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Combination of FDG PET/CT radiomics and clinical 
parameters for outcome prediction in patients with  
non-Hodgkin’s lymphoma
Claudia Ortegaa, Reut Anconinab, Sayali Joshic, Ur Metsera, 
Anca Pricad, Sarah Johnsona, Zhihui Amy Liue,f, Sareh Keshavarzie,f and 
Patrick Veit-Haibacha

Purpose The purposes was to build model 
incorporating PET +  computed tomography (CT) 
radiomics features from baseline PET/CT + clinical 
parameters to predict outcomes in patients with non-
Hodgkin lymphomas.

Methods Cohort of 138 patients with complete clinical 
parameters and follow up times of 25.3 months recorded. 
Textural analysis of PET and manual correlating contouring 
in CT images analyzed using LIFE X software. Defined 
outcomes were overall survival (OS), disease free-survival, 
radiotherapy, and unfavorable response (defined as 
disease progression) assessed by end of therapy PET/
CT or contrast CT. Univariable and multivariable analysis 
performed to assess association between PET, CT, and 
clinical.

Results Male (P = 0.030), abnormal lymphocytes 
(P = 0.030), lower value of PET entropy (P = 0.030), higher 
value of SHAPE sphericity (P = 0.002) were significantly 
associated with worse OS. Advanced stage (III or IV, 
P = 0.013), abnormal lymphocytes (P = 0.032), higher value 
of CT gray-level run length matrix (GLRLM) LRLGE mean 
(P = 0.010), higher value of PET gray-level co-occurrence 
matrix energy angular second moment (P < 0.001), 
and neighborhood gray-level different matrix (NGLDM) 

busyness mean (P < 0.001) were significant predictors 
of shorter DFS. Abnormal lymphocyte (P = 0.033), lower 
value of CT NGLDM coarseness (P = 0.082), and higher 
value of PET GLRLM gray-level nonuniformity zone mean 
(P = 0.040) were significant predictors of unfavorable 
response to chemotherapy. Area under the curve for the 
three models (clinical alone, clinical + PET parameters, 
and clinical + PET + CT parameters) were 0.626, 0.716, 
and 0.759, respectively. Nucl Med Commun 45: 1039–1046 
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Introduction
Non-Hodgkin’s lymphomas (NHL) accounts for about 
4% of all cancers. 18F-fluorodeoxyglucose (FDG) PET/
computed tomography (PET/CT) is the recommended 
imaging modality for the staging and restaging of FDG-
avid lymphoma, including aggressive NHL according to 
Deauville score criteria [1].

NHL includes a variety of subtypes, with diffuse large 
B-cell lymphoma (DLBCL) been the most common 
aggressive subtype [2]. Despite recent improvements in 
chemotherapy, the average 5-year progression-free sur-
vival (PFS) is about 60% with nearly a third of patients 
treated with standard chemotherapy having refractory 
disease or relapse [3]. Early identification of these high-
risk patients using traditional prognostic factors is very 
limited, currently based in International Prognostic 
Index (IPI) score, among others [4].

Radiomics is a rapidly evolving field in medical imaging. 
The term refers to extraction and analysis of large volume 
quantitative imaging data from medical images, such as 
CT or PET in a minable form to build predictive mod-
els associating texture features to phenotypes, genetic 
and proteomic signatures, and even treatment outcomes 
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[5]. These parameters can capture intra-tumoral biolog-
ical heterogeneity associated with cellular and molecu-
lar characteristics such as cellular proliferation, fibrosis, 
necrosis, metabolism, angiogenesis, hypoxia, and recep-
tor expression to name a few [6].

Recently, radiomics analysis has been used for extraction 
of a wide variety of quantitative data that reflect biologi-
cal characteristics of disease providing additional promis-
ing prognostic biomarkers in lymphomas. In recent years, 
several studies have explored the prognostic value of 
PET/CT radiomics in lymphoma [7–11].

It has been found that the pattern of 18FDG uptake in 
different cancers can represent several different biolog-
ical characteristics, that is, vascularization, cellularity, 
hypoxia, metabolism, cell density, or necrosis. However, 
despite a large number of PET/CT radiomic studies 
in solid tumors, very few data is available on prognos-
tic value of radiomics in malignant lymphomas [11]. 
Furthermore, only a few publications are taking into 
account the hybrid nature of PET/CT and are evaluat-
ing mostly the radiomic features of the PET component. 
Finally, the standard of care clinical parameters are often 
not reported in radiomics evaluation studies. However, 
since they contain crucial (and already used) clinical 
prognostic value, ideally those should be integrated in 
the prognostic model together with radiomics features.

