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Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon

entering the blood stream of the host. The early immune response in human blood

comprises the elimination of pathogens by antimicrobial peptides and innate immune

cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method

to examine these complex processes and to quantify the dynamics of pathogen-host

interactions. Since model parameters are often not directly accessible from experiment,

their estimation is required by calibrating model predictions with experimental data.

Depending on the complexity of the mathematical model, parameter estimation can

be associated with excessively high computational costs in terms of run time and

memory. We apply a strategy for reliable parameter estimation where different modeling

approaches with increasing complexity are used that build on one another. This

bottom-up modeling approach is applied to an experimental human whole-blood

infection assay for Candida albicans. Aiming for the quantification of the relative impact

of different routes of the immune response against this human-pathogenic fungus, we

start from a non-spatial state-basedmodel (SBM), because this level of model complexity

allows estimating a priori unknown transition rates between various system states by the

global optimization method simulated annealing. Building on the non-spatial SBM, an

agent-based model (ABM) is implemented that incorporates the migration of interacting

cells in three-dimensional space. The ABM takes advantage of estimated parameters

from the non-spatial SBM, leading to a decreased dimensionality of the parameter space.

This space can be scanned using a local optimization approach, i.e., least-squares error

estimation based on an adaptive regular grid search, to predict cell migration parameters

that are not accessible in experiment. In the future, spatio-temporal simulations of

whole-blood samples may enable timely stratification of sepsis patients by distinguishing

hyper-inflammatory from paralytic phases in immune dysregulation.

Keywords: state-based model, agent-based model, pathogen-host interaction, parameter estimation,

whole-blood infection assay, Candida albicans
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1. Introduction

The human fungal pathogen Candida albicans is part of the
normal microbial flora inmore than half of the global population.
In immunocompromised patients it can become invasive and
may enter the blood stream via medical devices, e.g., catheters,
or translocation in the gut and can cause severe systemic
infections. The immune response against C. albicans in human
blood comprises the interplay of various complex biological
processes involving different immune mechanisms (Duggan
et al., 2015b). Most importantly, the whole-blood infection assay
allows multiple immune effector mechanisms to occur at the
same time and thus modulate the overall outcome (Luo et al.,
2013; Cunha et al., 2014; Hünniger et al., 2015). Applying a
systems biology approach, we quantified individual processes and
in this way revealed the main route of the immune response
against C. albicans in human blood (Hünniger et al., 2014). This
was achieved by an iterative systems biology cycle involving
experiment, mathematical modeling, hypothesis generation and
further experimental investigation.

The choice of an appropriate mathematical modeling
approach strongly depends on the questions to be answered
and the hypothesis, as well as the characteristics of the
underlying experimental data with regard to temporal and spatial
information. A wide range of modeling approaches exists that
differ by their computational complexity and can be classified
depending on the degree of spatial representation as well as
the internal degrees of freedom attributed to the model entities.
The computationally cheapest modeling approach for dynamic
systems is represented by ordinary differential equations (ODE),
where biological entities are assumed to be present in high
numbers and spatial information is not required such that they
can be collectively represented by a homogeneously distributed
concentration variable. State-based models (SBM) resolve the
biological entities as individuals that occupy states and are
able to perform transitions between states representing dynamic
processes. In contrast to ODE, this approach allows modeling
discrete events for any entity number in a biological system.
However, SBM are in turn limited in that they do not represent
spatial aspects. Individual-based models (IBM) such as cellular
automata (CA) and agent-based models (ABM) do simulate
discrete entities in space and time (Medyukhina et al., 2015).
In a CA simulation, these entities can undergo state changes
associated with their internal degrees of freedom as well as
positional changes on a pre-defined spatial grid of computational
cells (Von Neumann, 1951; Bittig and Uhrmacher, 2010).
The discrete number of individual entities as well as the
spatial representation of the environment result in increasing
computational costs in terms of run-time and memory. Even
more computationally expensive but biologically more realistic
simulations can be performed by the ABM approach. Here,
biological objects are represented as individual entities, so-called
agents, that are able to move in space and can act as well as
interact with other agents according to individual properties.
Examples of ABM for the pathogen-host interaction between the
human-pathogenic fungus Aspergillus fumigatus and phagocytes
were presented by Tokarski et al. (2012) and Pollmächer and

Figge (2014). In particular, the ABM developed by Pollmächer
and Figge (2014) simulates the detection of A. fumigatus conidia
by macrophages in a to-scale representation of human alveoli
and predicts the requirement of a chemotactic signal guiding the
phagocytes to the spatial positions of conidia.

In general, parameters of bio-mathematical models
characterize the components by their morphology and
their dynamic behavior. For example, cells may be defined
by parameters for size and shape as well as by parameters for
interactions in the spatial environment that are associated with
the typical frequency of interaction processes. Model parameters
associated with dynamical, functional and morphological aspects
of biological processesmay be extracted frommicroscopic images
by applying an image-based systems biology approach (Horn
et al., 2012; Mech et al., 2014; Medyukhina et al., 2015). However,
in many cases microscopy experiments cannot be performed for
technical reasons, as is also the case for whole-blood infection
assays where the majority of cells are erythrocytes blocking the
view on leukocytes, let alone fungal pathogens that are present
in even lower numbers. In situations like these, numerical
estimation of a priori unknown parameter values by comparison
with experimental time-series data becomes a highly relevant
issue. Parameter estimation algorithms are applied to find the
optimal match between the experimental data and simulated
model data. These optimization algorithms can be characterized
by their search technique within the parameter space, i.e., as
global or local approaches, and their mathematical procedures,
i.e., as stochastic or deterministic approaches (Moles et al.,
2003; Ashyraliyev et al., 2009). Local optimization techniques
search for better parameter values within a locally restricted
parameter space, where the direct search method and gradient
based methods are widely used (Ashyraliyev et al., 2009). They
show fast convergence to the optimal parameter values, but since
local optimization algorithms will get stuck in a nearby local
optimum, an educated guess of the initial parameter values is
absolutely required. In contrast, global optimization strategies
search a wide range of the parameter space with possibly various
local optima and the subclass of deterministic optimization
strategies can find the global optimum with pre-defined accuracy
(Ashyraliyev et al., 2009). High-dimensional parameter spaces
may be searched by stochastic optimization algorithms that
make use of probabilistic elements to avoid getting trapped in
local optima in order to find the global optimum. Common
stochastic search algorithms of this type are Metropolis Monte
Carlo (MMC) (Metropolis et al., 1953), adaptive random search
and evolutionary computation techniques such as differential
evolution (DE) (Storn and Price, 1997). Additionally, heuristics
can be applied in support of a fast convergence rate of global
or local optimization strategies, e.g., simulated annealing (SA)
(Kirkpatrick et al., 1983; Gonzalez et al., 2007), great deluge
(Dueck, 1993), or performing multiple searches from random
start parameters. The selection of the most suitable optimization
algorithm depends on specific model properties, such as the
dimension of the parameter space and the computational costs
for the model simulations that have to be repeatedly performed.
For computationally cheap ODE models, the computationally
expensive stochastic global optimization algorithms may be used,
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such as DE applied by Hernandez-Vargas et al. (2014) and SA
based on MMC applied by Hünniger et al. (2014) and Mech et al.
(2014).

