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Abstract: Bacterial pathogens as causative agents of infection constitute an alarming concern in
the public health sector. In particular, bacteria with resistance to multiple antimicrobial agents
can confound chemotherapeutic efficacy towards infectious diseases. Multidrug-resistant bacteria
harbor various molecular and cellular mechanisms for antimicrobial resistance. These antimicrobial
resistance mechanisms include active antimicrobial efflux, reduced drug entry into cells of pathogens,
enzymatic metabolism of antimicrobial agents to inactive products, biofilm formation, altered drug
targets, and protection of antimicrobial targets. These microbial systems represent suitable focuses
for investigation to establish the means for their circumvention and to reestablish therapeutic effec-
tiveness. This review briefly summarizes the various antimicrobial resistance mechanisms that are
harbored within infectious bacteria.
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1. Introduction

Bacteria as microbial pathogens are causative agents of life-threatening infectious dis-
eases [1]. Such pathogenic bacteria produce alarming numbers in terms of morbidity and
mortality outcomes [2,3]. One crucial avenue towards bacterial pathogenesis involves the
reduction in the therapeutic effects of antibacterial chemotherapy [4,5]. Throughout their
evolutionary history, bacterial pathogens have developed various means of resisting the
inhibitory and bactericidal consequences of antimicrobial agents [4]. Such antimicrobial
resistance systems involve the engagement of bacterial molecular and cellular-based ma-
chinery [6]. Interestingly, the selection of a bacterial variant with resistance to a single
antimicrobial agent frequently manifests the emergence of a multidrug resistance character-
istic in the new mutant [7]. Newly emerged bacterial pathogens with resistance to multiple
antibacterial agents can result in compromised efficacy in the treatment of infection [3,8].

Mechanisms of antimicrobial resistance include the active export systems within the
membranes of bacteria, prevention of antimicrobial entrance into cells of pathogenic bacteria,
enzymatic destruction of antimicrobial agents, production of thick biofilms, modified tar-
gets of antimicrobials, and bacterial sites of action that are protected from antimicrobials,
(Figure 1) [2,4]. Furthermore, multidrug-resistant bacteria have developed mechanisms that
confer the DNA transfer of genetic determinants of resistance to pathogenic species in the
clinical setting, the food production industry, the human gut, and in agriculture [9].

Thus, new strategies for the circumvention of bacterial resistance to antimicrobial
agents are desired [10]. In order to discover novel approaches to address multiple an-
timicrobial resistances in these microbial pathogens, however, it is necessary to attain
a clear understanding of these resistance systems at the molecular and cellular levels.
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For young and new investigators, here, we consider an introductory overview of each of
these disparate bacterial resistance mechanisms here.
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Figure 1. Bacterial mechanisms of resistance to antimicrobial agents. The common mechanisms of antibiotic resistance
in bacteria are enzymatic hydrolysis (1), enzymatic modifications of antibiotics by group transfer and redox process (2),
modifications of antibiotic targets (3), reduced permeability to antibiotics by modifications of porins (4), and active extrusion
of antibiotics by membrane efflux pumps (5).

2. Enzyme-Based Antimicrobial-Inactivation Systems

Along the timeline of antibiotic discovery and introduction, several enzymatic mecha-
nisms of antibiotic inactivation were also discovered. Although very few novel mechanisms
of antibiotic resistance have been reported in recent times, several new variants of known
enzymes that endow bacteria with resistance to newly introduced drugs have emerged,
suggesting that the bacterial response to new antibiotics or the modified versions of existing
antibiotics is swift. The enzymatic mechanisms of antibiotic resistance include hydroly-
sis, group transfer, and redox processes [4]. In terms of diversity, evolution, and spread,
antibiotic resistance enzymes contribute remarkably to the bacterial ability to overcome
antibiotic pressure. The β-lactamases are the oldest known and the most diverse antibiotic
degrading enzymes that cleave the β-lactam ring of the penicillin group of antibiotics
and render them ineffective. The first such β-lactamase was discovered soon after the
first antibiotic penicillin was in clinical use. Scientific evidence suggests the existence of
β-lactamases before penicillin was clinically employed, emphasizing that the production
of antimicrobial compounds and the mechanisms to endure them occur in parallel in the
environment [11]. Bacteria that produce antibiotics apparently require mechanisms to
overcome the lethal effects of the compounds, and these are in the form of concurrent
production of degradative enzymes, mutations in targets of antibiotics, or active extrusion
of antibiotics from the cell so that the antibiotic-producing cell is protected. However,
the selection pressure created due to the extensive use of antibiotics in humans and animals
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propagated the resistant clones of bacteria in clinical and food production environments.
In due course of time, genetic exchange mechanisms facilitated the wider dissemination of
resistance traits in bacterial communities. The introduction of more antibiotics, newer as
well modified, augmented the process of evolution and spread of resistance mechanisms.
Since the majority of the antibiotics introduced in the last two decades are mostly the
modified versions of existing antibiotics belonging to the same classes (e.g., β-lactams),
a few mutations in the enzymes could render bacteria quickly resistant to them [11].

The β-lactams constitute the largest group of clinically used antibiotics, comprising of
penicillins, cephalosporins of different generations, monobactams, and carbapenems, all of
which are characterized by the presence of 3-carbon, 1-nitrogen containing β-lactam ring.
The β-lactam antibiotics inhibit the bacterial proteins known as penicillin-binding proteins
(PBPs), which perform the critical role of peptide cross-linking during peptidoglycan cell
wall biosynthesis. The structural mimicry of the D-Ala-D-Ala terminal fragment of cross-
linking peptide by β-lactams facilitates competitive inhibition of PBPs [12], which stops
the cell wall synthesis leading to bacterial cell lysis and death [13]. However, bacteria gain
resistance to lactam antibiotics by modifying their PBPs, which are no longer susceptible to
binding by the antibiotic. Alternatively, bacteria produce powerful lactamases that degrade
antibiotics before they can bind with the PBPs. Since their discovery in the early 1940s,
the family of β-lactamases has grown seamlessly, with more than 300 enzymes identified
globally [14,15].

