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In Silico Models of DNA Damage
and Repair in Proton Treatment
Planning: A Proof of Concept
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There is strong in vitro cell survival evidence that the relative biological effectiveness (RBE) of protons
is variable, with dependence on factors such as linear energy transfer (LET) and dose. This is coupled
with the growing in vivo evidence, from post-treatment image change analysis, of a variable RBE.
Despite this, a constant RBE of 1.1 is still applied as a standard in proton therapy. However, there is a
building clinical interest in incorporating a variable RBE. Recently, correlations summarising Monte
Carlo-based mechanistic models of DNA damage and repair with absorbed dose and LET have been
published as the Manchester mechanistic (MM) model. These correlations offer an alternative path to
variable RBE compared to the more standard phenomenological models. In this proof of concept work,
these correlations have been extended to acquire RBE-weighted dose distributions and calculated,
along with other RBE models, on a treatment plan. The phenomenological and mechanistic models
for RBE have been shown to produce comparable results with some differences in magnitude and
relative distribution. The mechanistic model found a large RBE for misrepair, which phenomenological
models are unable to do. The potential of the MM model to predict multiple endpoints presents a clear
advantage over phenomenological models.

The primary advantage of proton beam therapy (PBT) over photon therapy is found in the apparent superior
dose distribution delivered to the patient where the same target dose is delivered with a dose reduction to the
surrounding healthy tissue'. Currently, total patient numbers treated by PBT are relatively small compared to the
total for photon treatments and, consequently, the wealth of clinical knowledge of the biological effect of radiation
is for photon absorbed dose. The translation of this knowledge to protons would be simple if the absorbed dose
of photons and protons had equal biological effect. However, there is a known difference in the biological effect of
the two radiation qualities?, and thus this translation is not trivial. To translate photon dose into proton dose, the
concept of Relative Biological Effect (RBE) is commonly used:

RBE é Dphutans]
x

protons ( 1 )

where D, .. is the proton dose required to obtain the same endpoint, x, as the reference photon dose, Dyjioton-
There is no formally defined reference radiation quality, although experiments typically use a photon energy
spectrum of a nominal 250 kV or Cobalt-60 source.

In vitro experiments reported in the literature demonstrate a dependence of RBE on many factors such as
dose, linear energy transfer (LET), oxygenation, tissue type and biological endpoint®. However, the variability
in the ensemble of in vitro data is too great to obtain a robust value of RBE across all of these factors. Instead, a
constant RBE of 1.1 is applied to the absorbed dose in proton therapy treatment plans’. At present, there is no
evidence demonstrating an adverse symptomatic effect. The use of this constant value of RBE means for the same
dose, protons are assumed to be 10% more effective than photons across all parameters.
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In recent years, further in vitro data has been published making the variation in RBE harder to ignore*.
Nonetheless, the issues with the translation between in vitro and in vivo must be thought of when considering this
data. Clinically, there is little evidence to suggest that the application of a constant RBE of 1.1 has a detrimental
effect on patient outcome. However, studies outlining image changes in healthy tissue®® are beginning to chal-
lenge this argument along with evidence that the use of a constant RBE could produce sub-optimal treatment
plans causing degradation in clinical effect’. There is a growing awareness within the community that variable
RBE should be considered in the treatment planning process. However, the optimal method of doing so is not
clear and stringent evidence that safety of treatments will not be compromised is required.

Given these uncertainties, the incorporation of LET has been proposed as an intermediate step® to the full
implementation of variable RBE into clinical plans. LET is a commonly used parameter to describe a particle’s
track structure and is defined as the amount of energy deposited per unit length along a charged particle’s path®.
There is strong in vitro evidence linking LET to biological effect and, as a physical parameter, LET can be calcu-
lated to a high degree of accuracy compared to biological parameters®. Furthermore, the clinical evidence®® of
variable RBE suggests a link between the increased biological effect (i.e. image change) at the end of proton range
with regions of elevated LET.