The non-spatial virtual infection model of the immune
response against C. albicans in human blood was formulated
as a SBM and its parameters were fitted to the experimentally
determined time-evolution of concentrations for C. albicans
cells that are alive or killed and that can either reside in
extracellular space or inside immune cells of different types,
i.e., monocytes or granulocytes (polymorphonuclear neutrophils,
PMN) (Hünniger et al., 2014). Furthermore, we observed a
cell population of C. albicans that remained alive or killed
in extracellular space, i.e., these fungal cells are resistant
against phagocytosis and/or killing. The different C. albicans
cell populations were assigned states and individual cells could
perform transitions between states, such as phagocytosis by
immune cells, subsequent intracellular killing, extracellular
killing by antimicrobial peptides or acquiring resistance against
phagocytosis and/or killing. Resistant C. albicans cells are a
population of cells that were found to be protected against
phagocytosis and/or killing and that remained in the extracellular
space of the whole-blood infection assay (Hünniger et al., 2014).
Since the model is restricted to the dynamics of states occupied
by pathogenic cells we refer to the model by Hünniger et al.
(2014) as P-SBM. In the present study, motivated by newly
measured experimental data regarding the immune cell number
of monocytes and PMN in the whole-blood assays, we take the
next step and modify the P-SBM to drop its implicit assumption
that the number of immune cells for samples from different
individuals would be the same. Since in the modified SBM states
are assigned to the pathogenic cells as well as to the two types
of immune cells, which have been found to actively participate
in C. albicans elimination, we will refer to this model as PI-
SBM. Taking individual immune cells explicitly into account
obviously makes the simulations of the whole-blood infection
assaymore realistic, albeit at the expense of higher computational
costs for global parameter optimization that will be performed
using SA based on the MMC scheme as was the case for the
P-SBM.

A timely stratification of sepsis patients in different phases of
immune dysregulation requires spatio-temporal simulations of
whole-blood samples. To achieve this goal, an ABM of the whole-
blood infection assay was established that builds on the PI-SBM
and incorporates spatial properties of the blood sample in a three-
dimensional continuous representation. In particular, in the
ABM C. albicans cells as well as monocytes and PMN are agents
that canmigrate in the environment and interact with each other.
Apart from the model parameters associated with the migration
of cells, the ABMwas based on the transition rates of the PI-SBM
after appropriate conversion. This procedure strongly reduces
the number of a priori unknown parameters of agents to the
subset of migration parameters. The latter can be estimated
using the computationally cheap grid search algorithm and
enables the prediction of the migration behavior for the different
immune cell types that are otherwise not directly accessible in
experiment. The interrelations between the different modeling
approaches are schematically shown in Figure 1 demonstrating

that results are re-used across different modeling approaches to
simultaneously facilitate an increase in model complexity and
a decrease in computational expense for parameter estimation.
Our step-wise computational biology approach avoids typical
limitations of realistic models by focusing parameter estimation
on those parameters that arise at the next level of model
complexity.

2. Materials and Methods

2.1. Non-spatial State-based Model
The initial version of the non-spatial SBM describes the dynamics
of state transitions for the human-pathogenic fungus C. albicans
in whole-blood samples of healthy donors (Hünniger et al.,
2014). In agreement with experimental data, the time-evolution
of different C. albicans cells that are alive or killed and in
extracellular space or phagocytosed by either monocytes or PMN
can be simulated in this way. Since this SBM assumes the number
of immune cells to be constant across blood samples of different
donors and does only simulate the dynamics of the pathogenic
(P) cells, it is hereafter referred to as P-SBM. However, it is known
that the number of immune cells may strongly vary across human
individuals and in particular for patients. Therefore, we increase
the model complexity by advancing the P-SBM to a model that
does explicitly account for the number of immune cells being
present in a hemogram. Data including immune cell counts can
easily be obtained both in an experimental as well as in a clinical
setting. This model is hereafter referred to as PI-SBM to indicate
that state transitions are computed for pathogenic (P) as well as
immune (I) cells.

For comparison between the model predictions and the
experimentally determined kinetics in the whole-blood infection
assay, we introduce specific combinations of states, referred
to as combined units, that are measurable and useable for the
parameter estimation. These comprise all extracellularC. albicans
cells CE,

CE ≡ CAE + CKE + CAR + CKR , (1)

that are either alive (CAE) or killed (CKE) cells in extracellular
space as well as cells resistant against killing and/or phagocytosis
that are either alive (CAR) or killed (CKR). Next, the combined
units CM and CG refer to C. albicans cells that are phagocytosed,
respectively, by monocytes

CM ≡
∑

i≥0

∑

j≥0

Mi,j (i+ j) , (2)

or by granulocytes

CG ≡
∑

i≥0

∑

j≥0

Gi,j (i+ j) . (3)

Here, Mi,j and Gi,j refer to the number of monocytes and
granulocytes (PMN), respectively, with i alive and j killed
phagocytosed C. albicans cells. We limit the maximal number
of C. albicans cells that can be phagocytosed by an immune
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FIGURE 1 | Schematic representation of the bottom-up modeling

approach as a strategy for parameter estimation where different

mathematical models with increasing levels of complexity build

on one another. Using model outputs at one level for calibration of

models at a higher level is by way of example demonstrated for

Candida albicans infection in a human whole-blood assay (Hünniger

et al., 2014). The state-based model P-SBM, which focuses on the

viewpoint of pathogens, was modified into the state-based model

PI-SBM by accounting for actions of individual immune cells. After

calibration of transition rates in the non-spatial state-based model, these

were used to simulate the infection process in an agent-based model

(ABM) that accounts for the spatial representation of the whole-blood

infection assay. In the future, the calibration of migration parameters

may for example serve as input for a hybrid ABM that captures the

time-evolution of chemotactic signaling by solving reaction-diffusion

equations.

cell to 18, i.e., i, j < 10, being much larger than observed
in experiment (Hünniger et al., 2014). Furthermore, all killed
C. albicans cells are given by the combined unit

CK ≡ CKE + CKR +
∑

i≥0

∑

j≥1

(Mi,j + Gi,j) j , (4)

and all alive C. albicans cells by the combined unit

CA ≡ CAE + CAR +
∑

i≥1

∑

j≥0

(Mi,j + Gi,j) i . (5)

It should be noted that only three of the five combined units
are independent of each other, due to the conservation relations
C = CE + CG + CM and C = CK + CA for the total number of
C. albicans cells C.