The early β-lactamases were penicillinase enzymes that degraded penicillin, which started
appearing rapidly in clinical bacteria [16,17]. The introduction of modified, semisynthetic
penicillins such as methicillin, ampicillin, and amoxicillin resulted in the gradual appearance
of β-lactamases capable of degrading them. The first plasmid-borne transferrable β-lactamase
was TEM-1, followed by TEM-2 and SHV-1 enzymes [18,19]. TEM is the most common
mechanism of ampicillin resistance compared to less prevalent SHV-1, although both have
the same affinity for this antibiotic. TEM and SHV share 60% amino acid similarity between
them and are inhibited by clavulanic acid, tazobactam, and sulbactam. The discovery of
cephalosporin C in the early 1960s heralded an era of synthetic cephalosporins, which was
thought to fend off β-lactamases. Structurally, cephalosporins have their β-lactam ring fused
to a six-membered dihydrothiazine ring compared to penicillins in which the β-lactam is fused
with a five-membered thiazolidine ring [20]. Subsequently, carbapenem and monobactam
groups of β-lactam antibiotics with structurally variant lactam rings were discovered from
natural sources and formed the basis for the synthesis of similar compounds with modifications.
However, the enzymes extended-spectrum β-lactamases (ESBLs) that could hydrolyze a wide
range of cephalosporins emerged from TEM and SHV lactamases by point mutations [18].
ESBLs hydrolyze a broad spectrum of cephalosporins, including first, second, third-generation
cephalosporins and aztreonam, but not cephamycins and carbapenems, and are inhibited by
clavulanic acid [18,21]. As a consequence of mutations and the expansion of the substrate range,
ESBLs have a lesser affinity for classical β-lactams compared to their ancestral β-lactamases.
Subsequently, CTX-M type ESBLs with high affinity for cefotaxime emerged independent
of TEM and SHV lactamases, and these supposedly evolved from β-lactamases of Kluyvera
spp. [22]. Over the years, CTX-M has overtaken other ESBLs in terms of number and global
distribution, with more than 230 types identified to date. Figure 2 shows the timeline of the
evolution of β-lactamases in relation to the introduction of β-lactam antibiotics for clinical use.
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Figure 2. Evolution of β-lactamases. Within five decades of discovering the first penicillin-degrading enzyme, β-lactamases
capable of hydrolyzing most β-lactam antibiotics, and resistance to inhibitors have emerged. The ability to tolerate a broad
spectrum of β-lactams and inhibitor combinations is bolstered by the presence of multiple β-lactamase-encoding genes in a
single pathogen.

The initial efforts to classify β-lactamases were based on their functional character-
istics such as the substrate-inhibitor profiles, protein molecular weight, isoelectric point,
etc. [12,14,23]. A second approach employed amino acid sequence similarities and enzy-
matic activities to classify β-lactamases into four main groups, of which groups A, C, and D
are serine β-lactamases, while class B is composed of metallo β-lactamases that require
active site zinc ion(s) for their hydrolytic activities [12,24]. Group A enzymes form the
largest group of lactamases comprising some of the critical resistance enzymes such as TEM,
SHV, and CTX-M type of β-lactamases. Other important ESBLs include the carbapenem
hydrolyzing KPC type ESBLs originally reported from Klebsiella pneumoniae, which have
an expanded substrate spectrum encompassing the cephalosporins and carbapenems but
susceptible to inhibition by clavulanates and boronic acid [23,25]. The chromosomally
encoded AmpC (class C) cephalosporinases described early in the timeline of discovery of
β-lactamases have no homology with penicillinases and thus constitute a distinct group of
enzymes [26,27]. Commonly found in Enterobacteriaceae, AmpC enzymes are inducible
and are produced at low basal levels, and preferentially hydrolyze cephalosporins includ-
ing cefoxitin but not cefepime. These are generally resistant to inhibition by clavulanic
acid, sulbactam, or tazobactam. The metallo-β-lactamases or MBLs belonging to class B
have vigorous hydrolytic activities against carbapenems and are also active against a range
of cephalosporins [28,29]. In 2009, a new variant New Delhi Metallo-β-lactamase (NDM),
emerged, and since then, it has been reported from all over the world [29]. NDM confers
resistance to all β-lactam antibiotics except aztreonam, and the plasmid carrying blaNDM
gene harbors resistance markers for several other antibiotics. VIM and IMP are other
important class B carbapenemases commonly encountered in Enterobacteriaceae.

The OXA type enzymes belonging to the Class D lactamase group were originally
discovered as plasmid-encoded oxacillin hydrolyzing enzymes in lactose non-fermenting
bacteria such as Pseudomonas, Acinetobacter, and Shewanella, and later in Enterobacteriaceae
through plasmid exchange [30,31]. These enzymes are poorly inhibited by lactamase
inhibitors such as clavulanic acid. Although OXA lactamases have a narrow substrate
range composed of penicillins, cloxacillin, and oxacillin, the enzymes evolved to hydrolyze
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extended-spectrum cephalosporins and carbapenems through point mutations, and these
abilities vary among different OXA types [28,32].

The β-lactamase mediated antimicrobial resistance is widespread among ESKAPE
(Enterococcus, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli) group of or-
ganisms, infections with which are usually associated with a significantly higher economic
burden and highest risk of mortalities [33,34]. The World Health Organization (WHO)
has recognized carbapenem-resistant Enterobacteriaceae (CRE) as a serious global health
scourge for which the development of new antimicrobials is critically needed [35].

