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Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of
the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic
lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the
uterus of most women. Although the observation of clonality has been
confirmed many times, interest in the idea that atherosclerosis might be a form
of neoplasia waned because of the clinical success of treatments for
hyperlipemia and because animal models have made great progress in
understanding how lipid accumulates in the plaque and may lead to plaque
rupture.
Four advances have made it important to reconsider Benditt’s observations.
First, we now know that clonality is a property of normal tissue development.
Second, this is even true in the vessel wall, where we now know that formation
of clonal patches in that wall is part of the development of smooth muscle cells
that make up the tunica media of arteries. Third, we know that the intima, the
“soil” for development of the human atherosclerotic lesion, develops before the
fatty lesions appear. Fourth, while the cells comprising this intima have been
called “smooth muscle cells”, we do not have a clear definition of cell type nor
do we know if the initial accumulation is clonal.
As a result, Benditt’s hypothesis needs to be revisited in terms of changes in
how we define smooth muscle cells and the quite distinct developmental origins
of the cells that comprise the muscular coats of all arterial walls. Finally, since
clonality of the lesions is real, the obvious questions are do these human
tumors precede the development of atherosclerosis, how do the clones
develop, what cell type gives rise to the clones, and in what ways do the clones
provide the soil for development and natural history of atherosclerosis?
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Introduction
Although Earl Benditt and his son John described the clonality 
of the atherosclerotic plaque in 19731 and although their observa-
tions have been confirmed many times2–7, interest in the idea that 
atherosclerosis might be a form of neoplasia waned because of  
the clinical success of treatments for hyperlipemia and because 
of the availability of transgenic mice as models for the effects  
of dysfunction of lipid metabolism on the vessel wall.

There are reasons to reconsider Benditt’s hypothesis. Over the 
last five years, the concept of clonality, both in cancer and in  
normal development, has changed. Over a longer period, 
we have also learned a great deal about the developmental  
biology of the normal vessel wall, including the normal  
formation of clonal patches in that wall and the development of 
a normal layer of smooth muscle cells (SMCs) in the intima 
long before atherosclerosis itself4,8. As a result, comparisons 
between atherosclerotic lesions and neoplasms now need to be  
rethought9.

Benditt’s hypothesis also needs to be revisited in terms of  
changes in how we define SMCs. We now know that these 
cells derive from several different mesodermal precursors, and  
recently criteria for defining cell types have been changing as 
a result of new insights driven by the analysis of single-cell  
expressomes.

Finally, since clonality of the lesions is real, the obvious  
questions are do these human tumors precede the develop-
ment of atherosclerosis, how do the clones develop, what 
cell type gives rise to the clones, and in what ways do the 
clones provide the soil for development and natural history of  
atherosclerosis?

Does atherosclerosis begin with a neoplastic event?
Benditt’s 1973 paper10 was, to use a term familiar from today’s 
tech industry, “disruptive”. The paper showed that atherosclerotic  
lesions were clonal cell masses in the atherosclerotic intima.  
Benditt suggested that because clonality was a mark of cancer, 
the lesions arise as benign neoplasms11. This suggestion was based 
on an analogy to the benign uterine leiomyoma11–20. Like athero-
sclerotic plaques, uterine leiomyomas are monoclonal masses  
of SMCs. Like plaques, uterine leiomyomas are present in all 
humans, at least if “all” means most human females. Leio-
myomas are made up of uterine smooth muscle. Using micro-
dissection and immunocytochemistry, Benditt and Benditt  
identified the plaque clonal cell type with vascular SMCs. 
The team of Majesky, then a student working with Benditt Sr., 
went on to show that carcinogens, even without fat feeding,  
produced nodular smooth muscle tumors in the intima of  
chickens21 and so clonality of masses in the intima can arise as a 
neoplastic event.

Although Benditt’s data were repeatedly confirmed in human 
lesions2–7, interest in a “neoplasia hypothesis” was trumped. 
The success of lipid-lowering drugs maintained a focus on the  
traditional lipid hypothesis. The ease of studying atherosclerosis 
in experimental animals, especially inbred mice with transgenic  

modifications in lipid metabolism, permitted extensive studies 
of the arterial response to accumulation of lipid, even though the 
murine models have not, as of yet, fully modelled the advanced 
lesions that cause human death22,23.

Nonetheless, Benditt was at least formally correct. Sponta-
neous intimal masses (that is, smooth muscle-like collec-
tions in the intima) fit the usual definition of a benign tumor. In 
humans, these masses appear in the arterial intima prior to lipid  
accumulation24,25. The obvious questions are how do the intimal 
cell masses develop and in what ways do intimal masses provide  
the soil for development and natural history of atherosclerosis?

Figure 1 shows intimal cell masses in the arteries of human 
infants. These masses appear during development prior to lipid  
accumulation24,25. Evidence that these sites are clinically impor-
tant came from the classic PDAY (Pathobiological Determi-
nants of Atherosclerosis in Youth) study26. PDAY studied the  
arteries of young people who had died of non-cardiac causes. The 
most reproducible locations of advanced atherosclerotic lesions 
in these young people included the left descending coronary  
artery, the right coronary artery, the carotid bulb, and a region of the 
abdominal aorta below the diaphragm.

The sites identified in PDAY as being the most reproducible  
lesions are only a subset of the sites where fatty streaks, the 
initial lesions seen in fat-fed animals and in older human  
children, occur. Thus, atherosclerotic lesions can develop with 
and without pre-existing intimal cell masses. Moreover, there 
is no evidence that the development of intimal masses is neces-
sary for the lipid-dependent processes leading to fatty streaks.  
Atherosclerotic diets fed to all mammals, including humans, 
result in accumulations of lipid- and fat-filled macrophages in 
the intima at arterial branch sites where blood flow is disturbed.  
Such sites include the openings of the intercostal arteries in fat-
fed mice, rabbits, swine, or primates. Fatty streaks are also  
seen at branch points of thoracic arteries in young humans but  
recede as we age27,28. Further studies by DeBakey and Glaeser29 
used angiography to follow the occurrence of newly formed  
lesions over 25 years in a large number of patients who initially 
had documented occlusive atherosclerosis at specific sites. The  
location of the new lesions in different arterial beds did not fit  
any well-described hypothesis such as distribution of blood 
flow. Perhaps the location of lesions was due to pre-existing  
intimal cell masses. Since these may be the sites where clini-
cally significant lesions occur, perhaps the animal models do not 
fully model the human disease. Perhaps development of the fully  
developed, clinically significant lesions in adult humans  
depends on the initial processes, the cellular “soil” giving rise  
to a lesion in childhood.