The simulation algorithm for the time-evolution of the PI-
SBM is implemented in C++ that is available upon request. In
Figure 2A, the simulation algorithm is schematically depicted
and can be compared to the simulation algorithm of the P-SBM
in Supplementary Figure 1. We simulate a blood sample of 1

ml containing 5 × 105 monocytes, 5 × 106 PMN and 1 × 106

C. albicans cells that are initially extracellular and alive. In each
time-step, which we set to 1tPI−SBM = 1 min, the algorithm
tests for each individual cell in the system whether or not it does
undergo a state transition. To this end, a cell is first randomly
selected by sampling its relative frequency of occurrence among
all cell types in the system. Next, the state of this cell is updated
using a random selection procedure for the one transition in this
time-step that the cell can possibly make among all currently
enabled transitions. Once the type of transition between states
s and s′ with rate rs→s′ is selected, it will be executed with
probability Ps→s′ = rs→s′ 1tPI−SBM and the system is updated
accordingly. Table 1 provides an overview of the transition rates
for all possible state transitions of the model. After testing all
individuals in the system for performing a state transition, the
simulation time is advanced by one time-step and the whole
procedure is repeated until the total simulation time is reached.
Note that, since the ratio of the number of immune cells over the
number of pathogenic cells is larger than five, the simulation run
time of the PI-SBM is significantly increased compared with the
P-SBM.
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FIGURE 2 | Simulation algorithms of virtual infection models for

whole-blood assays. (A) Flow-chart of the non-spatial PI-SBM simulation

algorithm. In each time-step 1tPI−SBM, all individuals are tested for possible

state transitions. Individuals of extracellular alive and killed C. albicans states,

i.e., CAE and CKE , respectively, are tested for becoming resistant and for

extracellular killing. Individuals of immune cell states (Mi,j or Gi,j ) are tested

for phagocytosis of C. albicans and for intracellular killing. (B) Flow chart of

the spatial ABM simulation algorithm. In each time-step 1tABM, the migration

and interaction handling is performed in random order for every randomly

chosen agent.

2.2. Spatial Agent-based Model
The spatial virtual infection model for C. albicans in human
blood is realized using an ABM approach. This model
is implemented in C++ based on a previously established
framework of Pollmächer and Figge (2014) and is the spatial
counterpart of the non-spatial PI-SBM introduced in Section 2.1.
The C++ source code of the ABM simulation algorithm
is available upon request. In the ABM, the two types of
immune cells—monocytes and PMN—as well as the pathogenic
C. albicans cells are incorporated as virtual objects. These
virtual objects are agents that are characterized by a spherical
morphology with the physiological diameters of dM = 16µm
for monocytes, dG = 13.5µm for PMN (Mak and Saunders,
2011) and dC = 7µm for C. albicans (Mendling, 2006) (see
Figure 3A) and that can migrate and interact with each other
on encounter in the three-dimensional spatial environment (see
Figure 3B). We impose a cuboid environment with an edge
length of 1000µm representing 1µl blood and use random
periodic boundary conditions for the cuboid, i.e., an agent
which leaves the environment at some boundary point is deleted
from the system and a new agent with identical properties
re-enters the environment at some other randomly chosen
boundary point. The cuboid environment is represented as a
continuous space, i.e., allowing agents to move in a manner
that is more realistic than could be captured by a lattice-based
approach. This advantage is accompanied by the drawback

that well-defined neighborhood relations as naturally existing
between neighboring sites on a lattice are not present in
continuous space representations. However, in order to efficiently
determine cell–cell encounters, we use a neighborhood list
method, which reduces the computational complexity to a close-
to linear dependency on the number of agents in the system
(Rapaport, 1996). At time point t = 0, agents are initialized with
all C. albicans cells being in the state alive-and-extracellular. The
time-evolution of the system is simulated by the random selection
method (Skvoretz, 2002; Figge, 2005) that handles the migration
and interaction of agents per time-step 1t in a random fashion
(see Figure 2B).

We use ratios in cell numbers that are equivalent to those in
the PI-SBM, where 1µl of blood contains 5×103 PMN, 5×102

monocytes and 1×103 C. albicans cells, i.e., in total 6.5×103 cells.
Viewing cells as interacting point particles, an average volume of
v ≈ 1

6.5×106 µm3 can be attributed to each cell, implying an

average distance of l ≈ v1/3 ≈ 55µm between immune cells
and C. albicans cells. Even though this distance is clearly larger
than the diameters of these cells, l≫ dM, dG, dC, we assume that
the migration behavior of immune cells and C. albicans cells in
blood resembles a random walk of agents without directional
persistence. This assumption is based on the fact that the total
number of erythrocytes in human blood ranges from 4×106−6×
106 cells/µl (McClatchey, 2003). Estimating the total number of
cells in 1µl of blood to be about six millions, an average volume
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TABLE 1 | Rates of state transitions in the non-spatial PI-SBM.

Transition rate Description State transition

φM Phagocytosis by monocytes Mi,j + CAE → Mi+1,j

Mi,j + CKE → Mi,j+1

κM Intracellular killing by monocytes Mi,j → Mi−1,j+1

φG Phagocytosis by PMN for first-time

phagocytosis event

G0,0 + CAE → G1,0
G0,0 + CKE → G0,1

φG⋆ Phagocytosis by PMN for repeated

phagocytosis events

Gi,j + CAE → Gi+1,j
Gi,j + CKE → Gi,j+1

κG Intracellular killing by PMN Gi,j → Gi−1,j+1

κEK (t) Extracellular killing by antimicrobial

peptides released by first-time PMN

phagocytosis with decreasing activity

CAE → CKE

Rate depends on the activity of

antimicrobial peptides (κ̄EK ) and the

decay of their antimicrobial activity (γ )

as defined in Hünniger et al. (2014)

ρ Resistance against phagocytosis

and/or killing

CAE → CAR,
CKE → CKR

For details see (Hünniger et al., 2014).

of vc ≈ 1
6×103 µm3 can be attributed to each cell, implying a

mean free path of lfp ≈ v
1/3
c ≈ 5µm between point particles.

This distance is not only clearly smaller than the distance between
immune cells and C. albicans cells, lfp ≪ l, but also smaller
than the diameters of erythrocytes, C. albicans cells as well as
of the immune cells under consideration. It can be concluded
that cells are not migrating with directional persistence in blood,
because frequent collisions with the overwhelming number of
erythrocytes will induce diffusivemigration of cells with diffusion
coefficients in whole-blood that can be very different for the
different cell types. This is a consequence of the fact that
monocytes and PMN perform active migration, whereas C.
albicans cells are immotile due to the complete lack of cellular
organelles for motility (Margulies and Schwartz, 1998) and its
movement in whole blood is only passive.

Even though blood is a non-Newtonian fluid, i.e., showing
pseudoplastic properties with variable viscosity depending on
the exerted shear stress in capillaries of different sizes (Fahraus
and Lindqvist, 1931), the experimental setup of the whole-
blood infection assay is such that the viscosity as well
as the temperature in the mildly stirred test tube remain
constant (Hünniger et al., 2014). Therefore, the Stokes-
Einstein equation (Einstein, 1905) can be applied to infer
the diffusion coefficient DC for the passive movement
of C. albicans cells. Based on a whole-blood viscosity of
about η ≈ 4mPa s (Rosenson et al., 1996), Boltzmann
constant kB and temperature T = 37◦C (Hünniger et al.,
2014), this yields the relatively small diffusion coefficient
DC = kBT/(3πηdC) ≈ 1µm2/min. In contrast, the active
migration of monocytes and PMN requires to estimate their
diffusion coefficients numerically.

