the headband that
houses the system is equipped with a nine-channel inertial measurement unit (IMU) and records the
movement data concurrently with NIR data. IMU data were checked immediately after each session
from each subject for movements during the recording, and the sessions that showed movements were
discarded. The raw NIR signals were low-pass filtered with a third-order Butterworth bandpass filter
with a 0.01–0.5 Hz cut-off frequency [42], and afterward, a two-second windowed moving-average
filter was applied to further remove any physiological interference in the detected NIR signal, such as
Mayer waves, respiration and heart rate [43,44]. Afterward, the modified Beer–Lambert [45] law was
applied to convert the multiband raw NIR signal to oxygenation change signals, known as the change
in oxygenated hemoglobin (∆HbO2) and deoxygenated hemoglobin (∆HbR).
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and LED are the same, 3 cm. The distances between the adjacent detectors are 5.5 cm horizontally and
4.5 cm vertically. Similarly, the distance between adjacent LEDs is 5.5 cm. (b) Sensitivity map for the
depicted channel arrangement.

To study how the workload detection accuracy varied with the length of sensing period along
with the sensing location on the forehead, the oxygenation change signals were segmented with
various window lengths, such as 5, 10, 20, 25 and 48 s [7]. There was about 50% overlap [7] in the
windowing when the segmentation window length was less than the whole period of the 2-back or Rest
state. The overlapping is assumed to be necessary to reduce inter-subject variability in the statistical
temporal features of the signal [7,46]. After segmentation, each signal segment was labelled as 2-back
or Resting-state accordingly.

This segmentation process resulted in n segments of 2-back state signal and m segments of
resting-state signals. Here the values of n and m were dependent on the segmentation window lengths
used in this study. For each session of any subject, it resulted in (n, m) = (1, 11) when segmenting
with a 5 s window, (n, m) = (9, 5) for a 10 s window, (n, m) = (4, 2) for a 20 s window, (n, m) = (2, 1)
for a 25 s window and (n, m) = (1, 1) when using the whole period of each state. These values of n
and m also signify the number of samples in each class at different segmentation window lengths.
All sessions of each subject, after segmentation and appropriate class-label assignment, resulted in 290,
140, 60, 30 and 20 samples for the segmentation window lengths of 5, 10, 20 and 25 s and the whole
state period, respectively.

2.4. Feature Extraction

From each segmented hemodynamic change signal sample, commonly used statistical features
were extracted, such as the mean [47,48], variance [49], slope [47,48] of polynomial fit, skewness [49,50],
kurtosis [49,50] and correlation [7] of ∆HbO2 and ∆HbR. The extraction of these features from each
channel resulted in a total of 11 features per channel for any samples under any segmentation window
length. As there were various numbers of channels involved in sensing different locations on the
forehead, various numbers of features resulted from each sample depending on the sensing location
on the forehead. For example, there were 44 features for the Left, Mid and Right locations, whereas
there were 110 features for the Left-Mid and Right-Mid locations for any length of segmentation.
As there were 12 channels involved in the whole forehead location, there were 132 features recorded in
the location denoted by Whole. The supplementary file to this article contains all the feature values
segregated according to different sensing locations and segmentation window lengths.

