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Abstract

The application of ℓ1-regularized machine learning models to high-dimensional con-

nectomes offers a promising methodology to assess clinical-anatomical correlations

in humans. Here, we integrate the connectome-based lesion-symptom mapping

framework with sparse partial least squares regression (sPLS-R) to isolate elements of

the connectome associated with speech repetition deficits. By mapping over 2,500

connections of the structural connectome in a cohort of 71 stroke-induced cases of

aphasia presenting with varying left-hemisphere lesions and repetition impairment,

sPLS-R was trained on 50 subjects to algorithmically identify connectomic features

on the basis of their predictive value. The highest ranking features were subsequently

used to generate a parsimonious predictive model for speech repetition whose pre-

dictions were evaluated on a held-out set of 21 subjects. A set of 10 short- and long-

range parieto-temporal connections were identified, collectively delineating the

broader circuitry of the dorsal white matter network of the language system. The

strongest contributing feature was a short-range connection in the supramarginal

gyrus, approximating the cortical localization of area Spt, with parallel long-range

pathways interconnecting posterior nodes in supramarginal and superior temporal

cortex with anterior nodes in both ventral and—notably—in dorsal premotor cortex,

respectively. The collective disruption of these pathways indexed repetition perfor-

mance in the held-out set of participants, suggesting that these impairments might

be characterized as a parietotemporal disconnection syndrome impacting cortical

area Spt and its associated white matter circuits of the frontal lobe as opposed to

being purely a disconnection of the arcuate fasciculus.

K E YWORD S

aphasia, arcuate fasciculus, area spt, connectomics, conduction aphasia, dorsal premotor
cortex, partial least squares, speech repetition, superior longitudinal fasciculus

Received: 2 August 2021 Accepted: 21 August 2021

DOI: 10.1002/hbm.25647

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2021;42:5689–5702. wileyonlinelibrary.com/journal/hbm 5689

https://orcid.org/0000-0001-9025-591X
mailto:vatchebaboyan@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


1 | INTRODUCTION

Fluent production of speech relies heavily on auditory feedback, even

for higher-level phonological planning (Guenther & Hickok, 2015;

Hickok, 2012; Hickok, 2017). A cortical circuit supporting auditory-

motor integration for speech production was discovered more than a

decade ago, which includes regions in the superior temporal gyrus/

sulcus, the posterior planum temporale (area Spt), the pars opercularis

in Broca's region, and dorsal premotor cortex (Buchsbaum, Hickok, &

Humphries, 2001; Hickok, Buchsbaum, Humphries, & Muftuler, 2003;

Hickok, Okada, & Serences, 2009), which forms the dorsal speech

stream (Hickok & Poeppel, 2000, 2004, 2007). However, the connec-

tional neuroanatomy of the underlying white matter circuit of this

dorsal stream network remains poorly understood (Bernal &

Ardila, 2009), particularly as it relates to core clinical symptoms associ-

ated with its function.

The pioneering work of 19th and 20th century aphasiologists

have shown us that cerebrovascular lesions may impair this auditory-

motor circuit leading to the syndrome of conduction aphasia (Benson

et al., 1973; Geschwind, 1965; Wernicke, 1874/1977). The symptom

complex of conduction aphasia includes frequent phonological errors

during production and difficulty with verbatim repetition, while pre-

serving the comprehension of speech itself (Ardila, 2010; Buchsbaum

et al., 2011; Catani & Mesulam, 2008; Goodglass, 1992). Classically,

the critical lesion causing conduction aphasia was thought to be the

arcuate fasciculus (Geschwind, 1965), however, more recent work has

implicated cortical disruption in the posterior Sylvian region as a major

source of the deficits (Anderson et al., 1999; Buchsbaum et al., 2011;

Damasio & Damasio, 1980; Quigg & Fountain, 1999). At the same

time, it is undeniable that fluent speech production relies, at least in

some part, on the integrity of subjacent white matter connections

(Benson et al., 1973; Damasio & Damasio, 1980). Cerebrovascular

lesions that produce conduction aphasia nearly always extend into

white matter. More recently, intraoperative direct electrical stimula-

tion studies have shown that transient phonological paraphasias can

occur upon stimulation of perisylvian white matter (Duffau, 2015;

Moritz-Gasser & Duffau, 2013 for a review). Therefore, white matter

involvement appears likely and mapping their organization will have

important implications for resections involving white matter beneath

eloquent cortical areas, which may induce undesirable speech deficits

postoperatively (Ellmore, Beauchamp, O'Neill, Dreyer, & Tandon,

2009).