The time-step 1tABM for simulations in the ABM has to be
chosen such that a smooth migration of cells is sampled in time.
In order to ensure this, we require that during one time-step

1tABM cells do not migrate further than a certain distance, which
we set to equal the mean free path lfp = 5µm:

1tABM =
l2
fp

6Dmax
. (6)

Here, Dmax ≡ max{DC,DM,DG} denotes the largest out of the
three diffusion coefficients for C. albicans cells (DC), monocytes
(DM), and PMN (DG). Since it can be expected that the active
migration of immune cells is associated with diffusion coefficients
DM and DG with DM,DG ≫ 1µm2/min in the whole-blood
infection assay, it follows from Equation (6) that the time-step
in the ABM will be much smaller than in the state-based model
PI-SBM: 1tABM ≪ 1tPI−SBM = 1min. Moreover, stochasticity
in the ABM requires that each simulation has to be repeated
multiple times, resulting into relatively high computational costs
compared with the PI-SBM, in particular, if we would have
envisaged to estimate each model parameter instead of following
the strategy of a bottom-up modeling approach.

Computational costs associated with parameter estimation in
the ABM can be significantly reduced by making use of the
previously estimated rates of state transitions in the state-based
model PI-SBM (see Section 2.1 and Table 1). In the course of a
simulation, migrating cells in the ABMmay either spontaneously
undergo state transitions or interact with each other upon spatial
contact. In Figure 3C, we present a schematic overview of
processes that occur according to defined rules associated with
certain probabilities. It is important to note that, due to the spatial
aspects that are captured by the ABM but not the PI-SBM, we
have to distinguish between processes that are contact-dependent
and contact-independent.

For contact-independent processes—such as intracellular and
extracellular killing as well as the occurrence of C. albicans
resistance against phagocytosis and/or killing—the conversion
of rates from the PI-SBM to the ABM is straightforward.
Since these processes are not determined by any spatial
requirements, a simple re-scaling is performed. For example, C.
albicans cells become resistant in the PI-SBM with probability
PPI−SBM(ρ) = ρ 1tPI−SBM . In the ABM, where the resolution of
time is set by the time-step1tABM≪1tPI−SBM , we check in each
time-step with probability

PABM(ρ) = PPI−SBM(ρ)
1tABM

1tPI−SBM
(7)

whether this process occurs.
In contrast, contact-dependent processes in the ABM are

characterized by the requirement that two cells have to get
into spatial contact first, before such a process—for example,
a phagocytosis event of a C. albicans cell by a monocyte with
transition rate φM—can take place. In the PI-SBM, spatial contact
is not explicitly modeled; rather, the interaction partner for each
monocyte is randomly chosen once per time-step 1tPI−SBM .
The associated probability is determined by the time-dependent
ratio of non-resistant fungal cells over the sum of extracellular
fungal cells and immune cells. Once an interaction partner was
chosen, the phagocytosis event itself occurs with probability
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FIGURE 3 | Agent-based model (ABM) of the human whole-blood

infection assay. (A) Agents used in the ABM are Candida albicans cells in

the four states (i) alive and non-resistant (green), (ii) dead and non-resistant

(red), (iii) alive and resistant (yellow), and (iv) dead and resistant (gray).

Furthermore, granulocytes (polymorphonuclear neutrophils, PMN) and

monocytes are shown in blue and orange, respectively. (B) Schematic

overview of examples for interactions in the ABM. Each arrow indicates the

execution of an interaction event, either depending on spatial contact

between different cells or by a contact-independent process. C. albicans

cells that are in extracellular space and alive (CAE ) or killed (CKE ) can become

resistant with probability P(ρ). After spatial contact, alive or killed C. albicans

cells can be phagocytosed by PMN or monocytes with probabilities

P(φG|φG* ) or P(φM ), respectively. Intracellular alive C. albicans cells are killed

with probabilities P(κG ) or P(κM ) depending on the type of phagocyte. (C)

Visualization of the three-dimensional cuboid environment of the ABM that

corresponds to 1µl of the whole-blood infection assay, containing 5000

PMN, 500 monocytes, and 1000 C. albicans cells. The time-evolution of the

simulated infection scenario can be viewed in Supplementary Video 1.

PPI−SBM(φM) = φM 1tPI−SBM in the PI-SBM. Correspondingly,
in the ABM, we request that this process takes place with the same
probability,

PABM(φM) = PPI−SBM(φM) , (8)

on every encounter between a monocyte and a C. albicans cell.
This correspondence of event probabilities for the two modeling
approaches imposes a condition on the spatial dynamics of
cells, i.e., on the values of the diffusion coefficients in the ABM
and by that on the time-step 1tABM (see Equation 6). For
optimal migration parameters, i.e., parameters that result in
good agreement with the experimental data, it is expected that
measurement of the associated phagocytosis rate in the ABM
coincides with the corresponding rate from the PI-SBM.

2.3. Parameter Estimation
2.3.1. Simulated Annealing
The a priori unknown transition rates of the PI-SBM are
determined by the method of Simulated Annealing based on
the Metropolis Monte Carlo scheme (SA-MMC) that is depicted
in Figure 4A. This optimization method randomly explores the
parameter space of transition rates to find the global minimum of
the fitting error, i.e., themost suitable parameter set that produces

the best fit of the simulation to the experimental data obtained
from the whole-blood infection assay.

The parameter estimation algorithm starts with a randomly
chosen set of parameter values within the interval of [0, 1]
per minute, represented by the vector Ep, and calculates the
resulting time-evolution of state occupations from the simulation
algorithm of the PI-SBM (see Section 2.1). To score the
simulation result for a particular set of parameters, we combined
different kinetics of the PI-SBM, referred to as combined units,
which are identical with the experimental kinetics measured in
the whole-blood infection assay (see Section 2.1). In this way,

the experimental kinetics can be directly compared with the
combined units c obtained from the model simulation, which
is then scored by calculating the least-squares error (LSE) at
experimental data points k as the weighted sum over c:

E[Ep] =
∑

c

ǫc
1

2

∑

k

(xdatk,c − xsimk,c [Ep])
2 . (9)

Here, ǫc is adjusted as to fit each combined unit comparably
well to the experimental data. The same values for ǫc were used
in the PI-SBM and the ABM and are given in Supplementary
Table 1. Next, the parameter set Ep is randomly varied within a
pre-defined neighborhood of 10% variation, leading to a new
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FIGURE 4 | Concepts of parameter estimation algorithms for

non-spatial state-based models (SBM) and spatial agent-based

models (ABM). (A) Flow chart of parameter estimation by the global

optimization method Simulated Annealing based on the Metropolis Monte

Carlo (SA-MMC). Light gray boxes describe Steps 1–4 of the algorithm;

equations and pseudo code applied in these steps are provided in the dark

gray boxes. (B) Schematic overview of the local optimization method

adaptive grid search algorithm used for estimation of ABM migration

parameters. Simulations are performed for sets of parameters on a regular

grid in a predefined area of the search space and are evaluated by the least

squares error (LSE). The initial grid (upper panel) contains sets of parameters

with smallest LSE (light gray area) and this area is refined for a more accurate

identification of the optimal parameter set (lower panel). Here, light gray dots

represent parameter configurations from the first refinement level and dark

gray squares represent parameter configurations of the subsequent

refinement level.