2.5. Feature Selection and Classification

In the case of the fNIRS-based classification problem, several classification methods have been
used, such as Discriminant analysis, Support Vector Machine (SVM), Artificial Neural Network (ANN)
and so on [50–56]. As the pivotal point of the study was to assess the cognitive workload monitoring
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accuracy variability using wearable fNIRS at various sensing locations on the forehead, the speed of
the classifier was a crucial property for consideration. Thus, the Linear SVM, which had already been
used in several other fNIRS-based classification studies [7,52,57], was selected as a classifier in this
study. In this respect, the generic implementation of Linear SVM in the MATLAB platform with a box
constraint of 1 and auto kernel scale was used for classification. For feature selection, two algorithms
were used, namely, the Sequential Forward Selection (SFS) Wrapper algorithm [58] for feature subset
selection and Relief algorithm [59,60]. Each of these algorithms has its own merits with respect to the
statistical relevance (Relief) of the features to the classes [59] and the interaction of the training feature
set (SFS) with the classifier algorithm [58]. Thus, both of the selected feature sets returned by these two
algorithms were individually used in the classification using the linear SVM. The classification with
the best accuracy among these two classification results was used in the statistical analysis. In this
respect, as the SFS claims to return an optimal feature subset by heuristic search, the whole subset of
the returned features was used in classification. On the other hand, as the Relief algorithm instead
returns the ranks and weights for all the features, only the features with positive weights were used in
the classification.

In the classification process, ten-fold testing cross-validation was applied [61]. In other words,
there were 240 datasets resulting from segmentation, and in each of the classification processes on these
datasets, the dataset was partitioned into ten subsets using a random selection of the observations
for each partition. Then, the SVM was trained using the nine subsets of this dataset, leaving out
the remaining one subset for testing. This leave-out subset is never seen by the classifier during the
training phase. The training of the SVM was performed using ten-fold training cross-validation using
those nine subsets of the partitioned data. Afterward, the trained SVM classifier was used to test
the classification accuracy using the subset not used in training. Subsequently, this same training
and testing procedure was applied on the other remaining nine subsets of this dataset in a nested
cross-validation. The final accuracy of the classification on this dataset was calculated as the mean of
these ten testing accuracies.

2.6. Statistical Analysis

For all the eight subjects, cognitive workload classification accuracies were calculated for the
sensing locations of Left, Mid, Right, Left-Mid, Right-Mid and Whole, under several segmentation
windows. The mean classification accuracies for each location across all the subjects were different
from each other. Thus, to find the statistical significance of the differences in the mean classification
accuracies for all subjects for each location (Left, Mid, Right, Left-Mid and Right-Mid) from the accuracy
for the whole forehead location (Whole), a two-sample t-test was applied with a 5% significance level,
which decided whether the means were statistically equal or not at that significance level.

3. Results and Discussion

All the classification accuracies from all the datasets are presented in Table 1. For the 5 s
segmentation window, the lowest mean accuracy for all the subjects was 83.4%, with a standard
deviation of 6.7%, which occurred when only the Right location was used. On the other hand,
the highest mean accuracy occurred when the Whole forehead dataset was used to classify, which was
94.0%, with a 3.9% standard error. Like in the 5 s segmentation window, the Right location in all the
other segmentation windows also resulted in the lowest classification accuracies, which were 84.0%,
86.5%, 90.8% and 95.0% for the 10, 15, 20, 25 and 48 s window lengths, respectively. For the 48 s
segmentation window, the Left location also resulted in the lowest classification accuracy, like the
Right location, but with a higher standard deviation, which was 6.5%. In the case of the highest
mean accuracy of classifications beyond the 5 s segmentation window length, the Left-Mid location
yielded the highest mean accuracy for the 20, 25 and 48 s segmentation window lengths, which were
93.6%, 95.9 and 98.3% respectively, and for the remaining 10 s segmentation window length, Right-Mid
resulted in the highest mean accuracy of classification, which was 93.0%. The other details of the
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classification process, such as the F1 score, sensitivity, specificity and precision are listed in the table in
Appendix A for each classification performed in this study. Similar to the mean classification accuracy
results from the calculation process mentioned before, the classifier details described in Appendix A
were also calculated.

Table 1. Classification accuracies along with means and standard deviations (SDs) across all subjects
for each location on the forehead.