Benditt versus Virchow
In Virchow’s seminal 1856 text, “Cellular pathology”30, the  
founder of modern pathology did not look at these earliest 
lesions. Instead, Virchow hypothesized that the adult atheroscle-
rotic lesions he saw were the result of an inflammatory process  
stimulated by the toxic products of lipid accumulating in the  
intima. Migration and then proliferation of the cells we now call 
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Figure 1. The normal intima occurs independently of and prior to the fat feeding associated with atherosclerosis4. These images of 
the left anterior descending coronary artery (LAD) show the absence of cells in the intima in utero. The images to the right (B, D, and F)  
are enlargements of the LAD arteries to the right (A, C, and E). The endothelium at 22 weeks of gestation rests on the internal elastic lamina 
(A, B). By 2 months (C, D), a cellular intima is present in the LAD of this normal heart. By 13 months (E, F), this intima is about 50% as thick as 
the underlying media (400×, Verhoeff–van Gieson’s stain). In adult vessels, these normal sites would have progressed to form atherosclerotic 
plaques.

medial SMCs were part of Virchow’s view of this response to  
injury. Over 150 years later, Virchow’s “response to injury  
hypothesis”31 is supported by the ability of scientists to produce 
intimal lesions by feeding fat-rich diets to a variety of mammals, 
including mice, rabbits, pigs, and monkeys23,32–41. The “lipid  
hypothesis” or “response to injury hypothesis” remains dominant 
because of the obvious fact that lipid feeding in animal models 
produces lesions even in mice that lack a normal intima42,43 and  
the fact that lipid-lowering drugs greatly decrease the incidence  
of death from atherosclerosis in humans44.

It seems reasonable, based on studies in mice, to believe that 
medial SMCs are recruited into the intima to form a fibrous cap  
encapsulating the fatty accumulation45. Cell tracing studies 
now show that this fibrous cap in mice is derived from medial  
SMCs8,45–49. Moreover, recent studies show that this neointima, 
formed in response to the lipid-induced injury in mice, is  
clonal48,50. These cells surround lipid deposits and lipid-rich 
macrophages derived from blood monocytes formed much as  
proposed by Virchow. A huge amount has been learned about 
how the bone marrow-derived, fat-filled monocytes accumulate 
and enter the intima in response to inflammatory changes in 
endothelial cells induced by focal changes in blood flow or by  
hyperlipemia51.

If the mouse model is correct, fatty lesions begin before the  
formation of an intimal cell mass. If this were true in humans,  

clonality of atherosclerotic lesions might be irrelevant. However, 
we know that intimal cell masses develop at critical sites before  
lipid accumulation and, as we will discuss below, we still do not 
know how these cell masses form or why they become clones. 
Moreover, even the identity of the cells comprising the clones 
is unclear. Benditt’s use of “smooth muscle” to identify the  
intimal cells may itself have been simplistic because the identifi-
cation of all cells that coat vessels as “smooth muscle” is being  
challenged. Recent reports show that some (or perhaps many) 
of these “plaque macrophages” are derived from medial SMCs 
that have assumed a macrophage phenotype49,52–55. Other studies 
raise issues about the use of smooth muscle alpha actin to define 
the SMC type. For example, recent studies show that the mural 
cells that form the coat around certain capillaries in the brain 
lack smooth muscle alpha actin56. Even if cells making up the 
vessel wall express smooth muscle markers (Table 1), cells com-
prising the mural cell coats have embryological origins from  
different regions of the mesoderm46,57–61. Thus, diverse “smooth 
muscle” subtypes that could give rise to the intima and diverse 
phenotypes could be important to the natural history and  
long-term outcome of the lesions.

Normal intima versus neointima
As we have just discussed, intimal cell masses form spontane-
ously at specific sites in the intima of humans and other large  
animals4,43. We will refer to this cell mass as the “normal intima” 
or “normal cellular intima”. Other cellular intimas, called “neointi-
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Table 1. Mural cells, cell types that make up arterial wall coats around the endothelium.

Marker genes References

Medial smooth 
muscle cells

Typical coats seen around endothelial and 
endodermal tubes. Usually called “smooth 
muscle” but, as discussed in the text, cells 
lacking actin-rich contractile proteins have also 
been seen in the media.

Smooth muscle alpha 
actin, smooth muscle 
myosin, smooth muscle 
22α, calponin, and desmin

62–110

Intimal cells

Cells located between the endothelium and 
the medial layers. Under endodermally derived 
epithelium, these cells are called the “lamina 
propria”.

See text. In general, intimal 
cells have been described 
as having markers shared 
with smooth muscle cells.

Neointimal cells

Cells that arise by migration from media or 
adventitia into the intima. Neointimal cells may 
also arise by transdifferentiation of endothelial 
cells.

Pericytes Cells around small arteries and capillaries that 
lack a medial layer

PDGFRβ, NG2, RGS5, and 
smooth muscle alpha actin 56,70,111–127

Adventitial fibroblasts Cells external to the media. These cells 
typically lack smooth muscle markers but can 
acquire them and become neointimal cells or 
myofibroblasts.

FSP1, PDGFRα, periostin, 
Tcf21, and cell surface 
markers

128–135

Adventitial stem cells Sca1, KLF4, CD34, Gli1, 
and c-kit 136–141

Myofibroblasts
The major cells seen in fibrosis, at least in some 
cases, arise from adventitial cells and express 
smooth muscle proteins.