Enzymatic hydrolysis is also a common mechanism of resistance against macrolides,
rifampicin, and fosfomycin. Many Enterobacteriaceae members produce plasmid-encoded
esterases EreA and EreB that hydrolyze the macrolactone ring of 14- and 15-membered
macrolides such as erythromycin A, clarithromycin, and azithromycin [36,37]. The struc-
turally altered macrolide antibiotic will no longer be able to bind to its preferred target site
in the ribosome [38].

Another important mechanism of enzymatic degradation is associated with the man-
ganese ion (Mn2+)-dependent, chromosomally-encoded FosX that uses water to cleave the
epoxide ring of fosfomycin. Other fosfomycin modifying metalloenzymes include FosA,
FosB, and two epoxide kinases FomA and FomB [39]. FosA is a Mn2+ and K+-dependent
glutathione-S-transferase, while FosB is a Mg2+ thiol-S-transferase. The mechanism in-
volves adding glutathione or thiol groups to the oxirane ring of fosfomycin resulting in an
inactive drug [40]. FomA and FomB kinases utilize ATP and Mn2+ ions to phosphorylate
the oxirane ring of fosfomycin [39].

Tetracyclines are in use for over 70 years as widely used antibiotics in human and
animal medicine [41]. Tetracycline is broken down by a monooxygenase enzyme Tet(X),
which is oxygen- and FAD-dependent [42]. Tet(X) monohydroxylates break down tetracy-
clines at position 11a, followed by non-enzymatic degradation. Similarly, enzymatic monoxy-
genation of the naphthyl group of rifamycin antibiotics by monooxygenases (Rox) inactivate
them by leading to the linearization of the naphthoquinone or naphthohydroquinone
ring [43].

Enzymatic modification of antibiotics by the transfer of functional groups, such as acyl,
glycosyl, ribosyl, nucleotidyl, phosphoryl, or thiol groups, confers resistance to a range
of antibiotics, including aminoglycosides, rifamycins, macrolides, epoxides, and chlo-
ramphenicol [44]. The aminoglycoside modifying enzymes (AME) responsible for re-
sistance to different aminoglycoside antibiotics include N-acetyltransferases (AAC), O-
adenyltransferases (ANT), and O-phosphotransferases (APH). These enzymes catalyze
the modification of various hydroxyl or the amino groups of the aminoglycosides re-
sulting in their inability to bind to their 30S ribosomal targets [45]. Similarly, in Gram-
negative bacteria, a plasmid-encoded ADP-ribosyltransferase (Arr-2) is commonly respon-
sible for rifampin resistance [46]. Similarly, chloramphenicol is modified by acetyl-CoA-
dependent acetylation of its 3-hydroxyl group by chloramphenicol acetyltransferase (CAT)
enzymes [47]. The modified antibiotic does not bind to its target site, the 50S subunit of
ribosomes. CATs are widely distributed among Gram-positive and -negative bacteria and
show little amino acid sequence similarities, with only 25 amino acid residues conserved
among all CAT variants [47].

3. Alteration of Antimicrobial Targets

As bacterial enzymes mentioned above alter drug structures, the drug targets may
likewise be altered, preventing drug binding and, thus, conferring resistance. Antimicro-
bial targets play vital roles in microbial growth or survival and, thus, serve as potentially
useful targets for mitigating infection. In addition, these targets must differ or be com-
pletely absent from humans or the animal species being treated with an antimicrobial to
allow for a selective mode of action. A classic example of such a target is peptidoglycan.
Peptidoglycan is essential to the growth and survival of many bacterial species and has
a chemical structure that is not present in the mammalian hosts they infect. This allows
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for the targeting of enzymes responsible for the synthesis and assembly of peptidoglycan.
The function of proteins associated with these target sites makes it non-viable for a bac-
terium to evolve resistance by removing these proteins. However, mutations that allow for
continued functionality while reducing the ability of an antimicrobial agent to bind them
at the target site have been a veritable regularity in the arms race between antimicrobial
substances and antimicrobial-resistant bacteria. In addition to peptidoglycan, alteration in
target sites has been attributed to ribosomes, nucleic acid enzymes, and lipopolysaccha-
rides [48].

As discussed previously in this review, peptidoglycan inhibition by glycopeptides
involves the binding of the peptidyl-D-alanyl-D-alanine terminus of peptidoglycan precur-
sors. This binding prevents integration via the transglycosylase activity of these precursors
into the cell wall [49], as shown in Figure 3.
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Figure 3. Penicillin and penicillin-binding protein of the bacterial cell wall. (1) The peptidoglycan
layer of a bacterial cell wall harbors the repeating moieties of N-acetylglucosamine (NAG) and
N-acetylmuramic acid (NAM). The NAM subunits bind short variable peptide chains, usually L-
Ala and two distal D-Ala residues. (2) The PBP cross-links the peptide side chain, releasing a free
Ala. (3) Upon cross-linking, the PBP dissociates from the cell wall. (4) Penicillin binds the PBP
active site, affecting its enzyme activity. (5) The β-lactam ring of penicillin is cleaved during its
reaction with PBP. Penicillin stays covalently bound PBP, permanently inhibiting the active site.
Altered PBPs, such as PBP2a, are unable to accommodate penicillin-binding, preventing cell wall
synthesis inhibition [48,49].