Classification Accuracy (%)

Left Mid Right Left-Mid Right-Mid Whole

5 s
window

Sub1 82.4 88.3 84.5 89.3 89.0 92.1
Sub2 87.2 95.5 80.0 98.3 97.6 98.6
Sub3 80.0 87.2 72.1 87.2 90.0 91.4
Sub4 84.1 76.9 85.2 83.8 85.2 89.3
Sub5 94.1 92.1 93.1 96.9 99.3 98.6
Sub6 91.4 97.9 87.6 96.2 96.9 98.3
Sub7 90.0 88.9 87.9 92.4 93.4 93.1
Sub8 78.3 84.1 77.2 90.7 88.3 90.3

Mean ± SD 85.9 ± 5.7 88.9 ± 6.6 83.4 ± 6.7 91.9 ± 5.0 92.5 ± 5.1 94.0 ± 3.9

10 s
window

Sub1 82.9 92.1 85.0 91.4 89.3 91.4
Sub2 88.6 94.3 90.7 98.6 93.6 99.3
Sub3 79.3 70.7 72.1 86.4 89.3 81.4
Sub4 89.3 75.0 80.0 86.4 90.7 85.7
Sub5 94.3 91.4 96.4 97.1 99.3 97.9
Sub6 91.4 97.9 85.0 97.1 97.9 98.6
Sub7 90.7 92.2 82.2 93.6 94.4 92.7
Sub8 84.3 87.1 80.7 87.9 90.0 91.4

Mean ± SD 87.6 ± 5.0 87.6 ± 9.6 84.0 ± 7.3 92.3 ± 5.0 93.0 ± 3.9 92.3 ± 6.3

20 s
window

Sub1 86.7 95.0 83.3 88.3 90.0 93.3
Sub2 93.3 100.0 93.3 98.3 95.0 95.0
Sub3 83.3 81.7 70.0 86.7 85.0 85.0
Sub4 93.3 70.0 86.7 91.7 93.3 90.0
Sub5 98.3 98.3 93.3 98.3 100.0 100.0
Sub6 96.7 100.0 90.0 96.7 96.7 93.3
Sub7 86.6 94.7 85.2 95.2 94.7 95.2
Sub8 88.3 93.3 90.0 93.3 88.3 93.3

Mean ± SD 90.8 ± 5.4 91.6 ± 10.5 86.49 ± 7.6 93.6 ± 4.4 92.9 ± 4.8 93.2 ± 4.3

25 s
window

Sub1 100.0 93.3 83.3 96.7 100.0 100.0
Sub2 96.7 100.0 96.7 100.0 100.0 100.0
Sub3 90.0 83.3 76.7 83.3 80.0 83.3
Sub4 93.3 86.7 90.0 93.3 93.3 90.0
Sub5 100.0 100.0 100.0 100.0 100.0 96.7
Sub6 86.7 100.0 93.3 100.0 100.0 100.0
Sub7 96.7 96.7 96.7 97.5 96.7 93.3
Sub8 93.3 90.0 90.0 96.7 93.3 90.0

Mean ± SD 94.6 ± 4.7 93.8 ± 6.5 90.8 ± 7.7 95.9 ± 5.6 95.4 ± 6.9 94.2 ± 6.1

48 s
window

Sub1 100.0 100.0 90.0 100.0 100.0 100.0
Sub2 95.0 100.0 95.0 100.0 100.0 100.0
Sub3 85.0 90.0 90.0 95.0 90.0 90.0
Sub4 100.0 90.0 95.0 100.0 95.0 100.0
Sub5 100.0 100.0 100.0 100.0 100.0 100.0
Sub6 85.0 100.0 95.0 100.0 100.0 100.0
Sub7 95.0 90.0 100.0 96.7 95.0 95.0
Sub8 100.0 95.0 95.0 95.0 100.0 100.0