The aim of our study was to create and evaluate a model 
incorporating PET and CT radiomics features from base-
line diagnostic PET/CT in conjunction with clinical 
parameters to build a combined method for predicting 
outcomes in patients with NHL.

Materials and methods
Study cohort
This institutional ethics board-approved retrospective 
analysis included 151 patients diagnosed and treated 
in a tertiary referral center with NHL from September 
2012 to June 2016 (Princess Margaret Cancer Center, 
University Health Network, Toronto, Canada).

All included patients underwent baseline staging PET/
CT as per standard of care practice. Complete clinical 
records including pathology reports from either nodal or 
extra nodal biopsy, descriptions of sites of involvement, 
presence of bulky disease, Ann Arbor stages, and presence 
of B symptoms were recorded (summarized in Table 1). 
Furthermore, all standard of care blood work, systemic 
treatment, planned and received, as well as provision of 
radiotherapy treatment along with response assessment 
at the end of each line of therapy was recorded as part of 
the IPI score [12].

Follow up times, PFS, and overall survival (OS) outcomes 
were collected (Supplementary Data 1, Supplemental 
digital content 1, http://links.lww.com/NMC/A303). 
Progression was defined as per Lugano classification at 

resting FDG PET/CT Deauville 5-point scale and when 
not available, morphologic assessment in follow-up CT.

Imaging acquisition
18F FDG PET/CT was performed in these patients at 
baseline staging as part of their standard of care. Images 
were obtained according to our institutional protocol as 
follows.

PET/CT was performed on a Siemens mCT40 PET/CT 
scanner (Siemens Healthcare, Siemens Healthineers AG 
Siemensstr, Forchheim, Germany). Patients were posi-
tioned supine with arms outside the region of interest. 
Images were obtained from the skull base to the upper 
thighs. Iodinated oral contrast material was administered 
for bowel opacification; no intravenous iodinated contrast 
material was used. Overall, five to nine bed positions 
were obtained, depending on patient height, with an 
acquisition time of 2 min per bed position. CT param-
eters were 120 kV; 3.0 mm slice width, 2.0 mm collima-
tion; 0.8 s rotation time; 8.4 mm feed/rotation. A PET 
emission scan using time of flight with scatter correction 

Table 1  Summary of patient population

Population Age years [range]

  138 patients 54.6 [18.2–89]
Sex N (%)
  Female 65 (47)
  Male 73 (53)
Pathology N (%)
  Anaplastic CLL 4 (2.2)
  T-cell 9 (6.5)
  B-cell (indolent/unclassifiable/mantle) 23 (16.7)
  DLBCL 102 (73.9)
Disease location N (%)
  Nodal disease 87 (98)
  Extranodal disease 56 (63)
  Bulky presentation 5 (5)
Overall stage N (%)
  Stage I–II 77 (56)
  Stage III–IV 61 (44)
Presence of B-symptoms 27 (20)
Chemotherapy regimen N (%)
  ABVD 5 (3.5)
  R-CHOP 125 (90.5)
  LY-EPOCH 5 (3.5)
  GDP/PRED/rituximab alone 8 (5.7)
Response to chemotherapy* N (%)
  CR 106 (77)
  PD 10 (7)
  PR 19 (14)
  SD 3 (2)
Radiotherapy treatment N (%)
  Yes 68 (49)
   No 70 (51)
Response assessment after radiotherapy N (%)
  CR 63 (90)
Follow-up times Months (range)

25.3 [3–44]

ABVD, doxorubicin hydrochloride (adriamycin), bleomycin sulfate, vinblastine 
sulfate, and dacarbazine; CLL, Chronic lymphocytic leukemia; CR, complete 
response; DLBCL, diffuse large B-cell lymphoma; LY_EPOCH, rituximab,  etopo-
side phosphate, prednisone, vincristine sulfate (Oncovin), cyclophosphamide, 
doxorubicin hydrochloride (hydroxydaunorubicin); PD, progressive disease; PR, 
partial response; R-CHOP, rituximab, cyclophosphamide, doxorubicin hydrochlo-
ride (hydroxydaunorubicin), vincristine sulfate (Oncovin), and prednisone; SD, 
stable disease.

http://links.lww.com/NMC/A303
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was obtained covering the identical transverse field of 
view. PET parameters were as follows: image size: 2.6 
pixels; slice: 3.27; and 5-mm full width at half maximum 
Gaussian filter type.