PCBs are one mechanism for antimicrobial resistance, but the peptidoglycan pre-
cursors themselves can undergo alteration, which reduces the affinity of antimicrobials
without the involvement of enzymatic inactivation. Such is the case with Enterococcus
faecium and E. faecalis, which have been discussed in the literature as developing resistance
by acquiring one of two related gene clusters encoding VanA and VanB [50,51]. These gene
clusters produce a modified terminus that contains D-alanyl-D-lactate as opposed to D-
alanyl-D-alanine [50]. This alteration leads to glycopeptides having a much lower binding
affinity [52]. Thus, these gene clusters, found on transposable elements, have allowed
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the spread of modified targets in enterococci. Similarly, there are rarer but related gene
clusters that have been shown to modify peptidoglycan precursors, such as those encoding
VanD [53], VanE [54], and Van G [55].

Ribosomes, serving the vital role of protein synthesis, are common to both prokaryotic
and eukaryotic organisms but differ quite vastly from one another in structure, mak-
ing them another suitable candidate for antimicrobial targeting [56]. The 50S ribosomal
unit serves as the binding site for macrolide, lincosamide, and streptogramin B [57]. Re-
calcitrance to these specific antimicrobials is known as MLS(B) type resistance [57], and it
results from a post-transcriptional modification of the 23S rRNA component of the 50S
ribosomal subunit that is involved with methylation or dimethylation of key adenine bases
in the peptidyl transferase functional domain [58]. Mutations in the 23S rRNA, close to
the site of methylation have also been associated with resistance to the macrolide group
of antibiotics in a range of organisms, such as Helicobacter pylori [59] and propionibacte-
ria [60]. Macrolide resistance in S. pneumoniae has been attributed to an alteration in the L4
and L22 proteins of the 50S subunit [61,62]. Oxazolidinones bind to the 50S subunit but
have a more complex set of interactions associated with their mechanism of action [63].
The translocation of peptidyl-tRNA from the A site to the P site is hindered by this class of
antibiotics, but enterococci have been documented to have an altered the P site through
the substitution of U in place of G in the peptidyl transferase region (position 2576) of the
23S rRNA, thus resulting in a lowered binding affinity in the 50S subunit for this class of
antibiotics [64–66]. Mutations more closely associated with the A site have been found
in E. coli at positions 2032 and 2447 which confer resistance to the oxazolidinone drug
linezolid [67].

The 30S ribosomal unit is the target of tetracycline and of aminoglycosides, which func-
tion by preventing the decoding of mRNA [68]. Mutations of the gene encoding 16S rRNA
confer resistance to this class of antimicrobials [69]. Suzuki and colleagues discovered
that substitutions at positions 1400, 1401, and 1483 led to kanamycin resistance in clinical
isolates of Mycobacterium, and further strengthened the claim that these changes led to
resistance by identifying their absence in kanamycin-sensitive Mycobacterium isolates [70].
Position 1400 was the most common substitution, featuring an A to G change [70]. The same
A to G substitution at position 1408 led to high resistance against amikacin, kanamycin,
gentamicin, tobramycin, and neomycin in clinical isolates of Mycobacterium abscessus [71].

4. Protection of Antimicrobial Targets

The previous section discussed antimicrobial resistance via the alteration of drug
targets. However, targets may also be protected by other specific factors. One of the signifi-
cant lines of defense against an antimicrobial is the bacterial cell wall [72]. Thought to have
evolved initially for protection against the cell’s internal turgor pressure, this structure also
acts as a physical barrier to encase the cytoplasm and cell membrane from the external
world [72–74]. Prokaryotic cell walls are made up of linear glycan strands cross-linked by
small peptides [75]. This peptidoglycan (murein) sacculus helps to limit which substances
can continue on towards the cell membrane and ultimately into the cytoplasm [76]. Pepti-
doglycan also plays an essential role in bacterial growth and proliferation [77]. The crucial
role that peptidoglycan and the cell wall play has caused most species of bacteria, except for
Mycoplasma and L-form bacteria, to contain their structures [78]. While the cell wall helps
protect cytoplasmic antimicrobial targets, it also ended up being the target for the first
natural antibiotic, penicillin, which prevents the complete formation of this barrier by
inhibiting peptide cross-linking to occur [79]. With a faulty protective structure, the cell
becomes vulnerable to its internal environment and the external environment, leading to
cell death [80].

With this mechanism of protection compromised due to the advent of β-lactam an-
tibiotics, prokaryotes began to synthesize another tier of protection: β-lactamases [16].
These enzymes help to protect the peptidoglycan cell wall from β-lactam antibiotics,
precisely [16]. β-lactamase enzymes help confer resistant bacterial phenotypes, as their
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mechanism of action hydrolyzes the β-lactam ring of such antibiotics, and the resulting
chemical structure can no longer hinder bacterial cell wall synthesis [81]. These enzymes are
so diverse that hundreds of them have been discovered and grouped into various classes in
both Gram-negative and Gram-positive species [82]. Uniquely, in addition to β-lactamases,
some Staphylococcal species contain the oatA gene that encodes an O-acetyltransferase
enzyme, which is a major determinant allowing such species to avoid the inhibition of cell
wall synthesis by lysozymes [83].

In recent years, target protection has been a prominent mechanism for antimicrobial
resistance in both Gram-positive and Gram-negative bacteria. There are no single and
uniform target protection mechanisms. Three such mechanisms have been defined thus far,
namely allosteric antibiotic removal, restoration of target function despite the presence of
the bound antibiotic, and direct antibiotic displacement (see Figure 4) [84].
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Figure 4. Types of antimicrobial target protection mechanisms. (I) The target protection protein (TPP)
directly displaces the antimicrobial agent from its active site on the target, preventing antimicrobial
action. (II) The target protection protein binds an allosteric site of the target, which induces a
conformation change and the dissociation of the antimicrobial agent from the target site. (III) The
target protection protein induces a global conformational change to reestablish target function despite
the formation of a target-drug complex [84]. This figure kindly provided courtesy of Ann F. Varela.