Mean ± SD 95 ± 6.5 95.6 ± 5.0 95 ± 3.8 98.3 ± 2.4 97.5 ± 3.8 98.1 ± 3.7
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Regarding the statistical analysis aforementioned, the two-sample t-test was used to test the
statistical significance of the differences in the mean classification accuracies for each location (Left, Mid,
Right, Left-Mid and Right-Mid) from that for the whole forehead location, denoted by Whole. The t-test
hypothesis-testing decisions indicated that the mean classification accuracies were statistically different
from the mean classification accuracy of the location Whole in the case of only the 10 and 20 s
segmentation window lengths for location Right and the 5 s segmentation window length for locations
Left and Right. In other words, except for these four cases, the mean classification accuracy for any
location or segmentation window lengths, statistical significance was not found for the difference in the
mean classification accuracies. Moreover, these results indicate that the Mid location, which is one of
the three smallest sensing locations (Left, Mid, Right), resulted in a mean classification accuracy with
a statistically insignificant difference, compared to the largest location Whole for any segmentation
window lengths.

The mean classification accuracies are depicted by the bar plot in Figure 4 for a qualitative
assessment of how the classification accuracies varied along with the change in the sensing location
on the forehead, which are grouped into segmentation windows. The error bars in the plot show the
standard errors of the mean accuracies, which were estimated by dividing the standard deviation by
the square root of the number of subjects in this study. From this plot, it is apparent that the differences
in the mean accuracies between the largest location Whole and the other smaller locations were reduced
with the increase in the segmentation window length.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 17 

 

Mean ± SD 95 ± 6.5 95.6 ± 5.0 95 ± 3.8 98.3 ± 2.4 97.5 ± 3.8 98.1 ± 3.7 

Regarding the statistical analysis aforementioned, the two-sample t-test was used to test the 

statistical significance of the differences in the mean classification accuracies for each location (Left, 

Mid, Right, Left-Mid and Right-Mid) from that for the whole forehead location, denoted by Whole. 

The t-test hypothesis-testing decisions indicated that the mean classification accuracies were 

statistically different from the mean classification accuracy of the location Whole in the case of only 

the 10 and 20 s segmentation window lengths for location Right and the 5 s segmentation window 

length for locations Left and Right. In other words, except for these four cases, the mean classification 

accuracy for any location or segmentation window lengths, statistical significance was not found for 

the difference in the mean classification accuracies. Moreover, these results indicate that the Mid 

location, which is one of the three smallest sensing locations (Left, Mid, Right), resulted in a mean 

classification accuracy with a statistically insignificant difference, compared to the largest location 

Whole for any segmentation window lengths. 

The mean classification accuracies are depicted by the bar plot in Figure 4 for a qualitative 

assessment of how the classification accuracies varied along with the change in the sensing location 

on the forehead, which are grouped into segmentation windows. The error bars in the plot show the 

standard errors of the mean accuracies, which were estimated by dividing the standard deviation by 

the square root of the number of subjects in this study. From this plot, it is apparent that the 

differences in the mean accuracies between the largest location Whole and the other smaller locations 

were reduced with the increase in the segmentation window length. 

 

Figure 4. Mean accuracy of classifications across various location for different segmentation window 

lengths. The standard errors of the mean classification accuracies are presented by the error bars. The 

four classification accuracy means whose differences are statistically significant are highlighted for 

significance with stars. 

Optical methods, such as fNIRS, which can reach a depth of a few centimeters only from the skin 

to the human brain, could only sense hemodynamic changes of the brain tissue that are closer to the 

cerebral surface, such as the PFC under the forehead. The PFC is one of the most functionally correlated 

subsystems [62] among other cerebral subsystems such as the Hippocampal Formation (HF), Inferior 

Parietal Lobule (IPL) and so on, which form the default network with respect to cognitive states. 