RGS5 and smooth muscle 
alpha actin 142–146

“Mural cells” is the current term for the mesodermal cells that provide a coat around endothelial tubes. At different times, these cells have been 
called fibroblasts or smooth muscle cells. The mature mural cell coats may be as thin as one cell layer or composed of many layers of smooth 
muscle cells separated by layers of elastin. The cells comprising single-cell layers associated with capillaries and small arterial branches are 
called pericytes. These pericytes have less abundant actinomyosin than the actinomyosin-rich cells of thicker media. Markers used to define 
pericytes versus smooth muscle cells include NG2 and platelet-derived growth factor (PDGF) receptor beta. The relationship between pericytes 
and smooth muscle cells, other than the caliber of vessel served, is unclear. We do not know that one cell cannot change expression and 
become the other cell depending on the local environment. Similarly, most authors do not consider a myofibroblast to be a smooth muscle cell, 
presumably because the myofibroblast can revert to a fibroblast phenotype.

mas”, form as pathological responses to almost any form of  
arterial injury42, including radiation, mechanical injury, 
immune responses, and, of course, accumulation of lipid in the  
atherosclerotic intima43.

Both neointima and, presumably, normal cellular intimas are 
prone to lipid accumulation when animals are fed a high-fat diet.  
Kovanen and Tabas have suggested that the extracellular matrix 
of cellular intimas may have properties that retain and accumu-
late lipid147. As already noted above, the recent observations that 
SMCs can differentiate into macrophages raise an entire new 
set of ideas about how intimal cells might predispose to lipid  
accumulation54,148. In summary, it seems likely that pre-existing 
cellular intima of spontaneous origin has properties that initiate  
atherosclerosis and perhaps determine the ultimate outcome 
of the lesions over the many decades of lesion progression in  
humans149.

Genetic versus epigenetic changes
Of course, neoplasia implies a genetic origin, a mutation as is 
believed to be the cause of uterine leiomyomas12,13,16,20,150–158. If  
uterine leiomyomas begin as mutations, why shouldn’t clonal 
masses in arteries also begin as mutations?

There are at least three ways Benditt’s clones might arise  
without the mutations implied by the neoplasia hypothesis. The 
first, as proposed at the end of this review, is isolation of some 
cells within the internal elastic lamina as the intima forms. The  
second is endothelial–mesenchymal transformation (EMT) as 
happens in cardiac valves159,160. The third is migration of rare 
cells from the media8,50,161. None of these hypotheses explains a  
selective advantage needed for clonal development.

The development of these initial rare cells into a clone sug-
gests that some property causes the clone to survive and grow. 
The initial cell of the clone might grow because of properties of  
the milieu between the endothelium and the internal elastic  
lamella or because of unique properties of the subset of endothe-
lial cells overlying the nascent lesion162. Alternatively, the clone 
might reflect epigenetic changes as have been reported for  
uterine leiomyoma163. Cells that make up the smooth mus-
cle coats of arteries from diverse embryological origins8,58,164 
may have epigenetic properties that confer genetic advantages. 
A relevant example of heritable changes associated with the  
origin of vascular smooth muscle may be the distinct proper-
ties of aortic cells derived from neural crest versus somitic  
mesoderm59,165–169.
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Of mosaicism and clonality
As time passed and regardless of Benditt’s ideas about  
neoplasia, clonality in the vessel wall became well established. 
Twenty years after Benditt’s paper, Mikawa and Fischman used 
fluorescent viral tracing to show that the media of avian coro-
nary arteries is formed by clones170. The fact that Mikawa and  
Fischman’s clones were spiral structures compared with the 
small number of cells comprising the arterial media of mice may  
explain the failure, so far, to identify large patch sizes (that 
is, clones) in the media of mice labeled by the confetti  
method2,3,5,9,46,171–176. Possibly, results will be different once bar 
code-tagged mice allow analysis of clonality as was done with 
zebrafish177.

Regardless of the findings in mice, we do know that the human 
media is made up of clones (that is, patches of cells that arise 
from single cells)178. Chung et al. were able to show that somatic  
mosaicism in the arterial wall was not limited to the plaque178. 
Mosaic patches present in the media led Chung et al. to propose 
that the plaque might arise by the amplification of cells from 
pre-existing patches in the underlying media178. As noted above,  
we now know that something like this happens in mice forming  
a neointima in response to injury3,46,50.

The idea that clonality is a normal part of tissue development is 
not unique to blood vessels. Highly accurate next-generation 
DNA sequencing is able to detect spontaneous mutations that  
occur as early as the blastula179. Such mutations can be used 
to trace development because we can cluster cells in terms of  
subsequent mutations179,180 (Figure 2). These methods permit the 
tracing of cell lineages of adult tissues as far back as events in  
gastrulation179. Although we know that somatic mutations are 
a normal part of development, most such mutations are not  
functional and are not causal for clonal expansion179,181. Somatic 
mosaicism is nonetheless intriguing. Clonal segregation of  
mutations in the brain may provide important mechanistic clues 
to the function of different regions in the brain182–184. Presumably,  
such mutations exist in the human vessel wall as well.

The fact that plaques are clonal raises another possibility:  
functional mutations could arise in plaques as a result of, rather 
than as a cause of, clonal expansion. As a clone divides, repli-
cating cells accumulate mutations that can provide a selective 
advantage over normal tissue, ultimately leading to a cancer181.  
Consistent with the idea that clonal expansion in humans leads  
to DNA damage, there are reports of mutations and DNA damage 
in the plaque171,185–216.

The diverse embryological origins of medial cells could provide 
a source of selective advantage for cells giving rise to an intimal 
clone. Embryological tracer studies of the media in mice have 
shown sources that range from mesectoderm derived from  
neural crest to mesoderm derived from the somites, the heart  
fields, mesothelium, and EMT8,49,59,128,164–166,169,217–229. In some parts 
of the arterial tree, multiple sources may be represented in a single  
part of the vessel wall. Perhaps medial cells derived from 
diverse origins have selective advantages for growth in the  
intima.

Finally, a recent study suggests that clonal expansion could 
be a cause of plaque rupture. Wang et al.149,230 demonstrated  
telomere shortening in cells of the plaque and suggested that 
the plaque cells forming the fibrous cap may, as a result of  
many replications, undergo cell senescence. They suggest that  
cell death in the cap eventually leads to plaque rupture149.