Although tractography studies have awarded unprecedented

access to in vivo connectional neuroanatomy, the methodologies

being used to make brain-behavior correlations have lagged behind

considerably. Preoccupied with validating classical assumptions, previ-

ous studies have investigated the white matter correlates of speech

repetition, a core ability supported by the dorsal stream network, by

restricting analyses solely to the arcuate fasciculus (Berthier, Ralph,

Pujol, & Green, 2012; Forkel et al., 2020; Sierpowska et al., 2017;

Yeatman et al., 2011), resulting in a spatial bias which underestimates

the complexity of the underlying anatomy. Indeed, the white matter

configuration of the inferior parietal lobule alone is not only a pas-

sageway for the classical AF, but is also a convergence zone for

several noncanonical association fibers. Among them, are the middle

longitudinal fasciculus (MdLF), the so-called fronto-parietal (SLFIII)

and temporo-parietal segments of the AF (SLFtp), the vertical occipital

fasciculus (VOF), and the second branch of the superior longitudinal

fasciculus (SLFII). Disentangling these pathways using traditional user-

dependent tractography methods will likely fall victim to methodologi-

cal idiosyncrasies that is further compounded by the disagreements in

pathway terminations (Mesulam, Thompson, Weintraub, & Rogalski,

2015) as well as in their proposed segmentations (Glasser & Rilling,

2008; Makris et al., 2013).

Here, we implement a computational framework that integrates

recent advances in connectomics (Gleichgerrcht, Fridriksson, Rorden,

& Bonilha, 2017; Fridriksson et al., 2018; Yourganov, 2016) and regu-

larized machine learning models (Lê Cao, Martin, Robert-Granié, &

Besse, 2009) to algorithmically isolate the connectional neuroanatomy

of speech repetition among the broader white matter feature space.

By applying regularization penalties on high-density connectomes,

elements of the feature space (i.e., connections) can be identified on

the basis of their predictive value with a response variable (Hastie,

Tibshirani, & Wainwright, 2015) rather than through conventional uni-

variate association methods (Fridriksson et al., 2018), which might not

generalize to independent datasets. Generally, aphasia studies have

been limited in sample size and given that conduction aphasia is rela-

tively rare among the aphasia taxonomies, this limitation has been

especially pronounced when investigating its underlying biological

mechanisms. To approach this problem, we measured repetition per-

formance in a relatively large sample of subjects with stroke induced

aphasia. By comprising a multitude of aphasia classifications, this

cohort presents a unique opportunity to identify associations between

white matter disconnection and speech repetition impairment, as each

of the subtypes vary considerably with respect to their cerebrovascu-

lar lesions as well as in the extent to which repetition is disrupted.

This association was established using a regularized latent projection-

based algorithm—sparse Partial Least Squares-Regression (sPLS-R)—in

order to select a subset of white matter connections most predictive

of repetition performance; sPLS aims to generate a parsimonious

model by discarding non-informative features when optimizing predic-

tion error (Lê Cao et al., 2009). In contrast to conventional univariate

methods, sPLS uses dimensionality reduction via multivariate latent

projections which accommodates both high-dimensionality and collin-

earity of the feature space (Rohart, Gautier, Singh, & Lê Cao, 2017).

Multicollinearity is a pertinent issue in voxel-based (VLSM) and

connectome-based (CLSM) lesion studies wherein elements of the

feature space are highly interdependent, as lesions tend to impact

adjoining voxels—likely inflating the type I error rates (Arnoux

et al., 2018). Although PLS is a well-established method in neuroimag-

ing analysis (McIntosh, Bookstein, Haxby, & Grady, 1996), to our

knowledge, it is regularized counterpart—used in high-throughput

“Omics” research from computational biology (Lê Cao, Boitard, &

Besse, 2011)—has not yet been applied to study the connectOmics of

speech and language (Sporns, 2013). The objective of the present

study is to implement sPLS on the high-dimensional connectome to

first generate a parsimonious model of white matter features which

will then, in turn, be used to generate predictions for speech
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repetition on an independent test set. By algorithmically ranking the

most informative features based on their predictive value, we believe

this approach will isolate the white-matter correlates of the speech

repetition circuit in a data-driven, spatially unbiased manner.

2 | METHODS

2.1 | Participants, behavioral evaluations, and
outcome measure

Data from seventy-one participants (27 females, mean age = 60.37

± 11.3, 7 with atypical handedness) with chronic aphasia (≥12 months

post-stroke) were analyzed here. Participants were recruited as part of a

larger aphasia treatment study conducted at the University of South Car-

olina and Medical University of South Carolina. Only individuals with

aphasia resulting from ischemic or hemorrhagic stroke to the left hemi-

sphere were included. Participants with lacunar infarcts or with damage

that involved the brainstem or cerebellum were excluded. All study proce-

dures were approved by Institutional Review Boards at both institutions.