Moreover, research based on other methods such as fMRI and Positron Emission Tomography (PET) 

showed that the Medial PFC in this network is the most involved region of the PFC related to the 

cognitive states [63]. In this study, the n-back task was used to induce cognitive workload, which 

entails the involvement of the brain function named working memory. However, the outcome of any 

task execution by the human brain is accompanied by the other parts of human cognition such as 

memory retrieval, relational reasoning and multitasking behaviors. Other studies suggest that the 

frontopolar cortex (FPC), which we assumed to be sensed by the Mid location depicted in this study, 

is responsible for carrying out these parts of human cognition [64–67]. In congruence with those 

physiological study-based findings, the statistical results presented in this study also showed that 

sensing the Mid location only can result in significant accuracy in cognitive workload classification 

Figure 4. Mean accuracy of classifications across various location for different segmentation window
lengths. The standard errors of the mean classification accuracies are presented by the error bars.
The four classification accuracy means whose differences are statistically significant are highlighted for
significance with stars.

Optical methods, such as fNIRS, which can reach a depth of a few centimeters only from the
skin to the human brain, could only sense hemodynamic changes of the brain tissue that are closer
to the cerebral surface, such as the PFC under the forehead. The PFC is one of the most functionally
correlated subsystems [62] among other cerebral subsystems such as the Hippocampal Formation (HF),
Inferior Parietal Lobule (IPL) and so on, which form the default network with respect to cognitive
states. Moreover, research based on other methods such as fMRI and Positron Emission Tomography
(PET) showed that the Medial PFC in this network is the most involved region of the PFC related to the
cognitive states [63]. In this study, the n-back task was used to induce cognitive workload, which entails
the involvement of the brain function named working memory. However, the outcome of any task
execution by the human brain is accompanied by the other parts of human cognition such as memory
retrieval, relational reasoning and multitasking behaviors. Other studies suggest that the frontopolar
cortex (FPC), which we assumed to be sensed by the Mid location depicted in this study, is responsible
for carrying out these parts of human cognition [64–67]. In congruence with those physiological
study-based findings, the statistical results presented in this study also showed that sensing the Mid
location only can result in significant accuracy in cognitive workload classification compared to using
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the location Whole on the forehead. Thus, from the system design point of view, the fNIRS system
could be minimized to sense only the Mid location on the forehead with a statistically insignificant
compromise of the cognitive workload detection accuracy. Similarly to the Mid location, the other two
smallest sensing locations, Left and Right, could also be targeted for cognitive workload detection using
a minimized fNIRS system but with higher latencies for obtaining significantly comparable accuracy.

4. Conclusions

The fNIRS is a promising modality for the ubiquitous monitoring of human cognitive workload.
For the potential deployment of fNIRS, device design optimization regarding sensor position to boost
wearability toward this aim of cognitive workload tracking is essential. In this respect, statistically
significant classification accuracy for cognitive workloads can be achieved by sensing the Mid location
on the human forehead rather than the entire forehead using fNIRS. This finding can be utilized
by researchers to optimize their wearable wireless fNIRS systems, which are resource and power
constrained by nature, as well as user comfort being a concern. While the purpose of this study was to
investigate how the cognitive workload monitoring accuracy varied across the sensing locations on the
forehead, the variability arising from the human subjects was assumed to be minimal, and the number
of participants in this study was decided by considering common practice in other relevant studies.
Future studies may investigate whether there are any subject-dependent variabilities in sensor location
optimization for wearable fNIRS system design. The extracerebral tissue layer signal interferences were
assumed to be minimal and similar in both the 2-back and resting-state signals. A future study may
utilize a short separation channel to investigate these interferences. In this study, only the immobile
state of the subject was considered. Thus, another promising future direction might be to investigate
the effect of motion on sensor location optimization.
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Table A1. Details of Classifiers (Subjects 1–4).
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05 second
window

Left 82.4 86 89 72 84 87.2 90 94 75 86 80 89.8 87 87 93 84.1 88 89 75 86
Mid 88.3 90 91 80 89 95.5 99 99 96 98 87 89.8 87 87 93 76.9 88 89 75 86

Right 84.5 90 91 80 89 80.0 99 99 96 98 72 80.1 89 44 73 85.2 88 89 75 86
Left-Mid 89.3 92 94 81 89 98.3 99 99 96 98 87 89.8 87 87 93 83.8 88 89 75 86