Clonality in the immune system
Surprisingly, a recent report shows that clonality of leukopoietic 
lineages in bone marrow is relevant to the final events in  
atherosclerosis195. Clonal diversity in the bone marrow decreases 
as we age while advantageous mutations undergo clonal  
selection231. Presumably, this is due to mutations in a highly  
replicative tissue combined with replicative senescence231. A 
mutation in the gene for the epigenetic modifier enzyme Tet2  
promoted expansion of the mutant cells. One result of this is 
that leukemias in old age arise from a small number of surviving 
clones.

Fuster et al. showed that these changes in bone marrow lineages 
correlate highly with frequency of atherosclerotic clinical  
events195. The authors went on to show that the expansion of  
Tet2-mutant cells in atherosclerosis-prone mice accelerated  
lesion formation. They proposed that age-related increases in  
death from coronary artery disease reflect the effects of  

Figure 2. Clonality is normal. Clonal origins of normal tissues 
detected by the identification of mutations using DNA sequence 
analysis. Benditt might be surprised to learn that he, like all humans, 
was a collection of clones!
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inflammation attributable to this mutation in plaque macrophages  
derived from the mutated myeloid precursors.

Because T- and B-cell clonal selection occurs early in life,  
plaque lymphocytes may not be affected by the Tet2 mutation. 
In any case, because Benditt showed that the clonal cell type in 
lesions was a smooth muscle, it is not likely that lymphocyte  
clonality accounts for plaque monoclonality. Moreover, studies 
by Hansson et al. of plaque T cells showed oligoclonality rather  
than monoclonality232.

“What is a ‘cell type’?”
As suggested above, the importance of clonality is tied to our 
concepts of cell type. In the 1850s, Robert Remak (Figure 3)  
observed red blood cells in chicken embryos. These cells dif-
ferentiated from cell precursors through various stages of cell  
division. His concept, our modern idea of cell lineage, was put 
into Latin as “omnis cellula e cellula” (all cells come from cells) 
and became one of the central tenets of Virchow’s “Cellular  
pathology” text in 1856. Remak’s concept merged into the  
theory that cell type is determined by heritable changes that sur-
vive mitosis (Figure 4). The genetic concept of cell linage became 
central to the dogma that the origins of a metastasis could be  
defined by its resemblance to a normal tissue, an idea sup-
ported by the “unitarian hypothesis” of Maximov233,234. The 
idea became set in the modern biology canon in 2002 when  
Brenner, Horvitz, and Sulston won the Nobel Prize for tracing 
the full developmental lineage of all of the somatic cells, 959 
for males and 1,031 in females, in the nematode Caenorhabditis  
elegans235.

Over 150 years after the publication of “Cellular pathology”, 
Remak’s concept is now challenged because of a combina-
tion of new data in epigenetics, analyses of expressomes using  
single-cell RNA analysis, lineage analyses using spontaneous 
mutations or bar coding, and network analysis using Bayesian  
networks and cluster analysis236. We now know not only that 

Figure 3. Omnis cellula e cellula. Robert Remak’s discovery of the 
modern concept of cell lineage is often falsely credited to Rudolph 
Virchow because Remak, as a Jew, had troubles getting published 
in mid-19th century Berlin237.

Figure 4. Cell type and cell phenotype are not necessarily the same thing. Cells in a lineage can change phenotype in a process called 
“phenotypic modulation”. Recent data combining bar codes with single-cell RNA analysis show that cells can even transdifferentiate across 
traditional tree-like boundaries.

cell types can branch in a tree-like fashion but also that, even 
independent of neoplasia, cells can jump between branches177  
(Figure 5).

It is important to understand that Remak and Virchow devel-
oped the ideas of cell lineage before Mendel. Darwinian  
evolution, from its onset, has been understood to reflect heritable 
changes in what we now call a genome. In contrast, as shown 
in Figure 5b, differentiation is not based on mutations in DNA 
and thus lineage maps do not need to follow a Darwinian set of  
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Figure 5. Branched lineages (A) versus independent lineages with no branching (B). These two figures show very different ideas about how 
cells differentiate. In A, cells differentiate more or less the way species form (that is, in a branched tree arising genetically). In B cells, the 
model is very flexible, with very similar cell types, marked here by green and red rectangles, arising by the coordinated expression of different 
sets of genes under epigenetic control. Mathematical modeling using both marker genes and gene clusters shows that traditional branched 
tree (that, is branched lineage) cells can also switch phenotypes even between branches of the tree236. A formal way of thinking of this is 
that, rather than cell types, cells exist on the surface of a three-dimensional landscape as proposed by Waddington 60 years ago238. In this 
view, cells that are very much alike exist in valleys of coexpression as shown in part B of this figure and discussed by Trapnell239. Single-cell 
analysis of expression, combined with tools that can trace cell lineages in whole animals, now allows us to distinguish between branched and 
independent cell lineages as discussed in Figure 6.

Figure 6. Defining cell type by cluster: three types and seven types? Clustering cells by analysis of their mRNAs, or any other sort of 
single-cell data, is a way of arranging cells independently of assumptions about any structure other than similarity in different data sets. For 
example, clustering is independent of assumptions about lineage as shown in Figure 5A. If you have samples of mural cells from 100 aortas 
of different mice, you could ask how many cell types or groups of different cells make up the aortic media. Obviously, the clusters will include 
marker genes, but, because the number of genes sampled is large, the identity of each cluster as a “cell type” may or may not depend on 
that marker. Thus, a cell lacking the expression of a marker gene (for example, smooth muscle actin) might still be defined as a cell type 
based on the mean values of its other transcripts. Defining a cell type by cluster analysis has three major advantages over the use of marker 
genes. First, because the cluster is defined as the mean level of mRNA of the set of sampled genes, the noise level arising from measurement 
errors is much lower than a definition based on only a single value. Second, the cluster data can be combined with other data (for example, 
variations in genetic sequence) to determine pathways that control the cell’s phenotypes. Third, existing knowledge of expression pathways 
can be used to imply the mechanism providing overall control of the cell type. Cell type analysis defined by clustering can also be combined 
with lineage analysis using bar coding methods, analysis of the mutations that occur in the generations after zygosis (as in Figure 2), reporter 
genes that give cells different colors, or reporter genes that reflect the expression of particular genes at earlier stages of development. The 
result is that we can distinguish between cell types as defined by a cell’s ancestry and the cell’s phenotype at a specific time. The two cluster 
diagrams in this figure illustrate a need for caution. Even when, as on the left, the three clusters appear clear, the graphic image may reflect 
biases by the investigator. Clustering algorithms usually assume that the biologist wishes to see the number of clusters that offer the greatest 
separation between clusters. Programs either begin with a random guess about the number of clusters or use the number suggested by the 
investigators. The algorithms then move individual “genes” or other nodes between clusters to find an optimum that minimizes variability within 
clusters while maximizing variability between clusters. As shown in the diagram to the right with seven clusters, it is also possible that clusters 
overlap. Discussion based in part on http://www.statsoft.com/Textbook/Cluster-Analysis.
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branched pathways. For example, in macrophage differentiation, 
macrophages resident in different tissues retain an epigenetic 
memory of origin sites240, even when they move to new tissues.  
Moreover, macrophages themselves apparently can arise 
from very different lineages, including marrow-derived cells 
that originate from a subset of endothelium, tissue-resident  
macrophages that originate independently of the endothelium,  
and even SMCs46,148,162,240–247.