Some protein-encoding genetic determinants that mediate target protection have
been found in bacterial chromosomes, and most of these determinants involved in this
mechanism are carried out by mobile genetic elements [85]. For example, tetracycline (TetO
and TetM), fusidic acid (FusB and FusC), and quinolone (Qnr) resistances occur through
this mechanism.

4.1. Ribosomal Protection Protein (RPP)

Tetracycline ribosomal protection proteins facilitate target protection. To date, 13 classes
of RPPs have been described, and the best-characterized RPPs are TetO and TetM [85].
TetM and TetO are soluble cytoplasmic proteins that were first isolated from Streptococcus
spp. and Campylobacter jejuni, respectively, but genes coding these proteins are found in a
wide range of bacteria [86,87]. These proteins belong to a translation factor superfamily of
GTPases and act as a homolog to translation elongation factor G (EF-G) [88,89]. TetM and
TetO mediate tetracycline resistance by interfering with the ability of the drug to bind to the



Antibiotics 2021, 10, 593 9 of 22

ribosome [90]. They interact with the ribosome and catalyze the release of tetracycline from
its binding site in a GTP dependent manner [91–93]. Structural studies have shown that both
TetM and TetO overlap the tetracycline binding site on the ribosome, which indicates that
the resistance of drugs is through direct displacement from the ribosome [88,94]. These RPPs
alter the nucleotide conformation within a drug binding site and thus prevent the immediate
rebinding of the drug and promote the delivery of the aminoacyl-tRNA [89].

4.2. Quinolone Resistance Proteins

The plasmid-mediated, quinolone resistance gene qnr is involved in quinolone and fluo-
roquinolone resistance in Gram-negative pathogens, such as in Enterobacteriaceae. This gene
encodes pentapeptide repeat proteins, which mediate bacteria to resist quinolone inhibitory
effects by binding and protecting the DNA gyrase and type II topoisomerases [5,95]. Sev-
eral Qnr families (A, B, C, D, and S) have been identified to date, with QnrB having the
most considerable number of alleles. Different studies showed that Qnr protein disrupts
the DNA gyrase-quinolone interactions and increase quinolone efflux from the bacterial cell.
The binding of Qnr to these enzymes decreases the affinity of the quinolone to stabilize with
the complex that it forms with topoisomerase-cleaved DNA, thereby enabling the normal
process and re-ligation of DNA [95].

5. Active Efflux Pumps of Antimicrobial Agents

In cases where intact antimicrobial agents enter bacterial cells and drug targets are
freely accessible, active drug efflux systems can come into play. In this section, we will focus
on well-studied antimicrobial transporters, as they make good model systems for study
and resistance modulation. Bacteria that are pathogenic frequently make use of integral
membrane proteins that function as transporters of antimicrobial agents [96]. Such bacterial
transport proteins serve to actively export structurally distinctive antimicrobial agents
from the cytoplasm, where drug targets reside, to the extracellular milieu, where their
molecular targets are lacking [97]. Efflux pumps are present in all bacteria and are integral
parts of bacterial physiology, being involved in diverse functions such as the expulsion of
toxic products of metabolism, and maintenance of homeostasis. However, antibiotics as
incidental substrates of efflux pumps have resulted in them being viewed largely as bacte-
rial mechanisms of antimicrobial resistance. In clinically important bacteria, such as MDR
Mycobacterium tuberculosis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae,
and Pseudomonas aeruginosa, efflux pumps have critical roles in ensuring bacterial survival
and evolution into resistant strains. These bacterial multidrug efflux pump systems are
energetically driven by ATP hydrolysis, called primary active transport [98], and by elec-
trochemical ion gradients or ion motive forces, called secondary active transport [99,100].
Active transport of antimicrobial agents represents an essential resistance mechanism in
bacterial pathogens. As multiple structurally distinct antimicrobial agents with disparate
modes of action are exported to the extracellular milieu, their growth inhibitory properties
towards bacteria are diminished, if not wholly circumvented.

During the primary active transport of antimicrobial agents, bacteria exploit the
biological energy stored in the form of intact adenosine triphosphate (ATP) to export
drugs against the drug concentration gradient by performing ATP hydrolysis [25]. Dur-
ing the export of antibacterial agents from bacterial cells, ATP is hydrolyzed in order to
energize the drug translocation through the transporter in an outward direction across
the membrane. Thus, as the transporter substrate actively accumulates outside the cell,
drug resistance is conferred upon the bacterial pathogen [98]. One of the best-studied of
these primary active drug efflux systems in bacteria is the ATP-binding cassette (ABC)
efflux pump family [101,102]. The ABC transporter superfamily represents one of the most
abundant protein families known across all taxa of living organisms [103]. One of the
first of the bacterial ABC efflux pump structures to be determined was Sav1866, from the
pathogen S. aureus [104] (Figure 5). Structurally speaking, the Sav1866 drug efflux pumps
consist of two chief transmembrane domains (TMDs) and two nucleotide-binding domains
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(NBDs) [104]. During translocation and efflux of the antimicrobial agent across the bac-
terial membrane, a conformational change occurs in the TMDs in order to accommodate
substrate binding and transport [105]. Meanwhile, as the antimicrobial agent is pumped to
the outside of S. aureus cells, ATP is hydrolyzed to adenosine diphosphate (ADP) in the
interior of the cell by the NBDs, which harbor ATPase activities [104,105].
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Figure 5. Crystal structure of bacterial ABC efflux pump from S. aureus. The top portion of the ABC
transporter Sav1866 is depicted in blue and light blue and represents the two TMDs (sometimes
called membrane-spanning domains, MSDs) of the protein, while the orange and red colors depict
the two NBDs [104]. The model structure was generated using NGL Viewer [106] of the PDB [107]
entries 2HYD and 2ONJ, as reported [104,108].