Right-Mid 89.0 91 93 82 90 97.6 99 99 96 98 90 89.8 87 87 93 85.2 88 89 75 86
ALL 92.1 90 91 80 89 98.6 99 99 96 98 91 89.8 87 87 93 89.3 92 94 82 90

10 second
window

Left 82.9 94 97 82 91 88.6 99 100 96 98 79 89.0 83 92 95 89.3 90 92 76 88
Mid 92.1 94 97 82 91 94.3 99 100 96 98 71 79.9 89 38 73 75.0 90 92 76 88

Right 85.0 94 97 82 91 90.7 99 100 96 98 72 89.0 83 92 95 80.0 86 92 58 80
Left-Mid 91.4 94 97 82 91 98.6 99 100 96 98 86 89.0 83 92 95 86.4 90 92 76 88

Right-Mid 89.3 94 97 82 91 93.6 99 100 96 98 89 89.0 83 92 95 90.7 90 92 76 88
ALL 91.4 94 97 82 91 99.3 99 100 96 98 81 89.0 83 92 95 85.7 90 92 76 88

20 second
window

Left 86.7 92 93 75 91 93.3 99 100 95 98 83 92.1 100 60 85 93.3 94 95 85 94
Mid 95.0 92 93 75 91 100.0 99 100 95 98 82 92.1 100 60 85 70.0 94 95 85 94

Right 83.3 92 93 75 91 93.3 99 100 95 98 70 80.4 85 40 76 86.7 94 95 85 94
Left-Mid 88.3 93 95 75 91 98.3 99 100 95 98 87 92.1 100 60 85 91.7 94 95 85 94

Right-Mid 90.0 92 93 75 91 95.0 99 100 95 98 85 92.1 100 60 85 93.3 94 95 85 94
ALL 93.3 92 93 75 91 95.0 99 100 95 98 85 92.1 100 60 85 90.0 94 95 85 94

25 second
window

Left 100.0 97 95 100 100 96.7 100 100 100 100 90 90.6 95 60 87 93.3 97 100 80 93
Mid 93.3 97 95 100 100 100.0 100 100 100 100 83 90.6 95 60 87 86.7 97 100 80 93

Right 83.3 97 95 100 100 96.7 100 100 100 100 77 90.6 95 60 87 90.0 97 100 80 93
Left-Mid 96.7 97 95 100 100 100.0 100 100 100 100 83 90.6 95 60 87 93.3 97 100 80 93

Right-Mid 100.0 97 95 100 100 100.0 100 100 100 100 80 90.6 95 60 87 93.3 97 100 80 93
ALL 100.0 97 95 100 100 100.0 100 100 100 100 83 90.6 95 60 87 90.0 97 100 80 93

48 second
window

Left 100.0 100 100 100 100 95.0 100 100 100 100 85 97.4 100 90 95 100.0 100 100 100 100
Mid 100.0 100 100 100 100 100.0 100 100 100 100 90 97.4 100 90 95 90.0 100 100 100 100

Right 90.0 100 100 100 100 95.0 100 100 100 100 90 97.4 100 90 95 95.0 100 100 100 100
Left-Mid 100.0 100 100 100 100 100.0 100 100 100 100 95 97.4 100 90 95 100.0 100 100 100 100

Right-Mid 100.0 100 100 100 100 100.0 100 100 100 100 90 97.4 100 90 95 95.0 100 100 100 100
ALL 100.0 100 100 100 100 100.0 100 100 100 100 90 97.4 100 90 95 100.0 100 100 100 100
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Table A2. Details of Classifiers (Subjects 5–8).