Approaches to incorporate LET into clinical plans have been varied. Some authors have explored the use of
combinations of dose and LET, such as L¥*D'* or D(1 + <L)'>!! where L is dose-averaged LET (LET}), D is
absorbed dose and « is a fitting parameter. However, uptake in the clinic has been slow due to a lack of consensus
and concerns of the uncertainties in the appropriate way to combine LET and dose and how to determine appro-
priate fitting parameters. There is also a paucity of evidence demonstrating symptomatic toxicity through the lack
of use of such models in treatment planning. Also, L*D has been shown to have a poor fit with data®.

Others have modelled RBE using phenomenological methods'>-'%, despite the restrictive uncertainty in the
experimental data’. Generally, these models use parameters of dose, LET and the tissue-specific parameter, ov/3.
Again, their uptake in the clinic has been limited due to uncertainty in the fitting data and thus how reliable the
models are in predicting clinical effect. The experimental data used to fit these models is sometimes from
non-human cell lines, and the phenomenological nature of the models makes it difficult to apply them to other
endpoints or situations.

An alternative to these approaches is mechanistic modelling. There are several models of this type in the lit-
erature with varying complexity in how radiation damage and repair of DNA double-strand breaks (DSBs) are
modelled'®"'8. Recently, a suite of mechanistic models to examine the DNA damage resulting from different radia-
tion qualities has been developed!*?. These models have been used to investigate some of the factors surrounding
RBE by simulating the effect of different radiation qualities on combined DNA and cell geometries in the Monte
Carlo (MC) toolkit Geant4-DNA?!2, The structure and pattern of energy deposition on the DNA from these
simulations is recorded and passed to the DNA Mechanistic Repair Simulator (DaMaRiS). Here, predictions are
made on the efficacy and fidelity of repair at various time points up to 24 hours after radiation.

Previously published work using this model'*** has demonstrated an increase in complex damage and DSBs in
proximity to one another, with increasing LET. These breaks in close proximity were then predicted by the model
to lead to an increased probability of incorrect DNA repair®. A series of simple correlations were established with
inputs of absorbed dose and LET and outputs of endpoints of predicted yields of residual and misrepaired DSBs.
These correlations allow for the accurate reproduction of the detailed model results. In this paper, the model
compromising of both the damage and repair processes will be referred to as the Manchester Mechanistic (MM)
model.

The work in this paper applies these previous findings into clinical treatment planning as a ‘proof of con-
cept’ to demonstrate the potential of such an approach. GATE?, a framework for the MC toolkit Geant4**, has
been used to calculate the absorbed dose and LET in each voxel of a proton therapy plan. Using the previously
published correlations, we present maps showing predicted yields of residual and misrepaired DSBs in cells at
each voxel. In principle, these maps may provide the clinician with additional valuable information on expected
biological outcomes, allowing for identification of regions of heightened biological effect for differing endpoints.

Methods

Workflow for the variable RBE calculation in a treatment plan.  This study is a retrospective analysis
of a patient treatment plan. The patient gave informed consent for their data to be used for this purpose, and
all data was handled according to GDPR regulations. The research was approved by the Radiotherapy Related
Research committee at The Christie.

The patient presented in the case study is a 24-year-old female ependymoma patient treated with passively
scattered proton beam therapy (PSPBT). An ependymoma case was selected as these patients are considered
particularly at risk of severe toxicity, such as brainstem necrosis, if RBE values are above 1.1%. For the purpose of
this study, a spot-scanning treatment plan was created at The Christie according to the protocol for this tumour
site. A three-field beam arrangement (two lateral and one superior) Single Field Uniform Dose (SFUD) treatment
plan with 1.8 Gy per fraction was created using a Varian ProBeam beam model in Eclipse™ (v13.7, Varian, Palo
Alto, USA) treatment planning system (TPS). The target and organs at risk (OARs) volumes were given clinician
approval. The plan was assessed separately for robustness under a range uncertainty of 3.5% and under 3 mm
shifts of the patient in the X, y, and z coordinates.

The patient presented in the case study is a 24-year-old female ependymoma patient treated with passively
scattered proton beam therapy (PSPBT). An ependymoma case was selected as these patients are considered
particularly at risk of severe toxicity, such as brainstem necrosis, if RBE values are above 1.1%.