Textural analysis
Textural analysis of the PET images was performed 
using a freely available software LIFE X version 5.10 
(lifexsoft.org) in compliance with the Image Biomarker 
Standardization Initiative.

Primary contour on FDG-avid nodal and extranodal 
lesions was performed semiautomatically by the soft-
ware (with minor manual correction when needed) 
using a thresholding method to define each volume of 
interest (VOI) by three radiologists with >5 years of 
experience (C.O., R.A., and S.J.) and supervised by a 
senior radiologist with more than 15 years of experi-
ence (P.V-H.). PET VOI were subsequentially defined 
based on background predefined SUV max thresholds 
including threshold at 40%, 70%, and whole volume 
[13].

All the representative lesions in the patient were 
selected as per RECIST guidelines (https://recist.eortc.
org). Lesions smaller than 64 voxels were excluded since 
they did not fulfill the minimum size criteria for feature 
extraction by the radiomics software.

Since a thresholding method is not available for the CT 
component, the contours for the CT-derived VOI were 
performed manually, slice-by-slice to cover the entire 
volume of the lymphoma lesion as previously describe 
in the literature.

Sixty-five radiomics features were obtained by the soft-
ware including: conventional metrics features reporting 
the SUV mean, median, maximum, minimum values 
of the voxel intensities on the image; size and shape  
histogram-based features such as volume, compacity, 
and sphericity including their asymmetry (skewness), 
flatness (kurtosis), uniformity, and randomness; and 
additional textural features, such as GLCM (gray-level co- 
occurrence matrix), GLRLM (gray-level run length 
matrix), NGLDM (neighborhood gray-level different 
matrix), and GLZLM (gray-level zone length matrix).

Statistical analysis
Summary statistics were used to describe patient, disease, 
and treatment characteristics. Frequency and percentage 
were provided for categorical variables, and median and 
range were presented for continuous variables.

Four outcomes were assessed: (i) OS, defined from date of 
diagnosis to death date or last follow up date, (ii) disease- 
free survival (DFS), defined from date of diagnosis 
to date of progression, death, or last date of follow up, 
(iii) whether or not the patient received radiotherapy 
after completion of chemotherapy and (iv) whether the 

patient had a favorable response (complete response or 
partial response) or an unfavorable response (stable dis-
ease or progressive disease) in post therapy contrast CT 
or end of therapy PET/CT.

For the PET and for the non-contrast CT (NCCT) 
analysis, two separate datasets were analyzed: nodal 
and nodal + extranodal combined. For the PET analy-
sis, three datasets were analyzed; including 70% defined 
thresholds, 40% threshold, and the whole contoured 
(100%) volume.

Univariable and multivariable analyses (MVA) were 
performed to assess the association of clinical, PET, 
and CT variables with each of the four outcomes. 
Cox proportional hazards models were fitted for OS 
and DFS outcomes; logistic regression models were 
fitted for radiotherapy outcome and for chemother-
apy response. Clinical, PET, and CT variables with a 
P-value of less than 0.1 in the univariable were eligible 
for inclusion in the MVA. MVA were carried out using 
backward selection with a stay criteria of P-value <0.05. 
To avoid multicollinearity, one of the two correlated 
variables remained in the model, and variables that had 
a variance inflation greater than 5 were excluded from 
the final model. Model performance was quantified 
and displayed using area under the receiver operating 
characteristic (ROC) curve (AUC). All statistical analy-
ses were carried out in R version 4.3.0 [14], and ROC 
curves were generated using R packages survivalROC 
[15] and pROC [16].

Results
Study population
From the initial cohort of n = 151 patients, 13 were 
excluded due to the following reasons: no baseline PET 
available (n = 5); no FDG-avid disease (n = 5); PET 
performed post chemotherapy or surgery with no resid-
ual avid disease (n = 2); corrupted digital storage and 
transmission of medical images and related information 
(n = 1).

A final cohort of 138 patients, 65 women (47%) and 
73 men (53%) with a median age of 48.6 years (range 
25.1–94.9) were included in our final cohort for analy-
sis. Follow up times were 25.3 months on average [range 
3–44 months].

Initial treatment, chemotherapy regimen, and its comple-
tion and response achieved are detailed in Table 1, along-
side demographic information.