The ABC group of efflux pumps prompt bacterial recalcitrance to clinically rele-
vant drugs in Mycobacterium tuberculosis, Acinetobacter baumannii, Streptococcus pneumoniae,
Staphylococcus aureus, etc. MsrA, widely distributed in Gram-positive and -negative or-
ganisms, is responsible for macrolide resistance [109]. An erythromycin inducible MsrA
homolog efflux pump, Mel, mediates macrolide resistance in Streptococcus pneumoniae
together with MefE [110]. Higher expression of ABC efflux pumps Rv1217c, and Rv1218c
resulted in increased MIC of rifampicin, while the overexpression of Rv1218c increased
the MIC of isoniazid [111]. In S. pneumoniae, the ABC efflux pumps PatA and PatB confer
resistance to clinically relevant drugs such as the fluoroquinolones and are overexpressed
in clinical isolates [112].

The MacB efflux pump of E. coli is one of the few well-studied efflux proteins of
the ABC superfamily, which confers appreciable levels of resistance to macrolides [113].
This protein, together with its outer membrane protein MacA, has been shown to have a
crucial role in the virulence of E. coli. In Salmonella Typhimurium, MacABC is necessary for
host colonization, and it helps the bacterium to overcome the lethal oxidative stress induced
by the reactive oxygen species (ROS) and aids in its survival inside macrophages [114].

Secondary active transporters also confer bacterial resistance to many structurally
distinctive antimicrobial agents [115,116]. Throughout the last 30 years, these active an-
timicrobial efflux pump systems have been categorized into several large superfamilies of
related proteins based on similarities in amino acid sequences, structures, and modes of
energization [117,118]. Currently, these superfamilies are denoted as follows: the major
facilitator superfamily (MFS) [119]; the drug/metabolite transporter (DMT) superfam-
ily, which now harbors the small multidrug resistance (SMR) family [120,121]; the mul-
tidrug and toxic compound extrusion (MATE) family, which has been included within
the larger multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily of trans-
porters [122,123]; the proteobacterial antimicrobial compound efflux (PACE) transporter
superfamily [124]; and the resistance-nodulation-cell division (RND) superfamily [125].
Several well-studied families of bacterial solute transporter systems are shown in Figure 6.
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shown. Also depicted are the cytoplasmic and periplasmic spaces. Pi denotes phosphate, and Na+ and H+ denote sodium
and proton, respectively. This figure kindly provided courtesy of Ann F. Varela.

Many members of the MFS of bacterial efflux pumps confer resistance to multiple
antimicrobial agents and are considered essential molecular targets for resistance modula-
tion in order to circumvent resistance and restore the therapeutic efficacy of compromised
agents [126,127]. The protein structures for several bacterial antimicrobial efflux pumps
belonging to the MFS have been elucidated [128]. In general, the MFS structures harbor 12
or 14 α-helical transmembrane segments, two seemingly symmetrical bundles, each belong-
ing to either the N- or C-terminal ends, the so-called MFS fold consisting of adjacent triplet
α-helices, and functional highly conserved amino acid sequence motifs [128,129]. Recently,
protein structure studies of the MdfA multidrug efflux pump from E. coli showed bound
substrates, such as chloramphenicol [130] (Figure 7), and inhibitors, [130,131], plus a crys-
tal structure composed of a periplasmic-facing conformation suggesting a functional role
for the highly conserved antiporter motif C sequence in conducting substrate translocation
through the antimicrobial pumps [132–134]. Studies like these will undoubtedly play cru-
cial roles in the evaluation of the physiological mechanisms for antimicrobial efflux across
the membrane and their exploitation for the development of efflux pump inhibition [135].
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Figure 7. Crystal structure of E. coli MdfA multidrug efflux pump from the MFS. The MdfA trans-
porter is complexed to one of its substrates, chloramphenicol (ball and stick structure). Ribbons of
different colors represent the transmembrane helices. The loops between the transmembrane domains
were removed for clarity. The model of the MdfA structure was generated using NGL Viewer [106]
from the Protein Database, PDB [107], entry 4ZOW from Heng et al. [130].
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Some of the clinically relevant and intensely studied MFS efflux pumps belong to Staphy-
lococcus aureus, including NorA, NorB, NorC, QacA, QacB, TetA(K), LmrS, and MsrA [136].
These efflux pumps directly or indirectly contribute to the ability of Staphylococcus aureus to
tolerate antibiotics, such as by decreasing intracellular concentration of antibiotics, which
allows bacteria to survive longer in the presence of antibiotics and develop resistance through
other mechanisms involving gene mutations, overexpression of porins, etc. In S. aureus,
the NorA efflux pump promotes the development of ciprofloxacin resistance directly or
by positively contributing to the fitness advantage provided by topoisomerase gene mu-
tations [137]. The elevated levels of norA expression potentiate ciprofloxacin resistance,
although this phenomenon is highly variable across clinical staphylococcal strains [137].
Inhibition of the NorA efflux pump with a clinically approved drug nilotinib diminished the
biofilm formation by S. aureus, and this drug can potentiate ciprofloxacin activity in clinical
settings [138]. Obviously, efflux pumps are key components of complex circuits involving
antibiotic resistance, persistence, and virulence [139].

With the discovery of the SMR family and its subsequent incorporation into the
larger DMT superfamily arose the elucidation of a low-resolution crystal structure for
the DMT-based antimicrobial efflux pump, called EmrE, which has been an effective
model system for antimicrobial transport [121,140,141]. While the structural nature of
EmrE has been controversial in terms of the monomer orientation for its dimer [141,142],
molecular dynamics simulations, biochemical, and physiological studies pertaining to the
structure-function relationships and efflux inhibition have shed new light on its substrate
translocation mechanism [143–147].