For the purpose of this study, a spot-scanning treatment plan was created at The Christie according to the
protocol for this tumour site. A three-field beam arrangement (two lateral and one superior) Single Field Uniform
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Dose (SFUD) treatment plan with 1.8 Gy per fraction was created using a Varian ProBeam beam model in
Eclipse™ (v13.7, Varian, Palo Alto, USA) treatment planning system (TPS). The lateral beam energy range was
79-121 MeV and the superior beam energy range was 115-145 MeV. The target and organs at risk (OARs) vol-
umes were given clinician approval. The plan was assessed separately for robustness under a range uncertainty of
3.5% and 3 mm shifts of the patient in the x, y, and z coordinates.

AUTOMC (v20180613) is an in-house MC dose calculator built in Octave (v4.2.2). The basic process of the
software is to translate the DICOM RT files of an Eclipse-made proton therapy plan into .mac text files. The
software then drives the GATE (v8.1)%* / Geant4 (v10.3.3)** environment and a computational cluster system to
obtain a MC dose calculation before performing gamma analysis between the MC and TPS dose. The combina-
tion of the GATE and GEANT4 versions is known as GATE-RTion v1.0 which is constructed and dedicated for
clinical use in light ion beam therapy. Its main role is to form part of the dosimetric verification of proton therapy
plans at The Christie. For this work, AUTOMC was used to calculate absorbed dose and LET distributions for
the patient plan.

GATE? is a framework designed to aid medical physics simulations in the MC toolkit Geant4*. For this work,
absorbed dose to water, LET; to water and LET} to water was calculated in 2 mm voxels using the QGSP_BIC
physics list. Cuts of 0.1 mm were used for gamma, electron and positron radiation while cuts of 1 mm were
applied for protons. The QGSP_BIC physics list has been previously shown to match other well-established phys-
ics lists used for proton therapy applications®. A beam model representative of a Varian ProBeam delivery system
was used. The in-built LET scorer calculated LET, and LET; using the Geant4 method
‘GetElectronicStoppingPowerDEDX’. This method is insensitive to different initial MC parameters, which is par-
ticularly important for LET;?”*%. The number of histories was scaled to achieve an approximate uncertainty of 1%
Gy pgp—1 1 Within the high dose region.

The MC-simulated absorbed dose and LET were then used as inputs to different biological models calculated
within the MATLAB™ (R2017A Mathworks Inc., USA) environment. The models were also evaluated and visual-
ised within this environment.

LET,and LET,. The following definitions of averaged LET were used in the variable RBE models in this
paper:

LET: The LET from each particle is weighted with respect to its contribution to local dose in each voxel,
obtaining Eq. 2:

N AE; AE;
=) SR A @)

where N is the total number of particles within the voxel, AE, is the energy deposited by the ith particle in the
voxel (keV) and Al, is the path length of the ith particle (ym).
LET;: The LET from each particle is weighted with respect to its step length in each voxel, obtaining Eq. 3:

LET ZN All
i AL Al (3)

where N is the total number of particles within the voxel, AE, is the energy deposited by the ith particle in the
voxel (keV) and Al, is the path length of the ith particle (um). Track-averaged LET is also known as the
fluence-averaged LET.

Biological models. The following models were used to calculate RBE-weighted dose using the
MC-calculated absorbed dose and LET:

LET, - weighted Dose Model. ~ Several authors have applied this weighted dose model'®*. Its form is derived from
the linear quadratic (LQ) model by assuming the concept of biologically effective dose will result in Eq. 4:

Dose,, =D - (1 + x - LET)) (4)

where Dose,, is the LET) - weighted dose, D is the proton absorbed dose, LET) is the dose-averaged LET and « is
a fitting parameter. A r value of 0.055 um keV ' (shown in Table 1) was obtained by minimising the biological
uncertainties of in vitro experimental data'®.