A new definition of cell type
The definition of cell types has traditionally been based on 
marker genes (that is, proteins found at high levels in a differen-
tiated tissue). Examples include albumin for hepatocytes, immu-
noglobulins for B cells, insulin for pancreatic beta cells, vascular  
endothelial (VE) cadherin for endothelial cells, and cell type- 
specific muscle myosins or actins for heart and skeletal muscle. 
In the vascular media, cell type has been defined primarily by 
the location of cells and the high levels of expression of smooth  
muscle actin in cells organized as the tunica media (Table 1). 
Smooth muscle actin, however, is not definitive because not all 
cells in the tunica media express this protein248. Moreover, the  
expression of smooth muscle alpha actin is not restricted to  
smooth muscle. The gene is expressed in other muscle lineages  
as well as endothelial cells and even epithelial cells.

A new approach may be to define a cell type by transcription 
analysis based on sets of coregulated genes. These sets are called 
“clusters”249–251. Understanding how we can define cell types by  
“clustering” levels of RNA expression (Figure 6) requires that 
we consider how transcripts are measured. The accuracy of  
individual transcript levels may be less important than the  
numbers of transcripts measured in an assay. This is fortunate  
because, unless RNA levels are measured by quantitative  
polymerase chain reaction, efforts to determine the quantities of 
the 10,000 or more mRNA species in an individual cell type are  
fraught with error. These errors can be minimized in a number 
of ways, including using many probes for each putative RNA in 
a hybridization analysis, increasing the number of sequences  
identified by spending more money on sequence analysis, or 
clustering sets of coregulated genes250–253. Because there are  
many genes in a set, a mean value of expression for all genes in a 
cluster (that is, its center of gravity) has less error than the error of  
any one gene249–253. As a result, cluster analysis can be used to  
define cell types independent of any marker gene.

Of course, pathways are the ultimate definition of cell type 
and cell state. Covariation of the quantity of different RNAs  
(Figure 6) has been used for at least two decades to identify  
pathways. These pathways can be connected to causal Bayesian 
networks by identifying the sites of variation in gene sequence 
that control variation in expression254–258. These approaches have  
been used to define cell types in terms of a cluster of genes  
rather than individual marker genes259,260 (Figure 4–Figure 6).

Recently, in the vessel wall, cluster analysis has been used to 
define cell types using single-cell RNA analysis. Carried out over 
a time course and combined with the introduction of artificial  
DNA bar codes, this can be used to map the lineage of  

essentially every cell as an embryo develops261–263. The method 
has even been used to identify unexpected lineages when cloned 
stem cells were induced to develop into skeletal muscle239.  
Betsholtz and collaborators used cluster analysis to identify 
four different types of pericytes coating brain capillaries in the  
vessel wall56. Pericytes are smooth muscle actin-expressing  
cells that form the thin layer of cells surrounding the endothe-
lium of capillaries (Table 1). One of these pericyte types, with a  
distinct location in the capillary bed, lacked smooth muscle  
alpha actin, the canonical marker for SMCs56.

Once defined, a cluster can be used to simplify transcription  
analysis of all the genes expressed in a cell. Moreover, since 
a few genes can be used to determine the expression of genes  
belonging to coregulated clusters253, accuracy of a cluster can 
be quite high. For example, hybridization chips that use fewer 
than 1,000 carefully curated probes to represent the entire  
transcriptome were recently designed253. These “L1000” chip 
probe sets reduce the cost of analysis of a transcript profile to less 
than $10. Because these chips are inexpensive and not limited 
by counting errors associated with RNA sequencing, very large  
numbers of cell types or cell states can be cheaply defined 
and stored in a common database. Currently, the consortium  
behind L1000 has analyzed 1.3 million samples representing  
different cell states or cell types253. The low cost of L1000  
chips may make the identification of cell types and cell states  
very inexpensive. In summary, rather than single genes, clusters 
may provide a better way to define cell type56.

One concern is that the statistical construct of clusters may  
mean that we need to live with the idea that cell types overlap. Of  
course, that overlap may be the true meaning of cell type.

A semantic issue: “phenotypic modulation” versus 
“cell state”
A more general term than “phenotypic modulation” may be 
“change in cell state”. Whereas loss of cell differentiation in 
response to injury is common to most tissues responding to injury, 
the term “phenotypic modulation” is peculiar to vascular biology.  
The term had its origin in the early days of SMC culture when 
Julie and Gordon Campbell observed that cultured SMCs, like 
all other cells adapted to grow in culture, lost their differentiated  
phenotype. Cultured SMCs switched from a “contractile” in vivo 
to a “synthetic” phenotype adapted to growth in culture. The  
Campbells proposed that the loss of the contractile proteins,  
especially smooth muscle alpha actin, was central to the migra-
tion of medial cells and proliferation in the intima to form a 
neointima264,265. In subsequent work by Feil et al.62, Owens 
et al., and others46,53,62,63,266–275, much of the signaling process  
controlling this switch has been worked out. The signaling  
process involves transposition of a transcription factor from the 
promotor driving actin to a promoter driving genes required  
for cell proliferation.