set of parameter values, Ep ′, as indicated in Figure 4A, Step 2.
Subsequently, the simulation of the PI-SBM is performed again
for parameter values Ep ′ and the corresponding score E[Ep ′] is
calculated. Whether the new simulated data will be accepted
or rejected is decided by applying the MMC scheme that is
depicted in Figure 4A, Step 3. The probability to accept worse
parameter values is influenced by τ (f ), representing the “inverse
system temperature” in a SA process. The simulation of the
annealing process involves a gradual decrease of the system
temperature with progressed fitting, i.e., τ (f ) is increased with
the number of performed fitting steps f (see Supplementary
Information 2.1).

After performing a total number of fitting steps, the fitting
algorithm is repeated starting from a newly chosen random
parameter set. This is done for a certain number of runs and
the set of parameters with the minimal fitting error (Epmin) is
saved from each fitting process. Themean values of the parameter
values and their standard deviations are computed over all runs
to determine the robustness of the estimated parameters.

We repeatedly perform the parameter estimation procedure
for different system sizes in terms of the total number of
individual cells. In doing so, the system size is stepwise increased
by factors of ten, which is associated with increasing computing
time for the model simulation but is partly compensated by a
decrease in the number of fitting steps to avoid computational
overload (see Supplementary Table 2). We start the estimation
algorithm with a low number of individuals and a large

number of fitting steps. The resulting parameter values are
subsequently used as start parameter values for the system
with next-higher number of individuals, i.e., for a 10-fold
larger system. This procedure is repeated until a system size
is reached where the number of individuals correspond to the
measured numbers of PMN (about 5 × 106) and monocytes
(about 5× 105).

2.3.2. Adaptive Regular Grid Search
As described in Section 2.2, probabilities for state transitions in
the ABM of the whole-blood infection assay can be derived from
the interaction rates of the PI-SBM. This reduces the space of
parameters that has to be searched in the process of parameter
estimation, leaving only two migration parameters—i.e., the
diffusion coefficients DM and DG, respectively, for monocytes
and PMN—to be calibrated. However, even for a reduced
parameter search space, there still is need for a calibration
strategy that keeps the number of ABM simulations within
limits, because simulating stochastic processes requires sufficient
numbers of repetitions in order to obtain numerical results that
are statistically sound.

We apply the adaptive regular grid search algorithm (Powell,
1998) to search iteratively for a local optimum in the parameter
space (see Figure 4B). Motivated by biological constraints this
is done for a pre-defined region of the parameter space. This
region is represented on a regular grid and for each grid point
the ABM is simulated with the corresponding set of parameter
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values. Afterwards, simulations are evaluated with the least-
squares error (LSE), scoring deviations between the simulation
results and the experimental data for all combined units
c = {CK,CA,CE,CM,CG} (see Section 2.1 and Equation 9). The
values for the LSE are used to determine the adaptive refinement
of the grid before the next iteration step, where intermediate grid
points are calculated by bisection of the grid constant for the sets
of parameters with lowest LSE. This imposes a grid refinement
that ensures a more detailed scanning of the parameter space in
relevant regions and defines the refinement level. The initial grid
constant and the number of refinement steps determine how fine-
grained the parameter space is represented by grid points and
their values have to be chosen depending on the LSE landscape.

We further decrease computational costs associated with
parameter estimation in the ABM by system scaling. Thus,
similar to the procedure applied for the state-based model PI-
SBM, we first scan the parameter space with a small system of
1/5 µl blood and subsequently re-scan the relevant parameter
region with the system of 1µl blood as defined in Section 2.2.

3. Results

3.1. Quantification of the Immune Response by
the State-based Model
We quantified innate immune mechanisms in human whole-
blood assays of infection with the pathogenic fungus C. albicans
using a SBM. To this end, we modified a previously introduced
SBM, referred to as P-SBM. This model was derived with the
focus on state transitions of the pathogen (P) that may be
induced by immune cells. However, immune cells in the P-
SBM were only effectively modeled and not explicitly account
for as individual cells (Hünniger et al., 2014). In the present
work, we modified the P-SBM to model the interaction with
individual immune cells—monocytes and granulocytes (PMN)—
in detail. Since the focus of this model is on state transitions
of both pathogen (P) and immune cells (I), we term this model
PI-SBM. For reasons of comparison with the P-SBM, we used
the same experimental data as in Hünniger et al. (2014) to
quantify innate immunemechanisms by estimating the transition
rates that yield the best fit to the data. Specific combinations of
C. albicans states, referred to as combined units, were introduced
that are directly related to different C. albicans populations
measured over 4 h post-infection in experiment. As explained in
detail in the Materials and Methods Section, the combined units
include all extracellular C. albicans cells (CE), C. albicans cells
that are phagocytosed, respectively, by monocytes (CM) or by
granulocytes (CG). Furthermore, all killed and alive C. albicans
cells are given by the combined units CK and CA, respectively.
The manually adjusted scores ǫc of combined units c are given
in Supplementary Table 1. We simulate a blood sample of 1ml
containing 5 × 105 monocytes, 5 × 106 PMN and 1 × 106

C. albicans cells that are initially extracellular and alive.
To estimate the values of transition rates in the PI-SBM

that yield the best fit to experimental data, i.e., the fit with the
smallest least squares error (LSE), we applied the method of
SA-MMC scheme (for details see Section 2.3.1). In Figure 5,

the resulting transition rates of the PI-SBM are compared with
those previously obtained within the P-SBM (for a quantitative
comparison see also Supplementary Tables 3, 4). The direct
comparison between the P-SBM and PI-SBM revealed that most
transition rates are quantitatively similar in the two models.

The largest deviations in the values of transition rates between
the two models were observed for the phagocytosis rate of
monocytes (φM) and the killing rate of monocytes (κM). This
was further investigated by performing the parameter estimation
for the PI-SBM again, where only φM and κM were randomly
varied while all other rates were kept fixed. We performed 50
runs and obtained very different standard deviations for these
transition rates: while the standard deviation of φM was only
4%, this was 16% in the case of κM . We conclude that the PI-
SBM is generally robust in all transition rates, except for κM
that is also not directly determined by the data, because alive
and killed C. albicans cells in phagocytes were not distinguished
in these experiments. Similar observations were made for the
P-SBM, where it was shown that variations in κM did not lead to
significant differences in the fitting error (Hünniger et al., 2014).