As part of this trial, individuals completed an extensive battery of

cognitive-linguistic testing and neuroimaging at baseline and at various

post-treatment time points (Kristinsson et al., 2021). Details about this

trial can be found in Spell et al. (2020). All data included here were

obtained at baseline, before initiating treatment. To test for repetition

ability, the Philadelphia Repetition Test (Dell, Martin, & Schwartz, 2007)

was used which evaluates repetition at a single-word level. The PRT is a

modification of the Philadelphia Naming Test (PNT) in which partici-

pants hear a pre-recorded audio file and are asked to repeat exactly

what they hear. In addition, the repetition subtest of the revised West-

ern Aphasia Battery-Revised (WAB-R) was used to evaluate repetition

at both the single-word and phrase level (Kertesz, 2007). The scores for

the PRT andWAB-R were then normalized into percentages by dividing

the respective columns by their maximum value. These measures were

strongly correlated (r = .84), and were thus averaged to form a single

composite score representing the participant's ability to perform repeti-

tion tasks at both the single word and phrasal levels. Lastly, subsequent

analyses were performed on the composite repetition scores after cor-

recting for the effects of age and months post-stroke. Of the 71 partici-

pants enrolled in this study, the following seven aphasia subtypes were

observed: Broca's (34 participants), anomic (15 participants), conduction

(10 participants), Wernicke's (4 participants), global (4 participants),

Transcortical-Motor (1 participant), and no aphasia (3 participants).

Mean aphasia severity (measured using the WAB Aphasia Quotient)

was 58.31 (SD = 23.69, range 14.5–99.6). Additional participant details

can be found in Table 1.

2.2 | Image acquisition, lesion mapping, and
preprocessing

Imaging was acquired on a Siemens Prisma 3 T scanner equipped with

a 20-element head/neck (16/4) coil at the University of South

Carolina and Medical University of South Carolina. Images were gen-

erally acquired within 2 days of behavioral testing. This study used

whole-brain T1-weighted, T2-weighted, and diffusion echo planar

imaging (EPI) images collected from each participant. Parameters were

as follows:

i. T1-weighted image utilizing an MP-RAGE sequence with 1 mm

isotropic voxels, a 256 � 256 matrix size, a 9� flip angle, and a

192 slice sequence with repetition time = 2,250 ms, inversion

time = 925 ms, echo time = 4.11 ms with parallel imaging

(GRAPPA = 2, 80 reference lines).

ii. T2-weighted image utilizing a sampling perfection with applica-

tion optimized contrasts using a different flip angle evolution

(3D-SPACE) sequence. This 3D turbo spin echo (TSE) scan uses a

repetition time of 3,200 ms, an echo time of 567 ms, variable flip

angle, 256 � 256 matrix with 176 slices, 1 mm isotropic voxels,

and parallel imaging (GRAPPA = 80 reference lines).

iii. Diffusion mono-polar EPI scan that uses 43 volumes sampling

36 directions with b = 1,000 s/mm2 (with seven volumes b = 0),

repetition time = 5,250 ms, echo time = 80 ms, 140 � 140

matrix, 90� flip angle, 80 contiguous slices, 1.5 mm isotropic

voxels. This sequence was acquired twice, with phase encoding

polarity reversed for the second series (anterior to posterior in

the first series, posterior to anterior in the second series) in prep-

aration for spatial undistortion with FSL Topup script.

The chronic post-stroke lesions were manually drawn on the

T2-weighted image by a stroke neurologist (L.B.) or by a researcher

with extensive experience with brain imaging in stroke populations;

both were blinded to behavioral scores at time of lesion drawing.

Using SPM12 and MATLAB scripts developed in-house, the binary

stroke lesion maps were spatially normalized to standard space

through the following steps: (i) The T2 scan was co-registered with

the individual's T1 scan with the transforms used to resliced the lesion

into native T1 space; (ii) the resliced lesion maps were smoothed with

a 3 mm full-width at half-maximum Gaussian kernel to remove jagged

edges associated with manual drawing; (iii) an enantiomorphic normal-

ization (Nachev, Coulthard, Jäger, Kennard, & Husain, 2008) approach

using SPM12's unified segmentation-normalization (Ashburner &

TABLE 1 List of relevant clinical and repetition measures
assessed

Variable Mean SD Range

WAB AQ 58.31 23.69 14.5–99.6

WAB repetition subscore 5.16 2.91 0.1–10

PRT score 105.21 59.64 0–175

Mean repetition score (%) 0.56 0.30 0.005–0.99

Months post-stroke 53.76 57 12–241

Age at assessment 60.39 11.29 29–76

Note: List of relevant clinical and repetition measures assessed.