McNamara Model™.  This phenomenological model of RBE for PBT is based on the linear quadratic (LQ) model.
The model was derived via a nonlinear regression fit to in vitro experimental data. The RBE-weighted dose is
obtained via Eq. 5:

2
Z
Dosey, =D - | - [3] 44D [%] Nz, + -2 1ET)| + 4D* |z, -z,
X

- -z [
w |, () B

where D is the proton absorbed dose (Gy), (a/[3) , is the tissue-specific parameter of tissue x (Gy), LET) is the

dose-averaged LET (keV pm™") and Z,~Z, are the parameters derived by fitting to cell survival data'* (shown in
Table 1).
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Parameter Value +% Unit

z, 0.99064 + 1.4 —

Z, 0.35605 & 4.2 Gy pm keV™!
Z, 1.1012£0.5 -

z, 0.00387+23.6 Gyt

K 0.0055 pm kev™!

a 0.1966 =+ 0.4 —

b 0.008+ 3.4 —

c 0.0736+0.2 —

d 1.149£ 1.0 pm kev ™" Gy™!
e 241406 Gy

f 4.879E-4+0.8 pum® keV 2

g 2.84E-3+47 pm keV ™!

h 5.13E-2+ 1.6 —

5, 1726+ 2.0 Gy

o 0.0427+16.7 Gy

Table 1. Shows the parameter values and standard error, as a percentage, (if available) for Eqs. 4, 5, 6, 7 and 8.
Z1, Z,, Z5and Z, are taken from the McNamara'?, s is taken from McMahon'’and a, b, ¢, d, e, f, gand h are
taken from Henthorn?®.

Manchester mechanistic model. 'The MM model'**" explicitly considers the radiation damage to DNA and one
of the primary repair pathways of DSBs, namely Non-Homologous End Joining (NHE]). In both the damage and
repair parts of this model, the various mechanistic components of the process have been fitted to biological data
found in the literature. This process has been simulated in the Monte Carlo (MC) toolkit Geant4-DNA?!22,

The model starts with irradiating a spherical cell with a range of doses and LET (if a charged particle) of
specified radiation type. The resulting energy depositions made by the radiation, directly and indirectly, are then
re-simulated onto DNA strands and the probability distribution of break type is created with dependence on
both dose and LET. The resulting pattern and geometry of DSBs is then passed to the repair portion of the model,
named DaMaRiS.

DaMaRiS simulates the two broken ends of DSBs as they undergo sub-diffusion in the cell nucleus. During
sub-diffusion, the attachment sequence of repair proteins necessary for DSB repair, via NHE], is given a chance to
occur. After 24 hours, this process either results in a misrepaired, residual or fully repaired DSB. Residual refers to
DNA damage which has not been repaired after the 24 hour period and misrepair refers to DSBs which has been
incorrectly repaired. All cells are assumed to be in the G1 phase where NHE] is dominant®.

The MM model is simulated at a cellular level and therefore is not suited for geometries at the scales relevant
to clinic application. Instead, simple correlations have been fitted to the results from the MM model so residual
and misrepaired DSB yields can calculated on a patient geometry. These correlations take inputs of absorbed dose
and LETt and have been shown to be in good agreement to the full MM model in previously published work?. It
should be noted the a-h parameters in these models do not have a physical meaning.

These correlations have been applied with Eq. 1 to obtain RBE-weighted dose for endpoints of residual yield
(Dose, g ), misrepair yield (Dose,,) and combined yield (Dose, ). This is shown below in Egs. 6, 7 and 8 where

r&m
the yields for protons and photons for the specified endpoint are the numerator and denominator, respectively.

.(d-LETt+e)-c

Dose, = D =D - RBE,
Y (6)
2 J—
Dosem:D_(d LET, +¢) - (a- (f  LET{ + g- LET, + h) + b) - (1 C):D~RBEm o
Yon 7

(d'LE];+€)'C+(d~LETt+€)'(a~(f~LETt2+g'LETt+h)+b)'(176)
%+
:D'RBEr&m (8)

Dose,g,, = D

where D is absorbed dose (Gy), LET, is track-averaged LET (keV umfl) anda,b,c,d, e f, g and h are parameters
derived to fit the DaMaRiS model to experimental data for endpoints of residual and misrepaired DSB yields.
Parameters -, and ~,, are the average yields of residual and misrepair DSBs respectively, per Gy of Cobalt-60 pho-
ton irradiation. Values for a, b, ¢, d, e, f, g, h, 5, and ~,, are shown in Table 1.