To determine the impact of variations in the transition
rates on the kinetics of the combined units in the PI-SBM,
we performed 50 simulations with transition rates that were
randomly sampled within their respective standard deviations.
The kinetics of individual sub-populations are plotted in
Supplementary Figure 2 while the results for the combined units
are given in Figure 6. It can be seen that the simulated combined
units agree well with the corresponding experimental data. In

FIGURE 5 | Transition rates obtained from the model calibration to

experimental data of the whole-blood infection assay. The results for the

modified state-based model PI-SBM are compared to the P-SBM (Hünniger

et al., 2014). The values are compared for the rate of phagocytosis by

monocytes (φM ), and by PMN on initial and subsequent events (φG,φG* ), rate

of killing by monocytes (κM ) and PMN (κG), rate of acquiring resistance against

phagocytsis and/or killing (ρ) as well as the values of parameters for

extracellular killing (γ , κ̄EK ). Error bars correspond to standard deviations.
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particular, the resulting kinetics of the PI-SBM revealed that
4 h post-infection 82% C. albicans cells were phagocytosed by
PMN, whereas only 4% C. albicans cells were phagocytosed
by monocytes. Furthermore, PMN play a major role in the
immune response, because these phagocytes are associated with
97% of all killed C. albicans cells (see Supplementary Figure
2A). This is achieved either directly, via phagocytosis and
intracellular killing (66.5%) of the pathogen, or indirectly by
the release of antimicrobial peptides on a pathogen’s first event
of phagocytosis (30.5%) (see Supplementary Figure 2H). Four
hours post-infection, most C. albicans cells were killed (89%)
while a minority of 11% cells were extracellular and became
resistant against killing and phagocytosis. These results are in
quantitative agreement with those obtained previously for the
P-SBM (Hünniger et al., 2014).

3.2. Predictions on Monocytopenia and
Neutropenia from PI-SBM
The state-based model PI-SBM opens the possibility to study the
dependence of the immune response against C. albicans on the
number of PMN and monocytes in blood. Simulating the virtual
infection scenario with the previously estimated parameters (see
Supplementary Table 3), we considered various cases of immune
cell deficiencies. The model predictions at 4 h post-infection and
for gradual decreases in the immune cell numbers are presented
in Figure 7 for the cases of monocytopenia and neutropenia
separately.

We found, as expected from the above quantification of the
immune response, that monocytopenia is not a critical condition
with regard to C. albicans infections: deficiency of monocytes
and even their complete absence was fully compensated by
PMN-mediated killing. In fact, patients with monocytopenia
have not been reported to develop systemic candidiasis to
date (Lionakis, 2014). The situation is extremely different in the
case of neutropenia. In the absence of PMN, the number of killed
C. albicans cells is predicted to decrease from about 89% under
physiological conditions down to 45%, i.e., CK = 89% for 5×106

PMN and CK = 45% for ≤ 5 × 103 PMN (see Figure 7B).
Monocytes compensated PMN deficiency by phagocytosis of
C. albicans cells only partly, where the fraction increased from
3% under physiological conditions up to 48%. However, 42% of
the C. albicans cells acquired resistance against killing and/or
phagocytosis, resulting from the combined effect of absent PMN
phagocytosis and extracellular killing that is normally mediated
by PMN release of antimicrobial peptides.

For a decrease in PMN number by one order of magnitude
from physiological conditions, we found that monocytes can
sustain the immune response fairly well. In this case, the fraction
of killed C. albicans cells was still 79% and the phagocytosis
by monocytes and PMN reached, respectively, 20% and 55%
of C. albicans cells. A significant deterioration of the immune
response was observed for PMN concentrations below 5 ×
105 cells/ml (see Figure 7). Interestingly, this concentration
was reported to mark the transition from moderate to severe
neutropenia (Munshi and Montgomery, 2000), which is a

FIGURE 6 | Comparison of the time-evolution for the combined

units from the experimental whole-blood infection assay (dotted

lines as a guide for the eye) with the PI-SBM in (A,B), and the

ABM in (C,D). In (A,B), the thickness of the solid lines represents the

standard deviation of the PI-SBM simulation results as obtained from 50

simulations for normally distributed transition rates as given in

Supplementary Table 3. The thickness of the solid lines in (C,D)

represents the standard deviation obtained by 30 simulations of the

stochastic ABM. Time-evolution of killed (CK ) and alive (CA) C. albicans

cells are depicted in (A,C), and the dynamics of C. albicans cells that

are in extracellular space (CE ), phagocytosed by monocytes (CM ) and

PMN (CG) are shown in (B,D).
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condition that is known to be associated with high risks for
candidemia in cancer patients (Lunel et al., 1999; Alangaden,
2011).

3.3. Agent-based Model Captures Immune
Response in Time and Space
State-based models (SBM) do not account for any spatial aspects.
For example, cells in the PI-SBM do not actually migrate during
the immune response and, therefore, do not have to get into
contact before a phagocytosis event can take place. In contrast,
agent-basedmodels (ABM) do capture spatial aspects in a defined
environment. Applying a bottom-up modeling approach, we
implemented an ABM that is—apart from its spatial aspects—
the exact analog of the non-spatial PI-SBM. As depicted in
Figure 1, all transition rates that were previously estimated for
the PI-SBM were fed into the ABM (see Section 2.2 for details).
The only parameters left to estimate were those related to
cell migration, which in the dense cell system of the whole-
blood assay resembles a random walk. In particular, while the
diffusion coefficient associated with the passive movement of
C. albicans cells could be inferred from the Stokes-Einstein
equation to be DC ≈ 1µm2/min, the active migration behavior
of immune cells requires a rigorous parameter estimation of
the diffusion coefficients DM and DG for monocytes and PMN,
respectively.

It should be noted that, even in the case of low-
dimensional parameter spaces, the estimation of parameters
for ABM generally turn out to be computationally intensive.
This is a consequence of the fact that ABM simulate the
interactions between thousands of agents in continuous space
as stochastic processes. To simultaneously facilitate an increase
in model complexity and a decrease in computational expense
for parameter estimation, we applied the local optimization
algorithm adaptive regular grid search. This algorithm compares
ABM simulations by evaluating the least squares error (LSE)
regarding the experimental data of the whole-blood infection
assay. Stochastic effects of the ABM were investigated by

comparing simulation results for a fixed set of parameter values
with varying number of in silico replicates. Using 100 in silico
replicates as a reference for the mean value of the LSE, we
generally observed for relevant parameter sets, i.e., parameter sets
that yield reasonable agreement with the experimental data, that
relative variations in the mean LSE were already well below 10%
for 30 in silico replicates. Therefore, we set the number of in silico
replicates to 30 throughout the whole parameter space.