Subject 5 Subject 6 Subject 7 Subject 8
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05 second
window

Left 94.1 98 97 96 98 91.4 97 97 95 97 90.0 94 94 90 95 78.3 83 83 70 82
Mid 92.1 98 97 96 98 97.9 97 97 95 97 88.9 94 94 90 95 84.1 88 92 71 84

Right 93.1 98 97 96 98 87.6 97 97 95 97 87.9 94 94 90 95 77.2 82 85 65 80
Left-Mid 96.9 98 97 96 98 96.2 97 97 95 97 92.4 94 94 90 95 90.7 93 94 85 91

Right-Mid 99.3 98 97 96 98 96.9 97 97 95 97 93.4 94 94 90 95 88.3 91 95 77 88
ALL 98.6 98 97 96 98 98.3 97 97 95 97 93.1 94 94 90 95 90.3 93 96 81 89

10 second
window

Left 94.3 96 96 92 96 91.4 94 94 86 93 90.7 96 97 87 94 84.3 87 91 66 84
Mid 91.4 94 93 88 94 97.9 98 99 94 97 92.2 96 97 87 94 87.1 87 91 66 84

Right 96.4 97 96 96 98 85.0 89 89 78 88 82.2 96 97 87 94 80.7 87 91 66 84
Left-Mid 97.1 98 98 96 98 97.1 98 99 94 97 93.6 96 97 87 94 87.9 92 93 78 90

Right-Mid 99.3 97 96 96 98 97.9 98 99 94 97 94.4 96 97 87 94 90.0 87 91 66 84
ALL 97.9 97 96 96 98 98.6 98 99 94 97 92.7 96 97 87 94 91.4 87 91 66 84

20 second
window

Left 98.3 99 98 100 100 96.7 98 98 95 98 86.6 97 95 95 98 88.3 96 98 85 94
Mid 98.3 99 98 100 100 100.0 98 98 95 98 94.7 97 95 95 98 93.3 96 98 85 94

Right 93.3 99 98 100 100 90.0 98 98 95 98 85.2 97 95 95 98 90.0 96 98 85 94
Left-Mid 98.3 99 98 100 100 96.7 98 98 95 98 95.2 97 95 95 98 93.3 96 98 85 94

Right-Mid 100.0 99 98 100 100 96.7 98 98 95 98 94.7 97 95 95 98 88.3 96 98 85 94
ALL 100.0 99 98 100 100 93.3 98 98 95 98 95.2 97 96 95 98 93.3 96 98 85 94

25 second
window

Left 100.0 100 100 100 100 86.7 92 95 70 90 96.7 98 97 90 100 93.3 98 100 90 97
Mid 100.0 100 100 100 100 100.0 100 100 100 100 96.7 98 97 90 100 90.0 98 100 90 97

Right 100.0 100 100 100 100 93.3 100 100 100 100 96.7 98 97 90 100 90.0 98 100 90 97
Left-Mid 100.0 100 100 100 100 100.0 100 100 100 100 97.5 98 97 90 100 96.7 98 100 90 97

Right-Mid 100.0 100 100 100 100 100.0 100 100 100 100 96.7 98 97 90 100 93.3 98 100 90 97
ALL 96.7 100 100 100 100 100.0 100 100 100 100 93.3 98 97 90 100 90.0 95 100 70 90

48 second
window

Left 100.0 100 100 100 100 85.0 100 100 100 100 95.0 97 95 90 100 100.0 90 90 100 90
Mid 100.0 100 100 100 100 100.0 100 100 100 100 90.0 97 95 90 100 95.0 90 90 100 90

Right 100.0 100 100 100 100 95.0 100 100 100 100 100.0 100 100 90 100 95.0 90 90 100 90
Left-Mid 100.0 100 100 100 100 100.0 100 100 100 100 96.7 97 95 90 100 95.0 90 90 100 90

Right-Mid 100.0 100 100 100 100 100.0 100 100 100 100 95.0 97 95 90 100 100.0 90 90 100 90
ALL 100.0 100 100 100 100 100.0 100 100 100 100 95.0 97 95 90 100 100.0 90 90 100 90
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