Equation 8 combines the end points of both residual and misrepaired DSB yields. By doing so, an assumption
is made that these yields equally contribute to biological effect. It may also be assumed that all residuals and mis-
repaired DSBs present after 24 hours will result in cell kill.
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Figure 1. Calculation maps for the three field SFUD ependymoma case. (A) Absorbed dose (Gy). (B) Track-
averaged LET (keV/um). (C) Ratio of predicted average residual DSBs per cell against predicted average
misrepaired DSBs per cell using previously published correlations®. (D-F) Relative Biological Effectiveness
(RBE) maps of yields of residual DSBs, misrepaired DSBs and combined misrepair and residual DSBs. (D) Map
of RBE, (Eq. 6). (E) Map of RBE,, (Eq. 7). (F) Map of RBE, 4, (Eq. 8). Critical organs contours (white) and the
CTYV contours (black) are shown.

Results
Figure 1 presents a range of distributions calculated for the SFUD plan of the ependymoma case with a central

sagittal CT slice shown. Figure 1A shows the absorbed dose to water and Fig. 1B shows the LET, to water. LET, is
elevated in the posterior wall of the nasopharynx and, to a lesser extent, the anterior brainstem. This elevation is
expected in these regions as they coincide with the overlap of the distal or lateral edges of the three fields. It is
known these parts of the fields have higher LET values®'.

Figure 1C shows the ratio of predicted residual DSBs yield and misrepaired DSBs yield calculated by the MM
model. This demonstrates the yield of residual DSBs is always greater than the yield of misrepair DSBs. However,
this ratio decreases at the distal edge of the beams corresponding to a relative increase in misrepair. This decrease
is expected as misrepair has a greater dependence on LET, and therefore more closely follows the range increase
of LET in comparison to the residual yield.
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Figure 1D-F shows the spatial distributions of RBE for residual DSBs (RBE, ), misrepaired DSBs (RBE,,) and
combined misrepair and residual DSBs (RBE, ,,,) for the three field SFUD plan of the ependymoma case. These
maps follow Eq. 1 and compare the specified endpoint (residual, misrepair and residual + misrepair) between
protons and photons for a given dose using Egs. 6,7 and 8. The relative distributions of the different RBE end-
points are broadly similar with the main differences being the magnitude of RBE values and a slightly greater
distal expansion for the misrepair RBE.

RBE, ranges from 1.1-1.3 across the planned target volume (PTV) and critical structures. Small regions out-
side of these structures fall slightly below 1.1 to a minimum of 1.03. RBE,, is considerably larger with values
ranging between 10 and 16 in the ROIs. These very high RBE values are due to the relatively low yield of misre-
paired DSBs in photon radiation. This suggests that this is a mode of damage which occurs more frequently under
proton irradiation than in photons. The endpoint of RBE, ¢, is the sum of both misrepair and residual yields. As
the yield of misrepair is low in comparison to the yield of residual, RBE, g, is considerably closer to RBE, than
RBE,, in magnitude.

It should be noted that, as with other RBE models, all endpoints from the MM model are predicting a distal
range extension (1-3 mm) of biological effect beyond the absorbed dose distribution. The magnitude of the shift
is ordered (smallest - largest): RBE,, RBE, g ,,, and RBE,,,.

Figures 2A-C show the dose volume histograms (DVHs) for the RBE-weighted dose of various RBE models
for the PTV, brainstem and spinal cord. These are: constant RBE of 1.1 (RBE¢,,,y4n.)» RBEp(1 4 1y RBEpiNamaras
RBE, and RBE, ,,- RBE,, is not shown on the DVHs as the values are much higher than the other models. The
effect of RBE,, can be seen in RBE, 4 ,,,. An o/[3 of 2 Gy has been assumed for the brainstem and spinal cord in the
McNamara model.