The adaptive regular grid search algorithm searches the
space of DM and DG on a pre-defined grid of diffusion
coefficients, 0 < DM,DG < 800µm2/min. This range for the
diffusion coefficients implies that the time step 1tABM varies
between 5.2× 10−3min ≤ 1tABM ≤ 4.2min (see Equation 6).
As described in Section 2.3.2, we started with a relatively
coarse grid of step size 100µm2/min and computed at each
grid point the LSE by comparing the experimental data with
a small ABM system, i.e., representing 1/5µl of blood (see
Supplementary Figure 3). These results were used to determine
the regime of parameters in which the parameter estimation was
continued for the large ABM system simulating 1µl of blood. The
parameter regime was determined by the rectangle that contains
all pairs of diffusion coefficients (DG,DM) for which the LSE
values were found to be minimal from separately varying each
parameter. The corner points of this rectangle were (DG,DM) =
(100, 0)µm2/min and (DG,DM) = (600, 800)µm2/min (see
gray region in Supplementary Figure 3). Subsequently, the
grid was refined based on simulations of the large ABM by
determining the path of minimal LSE values and adding grid
points around this path by adaptive bisection. After simulation
of the ABM for parameter sets corresponding to the added grid
points, the procedure of grid refinement was repeated. This can
be seen in Figure 8, where we plot a map of the LSE landscape
together with the paths of minimal LSE values for each level of
refinement. It was observed that the course of these paths covers
a relatively broad range of diffusion coefficients for monocytes,
DM , whereas this is a fairly narrow range of DG-values for
PMN.

FIGURE 7 | Simulation results of the PI-SBM with different immune

cell numbers at 4 h post-infection for the conditions (A)

monocytopenia and (B) neutropenia. The relative numbers of

C. albicans cells of killed cells (CK ), phagocytosed cells in monocytes

(CM ) and in PMN (CG) as well as cells that became resistant (CR)

against killing and/or phagocytosis are depicted for different numbers of

monocytes and PMN. The number of (A) monocytes and (B) PMN in

the simulations are reduced separately, starting from physiological

concentrations of 5×105 /ml monocytes and 5×106 /ml PMN down to

vanishing concentrations. In (B), the light gray region represents the

range of light neutropenia (< 1.5× 106 PMN per ml), medium gray

region represents the range of moderate neutropenia (< 1× 106 PMN

per ml) and dark gray region represents the range of severe neutropenia

(< 5× 105 PMN per ml).
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FIGURE 8 | Result of ABM parameter estimation by adaptive regular

grid search. The diffusion coefficients for monocytes, DM, and PMN, DG,

were scanned within the regime that was determined by parameter scanning

for the small ABM (1/5µl blood). At each grid point, 30 ABM simulations were

performed for the large system (1µl blood) and the mean least squares error

(LSE) is depicted. By determining the path of minimal LSE values and adding

grid points around this path by adaptive bisection, three refinement levels are

considered. Dots represent grid points of the first refinement level, squares

represent grid points of the second refinement level, and triangles represent

grid points of the third refinement level. The paths of minimal LSE values for

the first, second and third refinement level are traced by light gray, medium

gray, and dark gray lines, respectively.

In Figure 9, we present the LSE values as a function of
DM(DG) along the paths of minimal LSE values for the three
levels of refinement. From the third level of refinement we
inferred the point of absolute LSE minimum to be located
at (Dmin

G ,Dmin
M ) = (425, 275)µm2/min. However, since the

landscape of DM(DG) resembled an extended valley across
neighboring data points, we performed a statistical analysis by
applying the Wilcoxon rank sum test between the absolute LSE
minimum and its neighboring points to check for significant
differences between them. Imposing a p-value of p < 0.05 for
significant difference, we obtained points with similar values
of the LSE ranging in the interval DM = 100µm2/min to
DM = 350µm2/min for monocytes and DG = 400µm2/min
to DG = 425µm2/min for PMN (see Figure 8). These
findings imply that the immune response in the whole-blood
infection assay was much more sensitive to variations in the
diffusion coefficients of PMN than of monocytes, emphasizing
the dominant role of PMN over monocytes from the viewpoint
of cell migration.

Our results are consistent with the absolute LSE minima
of refinement level one and two, which were both at
(Dmin

G ,Dmin
M ) = (400, 200)µm2/min and that also belong

to this interval (see Figure 9). Interestingly, while we expected
that monocytes are less migratory active than PMN, i.e.,
restricting the relevant parameter regime in Figure 8 to

FIGURE 9 | The least squares error (LSE) of the paths of grid points

along the diffusion coefficients for monocytes (DM) as a function of the

minimal diffusion coefficient for PMN (DG): DM(DG). Mean values and

standard deviations were obtained from averaging over 30 ABM simulations.

The paths of the first, second, and third refinement level are shown,

respectively, as red, green, and blue lines (guide for the eyes). The horizontal

bars indicate regions of diffusion coefficients with values comparable to the

absolute LSE minimum of each refinement level. All values outside these

regions are significantly different from the absolute LSE minimum (Wilcoxon

rank sum test with p < 0.05).

the region below the dashed line, we also found that the
interval around the absolute LSE minimum contains the
parameter set (DG,DM) = (425, 350)µm2/min. The ratio of
these diffusion coefficients, DM/DG ≈ 0.82, resembles the
value expected from the Stokes-Einstein equation (Einstein,
1905) implying DM/DG = dG/dM (dotted line in Figure 8).
Taken together, we consider the diffusion coefficients
(Dmin

G ,Dmin
M ) = (425, 275)µm2/min to represent the immune

cell dynamics reasonably well and use these values in our further
analyses below.

Next, we compared the ABM simulation results for the
absolute LSE minimum with those of the PI-SBM. These are
plotted together with the experimental data of the whole-blood
infection assay in Figure 6 and in Supplementary Figure 4 for the
time evolution of C. albicans sub-populations. Thus, we found
that both modeling approaches, the non-spatial SBM and the
spatial ABM, yielded excellent agreement with the experimental
data. Furthermore, we found that our simulation results obtained
from the stochastic ABM were robust, which can be seen from
the line thicknesses in Figures 6C,D representing the standard
deviations obtained from 30 ABM simulations.

3.4. Predictions on Hyper- and
Hypo-inflammation from ABM
To investigate the impact of hyper- and hypo-inflammation
associated with the dynamics of immune cells, we varied the
diffusion coefficients of monocytes and PMN separately around
the absolute LSEminimum (Dmin

G ,Dmin
M ) = (425, 275)µm2/min.

Keeping the diffusion coefficient DG fixed and varying the DM

for monocytes between 100µm2/min and 600µm2/min, we
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observed at 4 h post-infection no substantial changes in the
populations of killed, resistant and phagocytosed C. albicans cells
(see Figure 10A). At extreme values DM > DG, a slight increase
(decrease) in the number of killed (resistant) C. albicans cells was
observed accompanied by a slight increase in the phagocytosis by
both monocytes and PMN. This may be attributed to a stronger
mixing of the cell system for high diffusion coefficients DM . In
general, however, the immune response does not appear to be
sensitive to this parameter, which is in agreement with the finding
for monocytopenia that did not have a substantial impact on
infection clearance (see Figure 7A).