As illustrated in Figure 4, changes in cell state occur in most 
cell types, including post-mitotic, terminally differentiated  
neurons that respond to a severed axon by switching to a pheno-
type that regenerates the injured axon276. As an extreme example,  

Page 9 of 22

F1000Research 2018, 7(F1000 Faculty Rev):1969 Last updated: 21 DEC 2018



fibroblasts can be induced to differentiate into skeletal muscle 
by overexpression of the transcription factor myoD. The skeletal 
muscle type, however, is reversible if the cells are demethylated 
by introduction of bromodeoxyuridine (BUdR). When BUdR 
is removed, the cells redifferentiate presumably because of the  
persistence of epigenetic changes277. In this case, we might 
argue that the skeletal muscle cell type persisted even when the  
markers of skeletal muscle phenotype were gone.

The semantic issue may be whether one means “phenotypic 
modulation” to distinguish between reversible changes in  
phenotype (that is, cell states) or whether the term implies the  
more permanent properties that identify cell types. For example, 
most differentiated cell types can respond to tissue injury by  
adopting motile or replicative phenotypes. When the tissue has 
regenerated, the cells revert to their resting state. Even post- 
mitotic, terminally differentiated neurons are capable of  
undergoing chromatolysis. Chromatolysis is a massive increase 
in the proportion of DNA unfolded and involved in transcrip-
tion as is needed to regenerate an injured axon276. Similarly, 
hepatocytes, skeletal muscle, renal tubular epithelium, and so 
on all undergo reversible changes in cell state when induced to  
regenerate after a wound.

As an example closer to vessel wall biology, the “myofibrob-
last” is derived from fibroblasts. The resting fibroblast lacks  
smooth muscle alpha actin or other markers of the smooth  
muscle type278. Following stimuli by certain cytokines, fibrob-
lasts transform into a phenotype characteristic of a healing 
wound with an abundance of synthetic endoplasmic reticulum 
to make connective tissue and actin-rich microfibrils to promote 
wound closure. However, as the wound progresses, the myofi-
broblasts cease making matrix and lose their actin-rich content.  
They again appear as fibroblasts. Similarly, even if we define 
the clonal cells in a plaque as belonging to a smooth muscle  
“cell type”, it is not at all surprising that we can find SMCs 
in a proliferative or other state as required by the local  
environment46.

Whatever terminology we use, it is important to realize that  
Remak’s concept of cell lineage may no longer be correct  
(Figure 5). Wagner et al., combining single-cell RNA analysis 
with bar codes, found lineages that cross between the expected  
branches, implying that “cell types” can give rise to cells that 
otherwise would be assumed not to exist because of member-
ship in a different lineage177. Wagner et al. concluded that “the 
ability of embryonic clones to undergo dramatic converging/ 
diverging behaviors thus underscores a continued need for inde-
pendent measurements of both cell state and lineage in the  
mapping of cell fate hierarchies”177. An important patho-
logical example of a switch across lineages includes papers  
showing that glioblastoma stem cells, presumably of neural crest 
origin, are able to express both the endothelial phenotype and  
the SMC/pericyte phenotype279.

As already discussed, recent reports have described a change in 
smooth muscle phenotype that may even comprise a change in  
cell type. We already know that macrophages derived from cells 

in different organs retain epigenetic changes from that origin 
even when challenged with cytokines characteristic of different  
resident macrophage cell states243,244,280. However, it now appears 
that intimal cells that derive from medial smooth muscle can  
acquire macrophage properties52–55,148. The lineage issue becomes 
even more problematic with the recent reports that all macro-
phage and endothelial cells derive from a common precursor, the 
“erythro-myeloid progenitor” (EMP). In view of the ability of  
cells to cross traditional lineage barriers, it would be interesting 
to determine whether RNA expression data from these macro-
phage-like cells cluster with other tissue-derived macrophages,  
with macrophages derived from the bone marrow240,243,244,280, or 
perhaps even with endothelial cells undergoing endothelial– 
mesenchymal transformation.

In summary, we do not know whether phenotypic modulation 
allows an SMC to revert to a fully contractile phenotype. Put 
into conventional terms, perhaps intimal cells are their own  
“cell type”?

Origins and identity of “mural cells”: another semantic 
issue
The term “mural cell” is used in vascular biology for the  
connective tissue cells that form the wall around endothelial tubes. 
Because the term “mural cell” is based in morphology, the term 
can replace “vascular smooth muscle cell” without defining a  
cell type by lineage and without making assumptions based on the 
expression of a single gene (Table 1).

We need to understand how the formation of the endothelium  
determines the origins of mural cells (Figure 7). The angiob-
lasts arise during gastrulation. Angioblasts are the progenitors of 
endothelium, monocytes, lymphocytes, and all white cells and 
red cells. Angioblasts, or perhaps the more primitive EMPs162,  
form endothelial cells as well as the precursors of tissue macro-
phages, including glial cells of the brain243. The endothelial cells 
form themselves into tubes, and these tubes join up and branch 
to form a capillary plexus. The plexus is a chaotic network that  
remodels into the orderly branched vascular tree with arteries, 
capillaries, and veins. Tissue macrophages, called histocytes,  
arise by migration of their precursors from the EMP. Monocytes 
arise from EMPs that become part of the endothelium and give 
rise to precursors that detach and populate the bone marrow and  
other hematopoietic sites.

The branched endothelial tubes acquire coats of mural cells  
derived from various local forms of mesenchyme. The recruit-
ment of mural cells does not occur until the branched tree of  
arteries and branches reaching all parts of the growing embryo  
have been formed. There is no evidence that marrow-derived  
cells give rise to precursors of mural cells.

Mesodermal sources of progenitors for mural cells are diverse. 
The sources range from the mesectoderm of the neural crest, the  
mesothelium of the thoracic and abdominal cavity, the heart 
fields, the endocardium, the epicardium, the metanephros, and the  
somites. In some places, mural cells may even develop by  
transdifferentiation of the endothelium49,59,166,222.
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Figure 7. Endothelial cell precursors can be identified by lineage tracing within the proepicardial organ before cells from that precursor 
migrate to form the epicardium. Cells marked by the expression of the transcription factor Tcf21, in contrast, give rise to the mesenchyme 
of the heart, including both smooth muscle cells and fibroblasts.