Univariable analysis
The statistically significant variables resulted from the 
univariable Cox or logistic regression analysis for NCCT 
and PET parameters using 70%, 40%, and whole vol-
ume when considering either nodal-only involvement or 
when considering all sites of disease involvement, were 

https://recist.eortc.org
https://recist.eortc.org
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presented in Supplementary Data 1, Supplemental digi-
tal content 1, http://links.lww.com/NMC/A303.

Multivariable analysis

Overall survival
In the final model, male patient (P = 0.030), abnormal 
lymphocytes results (P = 0.030), lower value of PET 
parameter entropy (P = 0.030), and higher value of first 
order shape features sphericity parameter (P = 0.002) 
were significantly associated with worse OS.

Disease-free survival
In the final model, advanced stage (III or IV, P = 0.013), 
abnormal lymphocytes results (P = 0.032), higher value of 
CT parameter GLRLM long-run low-gray-level empha-
sis mean (P = 0.010), higher value of PET parameters 
GLCM energy angular second moment (P < 0.001,) and 
NGLDM busyness mean (P < 0.001) were significant 
predictors of worse DFS.

Radiotherapy outcome
In the final model, female (P = 0.050), higher stage 
(P < 0.001), and abnormal hemoglobin results 
(P = 0.029) were associated with a higher likelihood of 
needing radiotherapy. No PET or CT parameters were 
predictive.

Response to chemotherapy
Abnormal lymphocyte results (P = 0.033), lower value of 
CT parameter NGLDM coarseness mean (P = 0.082), 
and higher value of PET parameter GLRLM gray-level 
nonuniformity zone mean (P = 0.040) were significant 
predictors of unfavorable response to chemotherapy 
(summarized in Table 2).

Receiver operating characteristic and area under the 
curve analysis
For OS outcome, the model combining clinical and 
PET features performed better than the model with 
clinical variables alone (Fig. 1 with corresponding 
AUCs at various time points in Supplementary Data 
2, Supplemental digital content 2, http://links.lww.com/
NMC/A304).

For DFS outcome, the model including clinical, PET, 
and CT variables performed the best (Fig. 2, with cor-
responding AUC values in Supplementary Data 3, 
Supplemental digital content 3, http://links.lww.com/
NMC/A305).

For chemotherapy response, presented in Fig. 3, the 
model combining clinical, PET, and CT variables had the 
best performance.

Discussion
Our study aim was to evaluate whether combined PET 
and CT radiomic features in conjunction with clinical 
parameters are predictive of response to chemother-
apy, can predict need of consolidative radiotherapy, and 
long-term outcomes. Our study showed that standard of 
care clinical parameters in conjunction with combined 
PET and CT radiomics performs best in terms of out-
come prediction in patients with NHL and therefore 
PET and CT features when added to clinical informa-
tion significantly can increase the efficiency of clinical 
trials.

Accurately predicting the prognosis of patients is of 
great importance for optimizing therapy of aggressive 
lymphomas, such as DLBCL. Only few studies have 
attempted to assess the predictive value of radiomics 

Table 2  Multivariable analysis

Variable Hazard ratio 95% CI P value

Predictors of OS
HISTO entropy in PET 0.4 0.18–0.91 0.03
SHAPE sphericity in PET 3.09 1.51–6.3 0.002
Male (vs female) 4.07 1.11–14.96 0.03
Normal lymphocytes result (vs abnormal) 0.19 0.04–0.85 0.03
Predictors of DFS
Stage III–IV (vs Stage I–II) 4.32 1.36–13.72 0.013
Normal lymphocytes result (vs abnormal) 0.17 0.03–0.86 0.032
GLRLM LRLGE mean in CT 1.67 1.13–2.47 0.01
GLCM energy angular second moment in PET 3.05 1.6–5.82 <0.001
NGLDM busyness mean in PET 1.98 1.39–2.8 <0.001
Predictors of need of radiotherapy
Male (vs female) 0.43 0.19–1 0.05
Stage III–IV (vs Stage I–II) 0.13 0.06–0.31 <0.001
Normal hemoglobin results (vs abnormal) 2.59 1.11–6.08 0.029
Predictors of unfavorable response to chemotherapy
Normal lymphocytes results (vs abnormal) 0.33 0.12–0.92 0.033
NGLDM coarseness mean in CT 0.48 0.21–1.1 0.082
GLRLM GLNU mean in PET 1.64 1.02–2.61 0.04

CI, confidence interval; CT, computed tomography; DFS, disease-free survival; GLCM, gray-level co-occurrence matrix; GLNU, gray-level non-uniformity; GLRLM, gray-
level run length matrix; HISTO, histogram; LRLGE, long-run low-gray-level emphasis; NGLDM, neighborhood gray-level different matrix; OS, overall survival; SHAPE, 
shape features.

http://links.lww.com/NMC/A303
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Fig. 1

Comparison of AUC values of two OS models (i) including clinical variables only and (ii) including both clinical and PET variables. The latter model 
had higher AUCs. AUCs, areas under the curve; OS, overall survival.