In Figure 2D-F, the RBE models broadly follow the same shape although there is a substantial difference in
magnitude. For the endpoints predicted by the MM model, the patterns are broadly similar across the three ROIs.
RBE, follows RBE,,, ., closely in the PTV, brainstem and spinal cord while RBE, ,, is consistently larger than
the RBE,,,;ani» 1€ading to predicted higher dose per fraction and total dose.

RBE, is in close agreement with the McNamara model for the PTV where both follow RBE ... However,
for the different o/(3 tissue, in this case assuming 2 Gy for brainstem and spinal cord, the difference is substantial
with the McNamara larger at all dose-volume points. A change of o/ will lead to differences between the MM
and McNamara models as only McNamara takes this parameter as an input; the MM model is developed for a
generic cell. RBE, is either smaller than or equal to the RBEy,, , ., for all ROIs.

RBE, g, is consistently larger than RBEy,(, , ;) in all ROIs. However, its relationship with RBE,, has greater
complexity. For the PTV, it is much larger than all other models including RBE,,., which in this case gives the
lowest biological dose. However, this changes for the brainstem and spinal cord where o/3 = 2 Gy. For these
ROIs, RBE),, is higher at lower doses before becoming lower than RBE, ,, at the higher doses. This is especially
significant for serial organs such as the brainstem and the spinal cord, as the primary clinical concern is the max-
imum dose. RBE, ,, is consistently greater than the D(1 + xL) with the difference between them increasing at
higher doses.

Figure 2A-C displays the line plots and their position within the patient anatomy. These plots show similar
relationships to the DVHs with additional spatial information. The MM model estimates a greater RBE-weighted
dose across the clinical target volume (CTV), central nervous system (CNS) and partially the body. The
McNamara model predicts a higher dose in the low dose region surrounding the target. This is due to the combi-
nation of both high LET, as the region overlaps with the lateral edges and distal falloff of the beams, and the low a
/8 of the body.

It should be noted that the McNamara and LET-weighted dose models use LET} as the averaging method for
LET while the MM model uses LET,. It is often stated in the literature that LET} has greater biological relevance
than LET, although rigorous investigation has not been carried out®”. Unlike the majority of RBE models, our
residual and misrepair correlations use LET; as they derive from DNA level simulations. At this length scale, the
non-homogeneous nature of the dose distribution makes LET, very noisy and therefore unsuitable®.

Discussion

In this work, we calculate predicted yields of residual and misrepaired DSBs using the correlations established
in previous work by our group®. These correlations have been extended to RBE with endpoints of residual and
misrepair DSBs. The RBE-weighted dose for these endpoints was subsequently calculated on a representative PBT
clinical plan anatomy for the first time and compared to the McNamara model and LET-weighted dose model.

In its present form, the use of the MM model instead of the other models in this paper may have a clinical
effect on treatment planning. In the vast majority of voxels, the predicted RBE-weighted dose (for Dose,,,) is
greater than both the McNamara and LET-weighted dose model. In the presented case and cases with similar
geometry (critical structure distal to target), this may result in a treatment planner expending more effort in
reducing the dose to the brainstem and the PTV-brainstem overlap area in the optimisation process to remain
within standard dose protocols. Also, methods used to reduce LET in critical structures, such as avoiding distal
fall off into such structures via the alteration of beam angles and beam number®*, may be applied more strongly.
As this constrains the optimisation problem further, it may lead to a degraded absorbed dose distribution.