Not all mural cells go on to express smooth muscle alpha 
actin. In chickens, the media of the thoracic aorta contains two  
ultrastructurally distinct cell types, one cell having the charac-
teristic filament-rich cytoplasm of an SMC and the other the  
ultrastructure of a fibroblast248. Embryological studies in 
chickens and mice further suggest that this morphology may  
represent unique origins from the somatic mesoderm versus the 
mesectoderm formed from neural crest. Similarly, mural cells 
surrounding certain capillaries in the brain fail to express smooth  
muscle markers56.

Given origins in distinct regions of the mesoderm, there is no 
reason to assume that the resulting cell populations would exist 
in a single-cell state, even if all of these cells were defined as  
being of one SMC type. Mural cells with different origins show 
distinct proliferative properties and biosynthetic profiles, even in 
cell culture64,169,281–285. In mice, Roostalu and Wong have recently  
shown distinct lineages within the media itself, including a  
distinct population of mural cells arising during embryonic 
development that is maintained postnatally at arterial branch  
sites226. Finally, similar studies show that multiple embryonic 
sources within the developing mouse heart contribute to the 
cells that become the medial smooth muscle of the coronary  
arteries286. As we will also discuss below, Tallquist et al. 
have shown that the epicardium gives rise to two distinct  
lineages: one that forms the media and another that forms the  
adventitia128.

Finally, data from studies of differentiation of organ-specific  
epithelium suggest that the origins of different mural cells might  
affect the cell state of organ-specific endothelial cells287,288.  
Differentiation of the endoderm into organ-specific types of 
epithelium depends on the interaction of epithelial cells with  

organ-specific mural cells and their matrix289–291. By analogy, it 
seems possible that different mural cells and intimal cells control 
the phenotype of overlying endothelium. Conversely, differences 
in lineage within the endothelium might control the formation  
of intimal cell masses162. Such cell type interaction-specific  
interactions between epithelium and mesenchyme might explain 
the localization of atherosclerosis at specific sites.

Possible sources other than mural cells for origins of 
intimal cells
The media is not the only possible source for intimal cells.  
Studies using labeled bone marrow cells in mice and humans 
have purported to show that intimal SMCs in atherosclerotic 
plaques could be derived from circulating marrow-derived 
cells292,293. These studies, however, have not held up to more careful  
work8,47,294.

A more likely source is the adventitia. The adventitia of arteries 
is defined as those cells outside the external elastic lamina  
(Figure 8). This layer contains endothelial cells, neurons, blood-
derived macrophages, lymphocytes, mast cells, and fibroblasts. 
Recent studies show that adventitial fibroblasts include cells 
identified as stem-like by the expression of markers like c-kit and  
sca1224. Cell tracing studies show that adventitial cells can cross 
the media of injured vessels to form a neointima136,295,296. Moreover,  
transplantation studies in vivo show that adventitial stem cells 
applied to the outside of an injured vessel can migrate across the 
media and form an intima295.

Adventitial fibroblasts are also of interest because of their  
relationship to fibrotic responses. Outside the vessel wall,  
adventitial cells respond to injury by the synthesis of high levels 
of smooth muscle actin, becoming the major cell type seen in  
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Figure 8. Layers of the artery wall. The intima is a layer of connective tissue located between the endothelium and a layer of elastin called 
the internal elastic lamina. The media is delimited by the dashed black lines representing the internal elastic lamina and the external elastic 
lamina (EEL). Only rare cells, including lymphocytes and smooth muscle cells, are seen in the normal intima of the small mammals usually 
used to study atherosclerosis. However, in humans, intimal cells accumulate spontaneously during normal development and appear as a 
clone in the atherosclerotic lesions of adult humans. Based on immunocytochemistry, these cells are usually considered to be smooth muscle 
cells. In fat-fed animals, including humans, lipid accumulates in the intima to form the characteristic fatty atherosclerotic lesion. The outer 
limit of the tunica media is also defined by a layer of elastin called the EEL. Extrinsic to the EEL is a poorly defined tissue that is part of the 
matrix surrounding not just blood vessels but the parenchymal cells that comprise organs. The part of this matrix close to the vessel wall is 
called the adventitia.

fibrosis, the “myofibroblast” described above297,298. Myofibrob-
lasts characterize scleroderma and may be derived from vessel 
wall cells142. Myofibroblasts (that is, fibroblasts rich in smooth  
muscle actin) also characterize the mesenchyme of some tumors 
in a process called “desmoplasia”299–301. Curiously, no effort has  
been reported to use cluster analysis to compare myofibroblasts 
with intimal cells.

The origin of intimal cells from adventitial cells may imply 
that intimal cells are of a different cell type than medial cells.  
Tallquist et al. showed the adventitial cells of coronary arter-
ies and the mural cells of the coronary artery media derive from 
distinctive precursors in the epicardium (Figure 9)128. This dif-
ferentiation occurs when epicardial cells lose the expression of 
a transcription factor, Tcf21. The Tcf21-negative cells undergo  
epithelial–mesenchymal transformation, migrate to coat the  
nascent endothelial tubes, and form mural cells. These mural cells 
initially have the properties of pericytes and populate the entire  
coronary microvasculature302. In contrast, the fibroblasts around 
these vessels, that is the adventitial cells, originate from the  
Tcf21-positive epicardial cells by migration128. Presumably the 
adventitial cells express smooth muscle actin only during cardiac 
fibrosis when they become myofibroblasts. The observations of 
Tallquist et al. have not as yet been extended to other vascular  
beds128. Much less is known about the origin of adventitial cells 
other than those in the heart137,223,224,303.