Fig. 2

Comparison of AUC values of four DFS models, including (i) clinical variables only, (ii) clinical and CT variables, (iii) clinical and PET variables, and 
(iv) clinical, CT, and PET variables. Model (iv) had the highest AUCs. AUCs, areas under the curve; CT, computed tomography; DFS, disease-free 
survival.
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information, mostly from PET imaging in DLBCL so 
far [17–19].

Relatively few studies have investigated the predictive 
value of other radiomics features in DLBCL. Moreover, 
due to the wide variability in the methodology and 
population of the studies in the literature, direct com-
parison is challenging. Only a few retrospective stud-
ies thus far have addressed the use of radiomics for a 
comprehensive disease evaluation in malignant lym-
phomas, exploring the application of textural analysis. 
Thus, these studies included different radiomic fea-
tures, utilized different extraction methods, different 
software for radiomics analysis, and obtained controver-
sial results as described by Parvez et al., who found that 
radiomics features of the higher FDG avid lesion have 
limited predictive value.

Literature has explored the prognostic value of PET/CT 
radiomics in lymphoma, including Hodgkin lymphoma, 
nasal-type extranodal natural killer/T cell lymphoma, 
mantle cell lymphoma, and DLBCL, respectively [7–
9,20]. The results of these studies have shown that cer-
tain radiomics features may be predictors of some of the 
proposed outcomes.

Eertink et al. found that PET radiomics features 
extracted from the largest lesion of DLBCL was able to 
predict the 2-year time to progression (AUC = 0.67) [10]

Our study found that two first order parameters, PET-
based entropy histogram (P = 0.029) and PET-based 
shape sphericity (P = 0.0019) were independent predic-
tors of OS when correlated with male sex, anemia, and 
abnormal lymphocytes counts. These parameters repre-
sent intrinsic cellular and tumoral heterogeneity which 
has also been proved to be a predictor of poor outcome 
in other studies such us Ceriani et al. study analyz-
ing 103 patients with primary mediastinal B-cell lym-
phoma enrolled in a prospective multicenter clinical trial 
(IELSG26). They demonstrated that metabolic hetero-
geneity (estimated using AUC of cumulative standard-
ized uptake value-volume histograms) were a predictor 
of PFS at 5 years (total lesion glycolysis and metabolic 
heterogeneity with P < 0.01) [20].

When combining advanced stages of disease with abnor-
mal lymphocytes counts at baseline, the CT parameter 
GLRLM (P = 0.011) was a predictor of shorter DFS. 
Additionally, two PET-related parameters GLCM and 
neighborhood gray-level dependence matrix (GLRLM) 
(both with P = 0.001) were also predictors of shorter 
times for relapse. Similarly, Lue et al. extracted 80 PET-
based radiomics features from 171 patients with DLBCL 
and also found that RLN

GLRLM
 was independently asso-

ciated with PFS (hazard ratio = 15.7, P = 0.007) and OS 
(hazard ratio = 8.64, P = 0.040), similar to our CT param-
eter [7].

In our study, CT radiomic gray level size zone-related 
features long-zone low gray-level emphasis (LZLGE, 
P = 0.013) and zone length nonuniformity (P = 0.012) 
were identified as predictors of shorter PFS when com-
bined with advanced stages of disease and the presence 
of B-symptoms. Interestingly, Aide et al. study also found 
that LZLGE was the only independent predictor of 
2-year event-free survival (hazard ratio = 2.84, P = 0.01, 
AUC = 0.76) when analyzing the PET component in a 
similarly sized cohort of 132 patients [21]. Similar predic-
tive parameters (RLN

GLRLM
 in PET) were found in the 

study by Lue et al. in a smaller cohort of 83 patients, using 
a whole-tumor image analysis.