The crystal structure of the RND transporter AcrB from E. coli, first reported in
2002 [148], consists of a trimer [149,150]. The AcrB trimer component is known to reside
within the inner membrane of Gram-negative bacteria [151]. In one mechanistic model for
antimicrobial transport, the AcrB is thought to rotate in a manner akin to a peristaltic pump
in which the pump repeatedly cycles between extrusion, access, and binding steps [152,153].
Furthermore, the AcrB efflux pump has been demonstrated to assemble into a tripartite
multi-complex assembly with a periplasmic-located protein, AcrA, and an outer-membrane
protein, TolC [154]. This tripartite antimicrobial drug efflux system has been found in a
variety of life-threatening bacterial pathogens and confers resistance to multiple clinically
relevant antibacterial agents [155]

The bacterial RND tripartite multidrug efflux pump systems from E. coli consists of
three main domains constituting a tripartite structure. The top third of the structure denotes
the outer membrane-associated channel, TolC; the middle section includes the periplasmic-
associated domain, AcrA, and the third section is constituted by AcrB, an extensively
studied member of the RND superfamily [150].

In general, these distinctive families of antimicrobial transporter systems serve to
confer bacterial pathogens enhanced capabilities to survive antimicrobial stress [136].
Apart from AcrB-TolC, some of the extensively studied, clinically relevant RND efflux
pumps are MexB, MexF, and MexY of Pseudomonas aeruginosa, AdeB of Acinetobacter bau-
mannii, CmeB of Campylobacter jejuni, and MtrD of Neisseria gonorrhoeae in Gram-negative
bacteria [156]. In Bacteroides fragilis clinical isolates, bmeB efflux pump overexpression
coupled with GyrA point mutations contribute to a clinical level of resistance to fluo-
roquinolone and β-lactams [157]. A recent study suggests that the AcrAB efflux pump
has a role in the initial stages of bacterial transition from transient antibiotic resistance to
permanent resistance. The lower expression of DNA repair gene mutS in acrAB overex-
pressing strains contributes to higher frequencies of spontaneous mutations and hence
higher probabilities of resistance development [158]. Therefore, the presence of an efflux
pump and its expression level cannot be viewed in isolation but should be correlated
with other mechanisms of resistance that might act in synergy with efflux pumps. Con-
sequently, these drug transport systems represent desirable targets for inhibitors [159] in
order to circumvent resistance and restore the therapeutic efficacy of multidrug-resistant
bacterial pathogens [10,126–128,136,160]. Therefore, molecular studies of transporter struc-
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tures and efflux mechanisms will undoubtedly continue to be relevant in the foreseeable
future [161].

Unfortunately, fundamental knowledge of the molecular mechanisms for multidrug
transport is lacking. For example, we still know little about the modes for tying together
energetic systems versus antimicrobial translocation across the membrane. Further, we do
not yet understand how antimicrobial transporters dictate multiple substrate transport
while preventing the passage of unwanted substrates or leakages of relatively smaller ions,
like sodium ions or protons. For many if not all of these antimicrobial transporters we do
not yet have a clear picture of the nature of the structural configurations assumed during
each of the specific steps of their transport cycles. In summary, much work remains to be
performed before we can clearly understand the physiology of antimicrobial transport both
at fundamental and applied levels of investigation.

6. Reduction of Antimicrobial Permeability into Bacterial Cells

In contrast to active drug efflux systems where export is an effective means of re-
sistance, bacterial may also simply prevent the entry of antimicrobial agents. An impor-
tant mechanism of bacterial resistance to antimicrobial agents involves preventing drug
permeability and access to the internal milieu of the pathogenic cells [162]. Strains of
Gram-negative pathogenic bacterial species, such as Escherichia coli, Pseudomonas aeruginosa,
Vibrio cholerae, Klebsiella spp., and Salmonella enterica, are particularly troublesome [163].
The molecular systems involved in reduced permeability of antimicrobial agents include
resistance mechanisms at the bacterial cell wall. The extensive structural nature of the
lipopolysaccharide layer constitutes a formidable barrier to the passage of small molecules,
especially those that are growth inhibitory in their properties [164]. Another important
molecular mechanism for conferring resistance via permeability reduction involves porins,
which are integral outer membrane proteins with water-filled pore-like channels that permit
the passage of molecules with definitive sizes and charges [165]. The relationship between
bacterial antimicrobial resistance and the outer membrane porins can take one of several
avenues. A wide-type porin can be highly selective towards the entry of certain nutrients,
like sugars, and not permit the passage of many antimicrobial agents [165]. However,
for those porins for which no such highly selective properties are a problem, then in such
cases, the porin molecules may be depleted from the membrane or functionally disrupted
by mutation [165,166]. In other cases, permissive porins may be regulated by channel
blockers or by RNA-specific antisense modulators [167,168].

One well-known antimicrobial resistance-conferring porin system is that of the E. coli
and its outer membrane proteins OmpC, OmpF, and PhoE [149,151]. Other well-studied
porin systems are from Acinetobacter baumannii and OprD from P. aeruginosa, both microor-
ganisms recognized as severe pathogens [169,170]. The crystal structures for porins have
been solved to high resolution. For example, the OmpF structure from E. coli was one of the
earliest and best understood of the porins (Figure 8) [171,172], and the OprO structure from
P. aeruginosa is one of the most recent examples for which high-resolution porin molecules
have been determined [173].