There is, finally, one additional possible source for intimal cells, 
the endothelium. Endothelial cells are capable of undergoing 

EMT228,304–306. EMT has been intensively studied in the formation 
of the cells making up the cardiac valves129,160,304,307. In addition, 
Karsan et al. used the Tie1 promoter to identify an endothelial-like 
cell that is present in the vasculature of developing murine vessels. 
This labeled cell differentiates into smooth muscle. Endothelial 
cells that also showed the canonical VE cadherin marker, how-
ever, did not differentiate into smooth muscle308. It is intriguing 
to wonder if the normal intima might originate in such a peculiar 
precursor cell. The origin of the intimal cells of the human coro-
nary artery from a human cell equivalent to the Tcf21-positive 
epicardial cells of Tallquist et al. or by EMT would provide an  
entirely new perspective on the meaning of clonality.

An intimal hypothesis based on fenestrae
Figure 10 proposes perhaps the simplest model for plaque  
monoclonality. In this model, rare mural cells are trapped within 
the intima as the internal elastica forms and the fenestrae, holes  
in the internal elastic lamina, shrink309,310.

A simple alternative is that migration from the media is limited 
not only by the number and size of passageways across the 
internal elastic lamella but also by secretory and cytoskeletal  
changes required for transfenestral migration. Fetal properties 
that allow some medial cells to migrate may be developmental but 
could be reactivated in a subset of the medial SMCs when arterial  
injuries occur. A recent study by Lu et al.311 showed examples 
of transfenestral SMC migration in wild-type arteries after  
carotid ligation and in transgenic mice with Mef2c deletion  
specifically in endothelial cells.
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Figure 9. Dichotomous origins of medial smooth muscle and adventitial fibroblasts. Both arise from the epicardium, but the smooth 
muscle lineage requires first the loss of expression of Tcf21. Presumably, the intimal cells arise from the medial smooth muscle but, as 
discussed in the text, we cannot rule out origin from the adventitia, especially since adventitial fibroblasts are the source of smooth muscle 
actin-rich myofibroblasts seen in injured myocardium.

Figure 10. The simplest hypothesis. As discussed in the text, intimal smooth muscle cells in adult human atherosclerosis are clonal. 
Although we do not know that this clone is derived from intimal clones present at birth, this is an obvious hypothesis. The next question 
might be how would normal intima develop as a clone? The simplest hypothesis is that some mural cells that coat the arterial endothelium 
get trapped within the forming internal elastica. Isolated from other mural cells, these intimal cells would develop a phenotype dependent  
on both their lineage and the conditions of being confined between the endothelium and the internal elastic lamina.

Finally, localization of intimal cells might be the result of stimuli 
coming from endothelial cells responding to flow312 or from subsets 
of endothelial cells with their own lineages162.

Figure 10 does not rule out the possibility that the clone selected 
for growth in the intima has special properties derived from its 
developmental lineage, acquired because of the environment of an 
injured media, or resulting from mutation.

In the end, does intimal clonality matter?
We do not know whether the origin of a lesion in clones of  
intimal cells is important to the natural history of the plaques. The 
common belief is that atherosclerotic lesions develop selectively 
in areas where the arterial endothelium is exposed to turbulent  
blood flow312. However, as already discussed, we know that the 
neointimas formed after injury predispose to atherosclerosis  
and that sites with similar rheology may or may not develop  
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atherosclerosis. Therefore, it seems likely that spontaneous and inti-
mal masses may be the initial cause of atherosclerosis in humans.

Moreover, sites that show spontaneous intimal thickening26,313 
are also sites that manifest in later life as lesions that rupture,  
leading to occlusion and thromboembolic events. Perhaps 
localization of lesions at these sites is accelerated because of  
synthesis of matrix proteins that bind lipoproteins314, because 
of pro-inflammatory interactions between endothelial cells and  
intimal cells51, because of regional differences in Hox gene 
expression and nuclear factor-kappa B (NF-κB) activity which  
correlate with areas of lesion formation in aortas of atheroscle-
rosis-susceptible mice315, because of localized differences in the  
synthesis of elastin which eventually affect plaque stability316–319, 
because telomere shortening due to clonal amplification leads 
to senescence, cell death, and rupture of the fibrous cap149, or 
even because of immunological properties of the macrophage  
phenotype derived from medial SMCs53,320.

Summary
New frontiers that have emerged since Benditt’s original 
observation
Given all that we have learned from mice and from the success 
of lipid-lowering drugs, Benditt’s observation would be irrel-
evant today if we did not know, as in Figure 1, that the intimal 
cell mass precedes the development of the fatty lesions. Benditt’s  
hypothesis would still be irrelevant unless we imagined that the 
natural history of the plaque over decades of plaque develop-
ment could depend on the identity and properties of the clonal  
cell type making up the intimal cell masses.

Our review has tried to make seven points:

1.    Benditt’s observations have held up, but his neoplastic 
hypothesis has not. Even though carcinogens can promote 
the growth of intimal cell masses21, there is (as yet) no evi-
dence that the clonal growth of the human plaque is due 
to a mutation. Perhaps such evidence will emerge with  
applications of next-generation sequencing to detect  
mutations in the plaque cells181.

2.    Intimal cell masses in human arteries precede atheroscle-
rosis. However, we do not know that these masses are 

clonal. It is conceivable that clonality develops later as 
lesions develop as is seen in mice responding to arterial  
injury.

3.    Intimal cells may determine where plaques develop. It 
is possible that intimal cells control the phenotype of 
overlying endothelium, including properties that attract  
leukocytes leading to the development of atherosclerotic 
lesions. Intimal cells may also provide an environment  
that accumulates toxic products of lipids.

4.    Intimal cells have properties distinct from our tradi-
tional view of SMCs. We do not know whether these  
properties are reversible or represent a fixed change (that  
is, something that might be considered a “cell type”).

5.    Cluster analysis, combined with lineage tracking, has 
opened a new frontier in defining cell types within the 
intima. It will be important to use these methods to define 
the cell types comprising the atherosclerotic clone.

6.    The extent of intimal cell masses across the normal  
human arterial tree of children is not known. There has been 
no thorough study of the arterial intima in the arterial tree 
of human children or other large mammals. Such masses 
may also occur later in life and lead to the development 
of new atherosclerotic lesions as suggested by DeBakey  
and Glaeser29.

7.    Differences between models of atherosclerosis in mice  
versus the disease in humans may reflect the fact that mice 
lack intimal cells. Intimal cell masses, probably clonal 
in origin, may provide a soil for lesions that are distinct  
from those in the mouse model systems.
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