As previously stated, the MM model finds very high RBE values for misrepair, an endpoint of DNA damage.
This means the MM model is predicting that misrepaired DSBs are occurring at a much greater frequency in
proton therapy than photon treatments. This difference highlights an issue with phenomenological models, since
applying an RBE value resulting from fitting to in vitro cell survival data would not be able to distinguish between

SCIENTIFIC REPORTS |

(2019) 9:19870 | https://doi.org/10.1038/s41598-019-56258-5


https://doi.org/10.1038/s41598-019-56258-5

www.nature.com/scientificreports/

166 e 3 Line Plot A
—~ - -RBE_ = |
- RBEC, A\ )
90} [FBEq ., 11 A :Z‘
RBE i niwnars ot + 10 4 m(unm...:.-u
REEL o i 25 Minropasr & Rouidust
. RBE Marepar & Reed.u
70 2
i & 2
< 80 )
@ ‘ 'g
€ ‘
£ 50 i S 15
S ! 3
o (=]
g 40 g
30 w1
@
20
0.5
10
D \ :‘
% 05 1 15 2 25 3 0 =
. 70 80 9 100 110 120 130 140 150 160 170
RBE Weighted Dose, G)'RB[ Voxel Number
Brainstem Line Plot B
100 3
%0\
25
80 Y
w
70 } 2 ey
-0 o i
% 60 § \
; =3 \
-é 50 . B 15 \
5 ' \
& 40 s \
—.'. 1 \
30 o \,
4
20
0.5
10
\ "
0 z z i s : 0L—~
0 05 1 15 2 25 3 120 140 160 180 200 220
RBE Weighted Dose, G‘,'HUL Voxel Number
60 Spinal Cord
o - RBE e
ool ool o 25
! RBE, nate?
i REE,, o)
80! ——
E “Biu-,-;-« & Roscuer g
9 20 &
\ 0]
oa
=
15 o
o
o
30 8
\ 10 o
20\, + Gy
v, ~
10 3-3
S 05 ™
0 S
0 05 1 1.5 2 25 3

RBE Weighted Dose, Gy,

Figure 2. (A-C) Dose-volume histograms (DVHs) for the planned target volume (PTV) and organs at risk
(OARs) for the SFUD ependymoma patient showing RBE-weighted dose using a constant RBE (dashed black),
D(1 + kL) (dot-dash red), the McNamara model (solid yellow), an endpoint of residual DSB yield (solid green)
and an endpoint of combined misrepaired and residual DSB yield (solid blue). & = 0.055um keV ', a/3 = 2
Gy for spinal cord and brainstem and a/3 = 10 Gy for PTV. (A) PTV DVH. (B) Brainstem DVH. (C) Spinal
Cord DVH. (D-F) Line plots of RBE-weighted dose against voxel number with spatial position in patient
anatomy. The same legend is followed for line plots as for DVHs. (D) Line plot A. (E) Line plot B. (F) Line plot
positions of (A,B) are shown on the patient with CNS(white) and CTV (black contours and RBE-weighted dose

(Dose, g )-

the different modes of damage which, in some combination, result in cell death or other clinically relevant end-

points such as tissue toxicity.
Furthermore, it is known that RBE varies with endpoint?. Thus any potential method to obtain a variable RBE

model must be able to predict multiple endpoints for a full account of variable RBE. Existing phenomenological
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models are intrinsically unable to do so and can only predict a single RBE value. In contrast, mechanistic models,
such as the MM model®, can provide any number of outputs, by predicting different types of damage and incor-
porating multiple number of different repair pathways.

While these results show the potential of mechanistic models, there are several steps to be completed before
the ultimate aim of clinical application can be realised. It is not currently understood in the literature how and in
what proportion residual and misrepaired DSBs lead to the endpoints of cell death or overall tissue toxicity. By
comparing Dose, g, to Dosey,. and Dose,,, it is implied combined residual and misrepair yield is equivalent to in
vitro cell kill. However, it is reasonable to assume the two damage modes have different probabilities of resulting
in this endpoint as well as others. Consideration of the resultant chromosome aberrations from both damage
modes is required to close the gap and estimate cell death.

The inclusion of chromosome aberrations may also be important in discerning whether the prediction of mis-
repair can be correlated with carcinogenesis. Several different types of chromosome aberrations, such as dicentric
chromosomes, make up the misrepaired DSB yield and have differing survivable probabilities. The risk of car-
cinogenesis is an important concern in proton therapy, especially when the case mix includes a high proportion
of paediatric patients. Therefore, this is a key motivation for the development and clinical implementation of
mechanistic models.