The overall OmpF porin structure consists of three monomers to constitute a trimeric
apparatus (Figure 8) [174]. Each of the monomers is composed of β-stranded transmem-
brane elements to produce a gated β-barrel structural motif [175]. Molecular physiological
data suggest that each of the monomers harbor binding sites for antimicrobial agents [165].
The degree of the selective natures for substrates is an ongoing focus of investigative
studies, and much molecular work remains to be conducted in order to definitively demon-
strate the precise molecular pathways of water-soluble substrates through their dedicated
channels, as well as their gating mechanisms.
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Figure 8. Outer membrane protein, OmpF, is a porin from Escherichia coli. The OmpF porin is a
trimeric apparatus consisting of three monomers. The OmpF porin structure was generated with the
NGL Viewer [106] from the Protein Database, PDB [107], entry 2OMF from Cowan et al. [174].

The lipopolysaccharide (LPS) layer of Gram-negative bacteria plays a very important
and direct role in antibiotic resistance. Being the outermost layer of Gram-negative bacteria,
LPS comes in direct contact with antibacterial compounds, and its interactions with them
decide the susceptibility of bacteria to inhibitory compounds. Cationic antimicrobial pep-
tides (CAMPs) are a group of antibacterials that specifically interact with LPS and disrupt
it by displacing divalent cations, that stabilize LPS by neutralizing its negative charge [176].
In E. coli, the composition of the core oligosaccharide of LPS and the sugar composition of
the outer part determine the susceptibility to antimicrobial peptides [177]. LPS is also a
target for peptide antibiotics colistin and polymyxin B. These cationic peptide antibiotics
interact with the phosphoric acid group of lipid A and replace calcium and magnesium
ions associated with it leading to destabilization of LPS and leakage of cellular contents
that eventually causes the death of bacteria [178]. Resistance to the peptide antibiotic
colistin mediated by mcr genes involves hpap2 or dgkA genes that encode putative phos-
phatidic acid phosphatase of type 2 (PAP2) and diacylglycerol kinase, respectively which
are involved in LPS biosynthesis [179]. In E. coli, a complex interaction of proteins, such as
PmrA, PmrD, and PhoPQ, is involved in modifying lipid A under Mg2+-limiting growth
conditions, eventually leading to bacterial resistance to cationic antimicrobial peptides such
as polymyxin B [180]. A distinctly different mechanism of antibacterial action is exhibited
by cationic antimicrobial peptide thanatin that acts on bacteria by cell agglutination upon
interacting with LPS [181]. This peptide is effective against diverse multidrug-resistant
Gram-negative bacteria [182]. However, the mechanisms of inhibitory activities of thanatin
against Gram-positive bacteria and fungi are not clearly elucidated. AMPs such as thanatin
have revived the hope of developing effecting antimicrobial therapies, either alone or in
combination with antibiotics, against extremely drug-resistant bacteria [183].

7. Future Directions

Bacterial pathogens are critically essential causative agents of severe infectious dis-
ease [184]. As such, much effort has gone into the development of chemotherapy in
addressing high morbidity and mortality numbers [185,186]. Therefore, continued in-
vestigation towards the improvements in personal hygiene methods, food handling and
preparation, hand washing, public sanitation, and education across all levels will be the
focus of intense interest.

In medical healthcare and treatment centers, antimicrobial stewardship is still a
promising approach, and much effort continues to be centered towards further develop-
ment [187,188]. Attention will undoubtedly need to be paid towards studies of multidrug
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resistance in bacteria found in veterinary medicine and agricultural practices to reduce
infection transmission and persistence in these areas [9].

New incentives to discover new antibacterial agents with novel modes of action
are few, and progress on this front is slow [189,190]. A promising avenue in the battle
against multidrug-resistant pathogens entails the clinical investigation of non-antibiotic
agents as anti-bacterial agents, such as non-steroidal anti-inflammatory agents, anesthetics,
and statins [191]. Recently, a series of new and well-developed anti-infective strategies
for the circumvention of multidrug-resistant pathogens were reviewed elsewhere [10].
These and other strategic modes for reducing the conditions that foster the spread of
bacterial infections are prime candidates for enhanced efforts of investigation.

8. Concluding Remarks

Bacterial pathogens that have acquired specific antimicrobial resistance mechanisms
have emerged as serious clinical agents of infection, causing a public health concern on a
worldwide scale. Such cellular mechanisms of antimicrobial resistance include multidrug
efflux pumps, enzymatic drug degradation, biofilm formation, drug target modification,
and target protection. Many genetic determinants for bacterial antimicrobial resistance are
transferable to unrelated species, having evolved new means of movement through human
populations. To reduce the conditions that foster the emergence and spread of clinical
infections new strategies have been considered. Future directions include the development
of new chemotherapeutics, such as those with novel cellular targets, the continuation
of public health practices, education, clinical antimicrobial stewardship, and continued
molecular investigation of resistance mechanisms.
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Abbreviations

ABC ATP-binding cassette
AAC N-acetyltransferases
AME aminoglycoside-modifying enzymes
ANT O-adenyltransferases
APH O-phosphotransferases
CAT chloramphenicol acetyltransferase
CRE carbapenem-resistant Enterobacteriaceae
CTX-M cefotaximase
ESBLs extended-spectrum β-lactamases
ESKAPE Enterococcus, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli
MATE multidrug and toxic compound extrusion
MFS major facilitator superfamily
MOP multidrug/oligosaccharidyl-lipid/polysaccharide
NAG N-acetylglucosamine
NAM N-acetylmuramic acid
NBDs nucleotide-binding domains
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NDM New Delhi Metallo-β-lactamase
PACE proteobacterial antimicrobial compound efflux
PBPs penicillin-binding proteins
RND resistance-nodulation-cell division
TEM temoneira
TMDs transmembrane domains
SHV sulfhydryl variable
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