In the opposite case, where DM was fixed and DG was varied
between 100µm2/min and 600µm2/min, it was again observed
that for increased values DG > 425µm2/min the impact on the
immune response against C. albicans is only weak. In contrast,
for decreased values DG < 400µm2/min the immune response
was strongly affected by the reduced migratory activity of PMN.
This could be observed by a substantial increase (decrease) in the
number of resistant (killed) C. albicans cells (see Figure 10B).
In particular, for DG = 100µm2/min the phagocytosis of
C. albicans cells by PMN was reduced by more than 20% and the
relative number of resistant C. albicans cells reached the value
of 28%. Comparing this scenario with the condition of PMN
deficiency (see Figure 7B), we found that this PMN paralysis
resembles moderate to severe neutropenia associated with a
relative number of about 20% and 30% of resistant C. albicans
cells, respectively.

4. Discussion

In this study, we applied a bottom-up modeling approach to
simulate an experimental infection assay for C. albicans in
human blood. As illustrated in Figure 1, this approach combines
different mathematical models with increasing complexity that
build on one another. We started from a previously developed
state based model (SBM), here referred to as P-SBM (Hünniger
et al., 2014), that neglects all spatial aspects and describes
the time-evolution of pathogens in different states—e.g., alive,
phagocytosed and killed—during the early response of the innate

immune system. To include the immune response mediated by
monocytes and granulocytes (PMN), in this work we modified
the P-SBM into a SBM that does as well-explicitly account for
the immune cell states and is therefore referred to as PI-SBM.
The rates of state transitions in the PI-SBM were estimated by
comparison with experimental data (Hünniger et al., 2014) using
the global optimizationmethod simulated annealing based on the
Metropolis Monte Carlo scheme (SA-MMC).

The resulting model kinetics of both SBM were found to be
in quantitative agreement with experimental data and confirmed
that PMN play the major role in the immune defense against
C. albicans in human blood. This is indicative for the general
validity of both models, despite the structural difference of the
simulation algorithms regarding the level of detail at which
immune cells are modeled. Furthermore, the PI-SBM allows
making predictions on infection scenarios in patients with
immune cell deficiencies, i.e., neutropenia and monocytopenia.
Performing in silico experiments with varying numbers of either
monocytes or PMN, revealed that loss of monocytes was mainly
compensated by PMN. In contrast, decreasing PMNnumber lead
to a strongly reduced immune response against C. albicans for
PMNnumbers below 5×105 /ml (see Figure 7). Our quantitative
prediction is substantiated by published data that account
this PMN concentration as severe neutropenia (Munshi and
Montgomery, 2000). It is also reported that neutropenia impairs
the outcome of candidemia and is a risk factor, in particular, for
cancer patients developing candidemia (Guiot et al., 1994; Bow
et al., 1995; Lunel et al., 1999). From the quantitative agreement
between predictions of the PI-SBM and reported findings for C.
albicans infection, we attribute a high predictive potential to this
virtual infection model that may be exploited in future studies,
e.g., focusing on conditions of immune dysregulation and/or
comparing the impact of different pathogens. The possibility
to quantify functional alteration of immune cells rather than
pure numerical aberrations is of particular interest in this
regard.

In order to account for spatial aspects of the immune response,

we extended the SBM to an agent-based model (ABM), where
cells are simulated as agents that can migrate in continuous

FIGURE 10 | Simulation results of the ABM at 4h post-infection for

varied diffusion coefficients around the absolute least squares

error (LSE) minimum with (Dmin
G

,Dmin
M

) = (425,275)µm2/min

for (A) monocytes keeping DG fixed and (B) PMN keeping DM

fixed. The relative numbers of C. ablicans cells of killed cells (CK ),

phagocytosed cells in monocytes (CM ) and in PMN (CG) as well as cells

that became resistant (CR) against killing and/or phagocytosis are

depicted.
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three-dimensional space and can interact with each other on
encounter in space. Applying the bottom-up modeling approach,
we made use of the rates that were determined by fitting the
PI-SBM to the experimental data and estimated the diffusion
coefficients of immune cells in blood (see Figure 1). Due to
high computational costs of ABM simulations, applying the
global optimization method SA-MMC was no realistic option
and we chose the computationally affordable local optimization
method adaptive regular grid search. This method searches for
the optimum within a pre-defined parameter space, which in
the present case was a two-dimensional space spanned by the
diffusion coefficients for monocytes and PMN. In contrast,
applying SA-MMC was beneficial in the case of PI-SBM for
three reasons: (i) the parameter space was eight-dimensional,
(ii) limitations of the parameter space would have been difficult to
motivate biologically, and (iii) computational costs for repeated
simulations were still acceptable due to the neglect of spatial
aspects.

As live cell imaging in whole-blood assays cannot yet
be performed today, computer simulations are the only tool
to predict diffusion coefficients of immune cells. Parameter
estimation of the ABM predicted intervals for the diffusion
coefficients that yielded quantitatively comparable results.
For monocytes this interval, DM = 100µm2/min to
DM = 350µm2/min, was substantially broader than for PMN
with DG = 400µm2/min to DG = 425µm2/min, indicating the
importance of fine-tuned PMNmotility.

Furthermore, by varying the diffusion coefficients of the
immune cells, we demonstrated the impact of hyper- and hypo-
inflammation in immune dysregulation. In general, reducing
(increasing) immune cell motilities around optimal values
reduced (increased) the number of interaction events between
cells and by that the phagocytosis of C. albicans cells. In the
case of PMN, reduction of cell motility and phagocytosis events
was additionally associated with a decrease in the release of
antimicrobial peptides contributing to the decrease in killing
of C. albicans cells. This in turn lead to an increase in
the number of resistant C. albicans cells reaching levels that
were well-beyond those observed for paralytic monocytes (see
Figure 10). Comparing the hypo-inflammatory condition with
PMN deficiency, we found that diffusion coefficients around
DG = 100µm2/min resembled the outcome of moderate to
severe neutropenia.

The bottom-up modeling approach presented here may be
extended in various ways. For example, the implementation of
a hybrid ABM could be envisaged where molecular interactions,
e.g., as mediated by antimicrobial peptides, are not simulated
in a rule-based fashion but in an explicit way by a molecular
diffusion solver. Other directions of future research include (i)
focusing on conditions of immune dysregulation, (ii) comparing

the impact of different pathogens, and (iii) including other
types of innate immune cells. Furthermore, it is conceivable
to combine modeling approaches with microscopy experiments
of infection scenarios in vitro in an image-based systems
biology approach (Mech et al., 2014; Figge and Murphy, 2015;
Medyukhina et al., 2015). First steps into this direction have
recently been made, e.g., by establishing algorithms for the
automated image analysis of phagocytosis assays (Mech et al.,
2011; Kraibooj et al., 2014) and for the automated tracking and
classification of PMN from time-lapse microscopy (Mokhtari
et al., 2013; Brandes et al., 2015) that was applied in the context
of comparing C. albicans and C. glabrata infection (Duggan
et al., 2015a). In the future, we expect that a systems medicine
approach exploiting the predictive power of virtual infection
models will play an important role in the context of infectious
disease diagnosis.
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