In the literature, the RBE models can be broadly separated into two groups, those which keep to the physical
parameters of absorbed dose and LET (e.g. LET-weighted dose) and those which add more consideration of biol-
ogy through o/ ratios (e.g. McNamara model). The MM model sits between these two with its consideration of
initial DSBs and the consequence of DNA repair for a generalised cell. While there is good evidence for RBE
dependence on o/ /3, the significant uncertainties in the o/ values themselves restrict their use in the clinic.
Instead, it would be better to describe the parameters of the different pathways leading to cell death. Only mech-
anistic models can achieve this and this is one of the future aims of the DaMaRiS model.

In addition, the DaMaRiS repair model is currently restricted to modelling NHE], which is considered the
dominant DNA repair pathway in human cells**. However, another DSB repair pathway, homologous recombina-
tion (HR), has a significant impact on repair within human cells in some phases of the cell cycle and is required
for a complete understanding of DSB repair. The introduction of HR into the model will lead to, and allow incor-
poration of, the cell cycle and tissue-specific parameters into the model. This work is currently underway.

Both the incorporation of HR and linking residual and misrepaired DSBs to endpoints with greater clinical
relevance are longer-term goals. In the short term, validation of some underlying assumptions in the model is
required to improve confidence in its accuracy. Currently, the simulation consists of an irradiated spherical water
volume with the resulting energy depositions are then transferred onto the DNA structure with consideration of
DNA’s greater density (1.406 g cm ). This assumes the difference between proton ionisation cross sections of
water and the molecules constituting DNA (guanine, adenine, thymine and cytosine) do not significantly differ.
While this is a common assumption made in Geant4 DNA simulations of DNA damage and treatment planning
in general, there is evidence demonstrating substantial differences®. As the damage proportion of the model has
been fit to experimental data the effect of this assumption should be reduced, but further examination is required.

There are several other assumptions which may also require investigation. Firstly, only the DNA damage
caused by protons and the secondary electrons created by the primary protons in the nucleus is modelled. The
lack of neutrons in the model may affect the ability to predict secondary cancers', a principal aim. Secondly, the
predicted misrepair yield has been shown to match other models in the literature but has not yet been directly
compared to experimental data.

Furthermore, an assumption which affects most RBE models is the ability of a single averaged LET value to
inform on the biological effect at each voxel. At each voxel in one or more beam paths, there is a distribution of
particles with differing energy and thus a spectrum of LET values. A single value for LET is obtained by using an
averaging method, commonly LET; or LET,. Then, two voxels of the same single value of LET and absorbed dose,
according to all RBE models discussed in this paper, have the same clinical effect, despite the potential for vast
differences in the LET spectra. It is feasible that these differences in spectra can have a differing radiobiological
effect of clinical significance.

These issues are challenges to the model, but as these are resolved, the model will provide further insight and
draw attention to areas which require further study. We suggest that one of the key advantages of mechanistic
models is their ability to make predictions outside of a posteriori knowledge for further study.

Clinically, several further steps need to be explored if these models are to be applied in treatment planning.
Firstly, further validation work is crucial before any clinical application. Initially, this will include cellular exper-
iments into the mechanical processes of DNA damage, DNA repair and chromosome aberrations, where exper-
imental data in the literature is currently lacking. The next step would be providing the clinician with maps of
residual, misrepair or other endpoints for patients as well as investigation of indirect optimisation strategies such
as beam angle selection and target segmentation techniques®. After this, direct optimisation, where DNA damage
parameters are used alongside absorbed dose in the TPS optimiser, could follow. While full optimisation is some
distance away due to the considerable validation work required, the concept of ‘no-’ or ‘low-cost” optimisation,
proposed by others?, can be achieved in the short term. This optimisation is one which does not cause clinically
significant degradation in the absorbed dose distribution and is achievable via multi-field optimisation (MFO) in
IMPT. It would also be beneficial to conduct statistical analysis on a range of Christie patients to study any trends
in prediction of biological effect.

Data availability
The datasets used and generated during and/or analysed during the current study are available from the
corresponding author on reasonable request.
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