Additionally we encountered one CT-derived param-
eter (NGLDM coarseness with P = 0.082) and one 
PET-derived parameter (GLRLM gray-level non- 
uniformity; P = 0.04) as predictors of unfavorable 
response to first line of chemotherapy, when combined 
with abnormal lymphocytes count. An additional PET-
derived parameter predictor of shorter PFS in our 
cohort was NGLDM busyness (P = 0.0028), which has 
not been described in any comparable literature to our 
knowledge, and would require further comparative 
analysis to be proven.

No CT nor PET-derived parameter was predictor of the 
eventual need of consolidative radiotherapy, in line with 
other published results.

Fig. 3

Comparison of ROC and AUC of three models for favorable response 
to chemotherapy: including (i) clinical variables only, (ii) clinical and CT 
variables, and (iii) clinical, CT, and PET variables. Model (iii) had the 
highest AUCs. AUCs, areas under the curve; CT, computed tomogra-
phy; ROC, receiver operating characteristic.
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As demonstrated above, a combined model including 
PET-derived features adding the CT-derived radiomic 
features with the clinical parameters perform better as 
predictors of survival models than each individual model 
separate. Furthermore, PET-derived parameters added 
information in prediction of response to chemotherapy 
than solely clinical parameters alone. This is line with 
the still limited available literature to date supporting 
the hypothesis that multi-omics approaches (clinical 
parameters plus imaging) might be superior to building 
predictor models than parameters from only one source 
independently. The unique approach combining clin-
ical algorithms and imaging derived-features is a novel 
approach used in this project.

Baseline 18F-FDG PET/CTs are already part of clinical 
practice and therefore, radiomics features can poten-
tially be obtained and calculated at minimal additional 
costs/effort and most importantly without any adverse 
risk for the patient. With self-learning segmentation 
software anticipated to becoming widespread available, 
it might be a door to add radiomics features to clinical 
scoring systems in the future. To be able to get there an 
effort to collect larger prospective multicenter data and 
establish a minimal common ground on analysis, con-
touring methods and data collection and extraction is 
still needed.

Limitations
We acknowledge several limitations in this study. First, 
this is an analysis of data acquired in a single tertiary 
oncology center so transferability to smaller centers 
might be limited. Second, there are inherent limitations 
of a retrospective analysis. Third, the cohort includes 
different NHL types, including some indolent lym-
phomas or localized lymphomas that have different 
biology behaviors and outcomes than aggressive types, 
which may influence the validation of some features in 
these cases. Fourth, no cross validation cohort analysis 
was performed, and although validation analysis can-
not overcome the absence of a validation cohort, it can 
describe the variability in the findings and indicate the 
expected performance of the model in a distinct dataset. 
Another limitation of this study is that we used a single 
method to segment the lymphoma lesions which were 
also contoured by three different radiologists, which may 
introduce confounding factors. To this date, there is no 
consensus on the tumor segmentation method for radi-
omic feature calculation in patients with DLBCL. Due 
to the high distribution variability of nodal and extran-
odal lesions with heterogeneous volumes and variable 
metabolic activity, lymphoma segmentation is more 
challenging than that of primary tumor lesions. Lastly, 
there was significant delay in completing the contouring 
phase and data analysis due to intervening restriction 
during COVID times.

Conclusion
Radiomics applies advanced computational methods to 
convert medical imaging data into quantitative descriptors 
of biological lymphoma characteristics that may predict 
patient survival and response to chemotherapy. Growing 
evidence indicates that prognostic models incorporating 
radiomics features would more accurately predict out-
comes than volumetric PET parameters alone, therefore, 
radiomics seems a promising tool to identify imaging 
biomarkers that may help tailor treatment for a person-
alized medicine. For example, discriminating those who 
would benefit from escalation versus de-intensification 
of therapy, and contributing to improve outcomes, as was 
demonstrated in this analysis were a combined model 
outperforming in predicting disease behavior than each 
model individually.

Nevertheless, the few studies published so far produced 
inconclusive results due mainly to small cohorts. In fact, 
a consensus on several critical steps in the radiomics 
workflow is an unmet need to ensure comparability of 
results from different studies. Our hope is that in a near 
future new studies could confirm potential role of PET/
CT radiomics in selecting robust imaging biomarkers 
that, alone or combined with clinical characteristics 
and or genetic profiles, may enhance the disease char-
acterization and generate novel useful tools to tailor 
treatments.

However, the differences in biological and clinical char-
acteristics of different lymphoma subtypes and the varia-
ble treatment options require ideally prospective studies 
to better understand the role of radiomics in this very 
heterogeneous group of disease.
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