Abbreviations: WAB = Western Aphasia Battery; PNT = Philadelphia

Repetition Test.
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Friston, 2005) was applied to normalize the T1-weighted images onto

the standard space, using a chimeric T1-weighted image where the

area corresponding to the stroke lesion was replaced by the mirrored

equivalent region in the intact (right) hemisphere; and (iv) the lesion

mask was then binarized, and only voxels with a values of at least 0.5

were maintained in the final normalized lesion mask (Wilmskoetter

et al., 2019).

2.3 | Structural connectome analysis

Diffusion images were undistorted using TOPUP (Andersson, Skare, &

Ashburner, 2003) and Eddy (Andersson & Sotiropoulos, 2016).

Tractography was estimated using FSL's FMRIB's Diffusion Toolbox

(FDT) probabilistic method (Behrens, Berg, Jbabdi, Rushworth, &

Woolrich, 2007) with FDT's accelerated BEDPOST (Hernández

et al., 2013) being used to assess default distributions of diffusion

parameters at each voxel, and probabilistic tractography was per-

formed using FDT's probtrackX (parameters: 5000 individual path-

ways drawn through the probability distributions on principal fiber

direction, curvature threshold set at 0.2 (80�), 200 maximum steps,

step length 0.5 mm, and distance correction). The waypoint mask was

set as the white matter probabilistic map excluding the stroke lesion.

The weighted connectivity between the regions i and j was defined as

the number of probabilistic streamlines arriving at j region of interest

when i was seeded, averaged with the number of probabilistic stream-

lines arriving at i region of interest when j was seeded. The connection

weight was corrected based on the distance traveled by the stream-

lines connecting i and j (probtrackX's “distance correction”). The num-

ber of streamlines connecting each pair of regions of interest was

further divided by the sum of the volumes of these regions of interest

to compensate for the unequal size of gray matter regions of interest.

The structural connectome was defined with respect to the atlas

of intrinsic connectivity of homotopic areas (AICHA), a fine-grained

parcellation containing 192 regions-of-interest (ROIs), of which

122 are gyral, 50 are sulcal, and 20 are gray nuclei (Joliot et al., 2015).

Thus, a 192 � 192 symmetric connectivity matrix was generated per

subject (36,864 total elements). The elements of this matrix represen-

ted the pairwise probabilistic streamline counts, normalized both by

the distance between the ROIs and the volume of the two ROIs. The

lower triangular of the matrix was extracted for each subject, vec-

torized, and concatenated into a 71 � 18,240 (subject by connection)

matrix. This matrix was to be used as the feature space for subse-

quent analysis, where each column represented a particular pairwise

connection between two AICHA ROIs and each row represented a

particular subject. Lastly, to further eliminate near-zero-variance fea-

tures or features with low connectivity values across the entire popu-

lation, the matrix was thresholded to remove any connections with a

mean normalized connectivity value of less than one, thereby reduc-

ing the feature space to a 71 � 2,363 matrix. Given the implications

of the superior longitudinal fasciculus (SLF) in the classical literature,

connections representing the three segments of the SLF (Forkel

et al., 2014) were included regardless of the aforementioned

threshold. These included any connections from inferior frontal and

lateral temporal cortex, inferior frontal and supramarginal gyrus, and

supramarginal gyrus to lateral temporal cortex. These SLF connections

resulted in 228 additional connections, which finalized the feature

space at 2,591 total connections for subsequent analysis.

2.4 | Sparse partial least squares regression
(sPLS-R)

Partial Least Squares (PLS) is a multivariate latent projection-based

method in which a data matrix is integrated with a response vector via

latent structures and, unlike traditional methods, is effective at model-

ing noisy, collinear datasets (described in Wold, Sjöström, &

Eriksson, 2001). Whereas Principal components Analysis (PCA) pro-

jects a data matrix onto vectors corresponding to the direction of

maximum variance (unsupervised), PLS projects the data matrix onto

vectors which maximize covariance with the outcome measure, and

can therefore be seen as the supervised counterpart to PCA (Kuhn &

Johnson, 2013). The resulting PLS components may then be used to

generate predictions through classical regression (called PLS-Regres-

sion). More recently, regularization penalties have been incorporated

into PLS projections to impose sparsity constraints during the dimen-

sionality reduction, thereby enabling both model building and variable

selection in a single step (Lê Cao et al., 2011). This approach, known

as sparse PLS (sPLS), algorithmically performs feature selection during

the model tuning procedure and results in a lower dimensional latent

structure of predictive features. The appeal behind PLS in general, and

sPLS in particular, is that it is not a so-called “black box” algorithm

and one is able to interpret either the weights of the loadings going

into the principal PLS projections or the variable importance in the

projection (VIP) coefficient (see next section) (Brereton &

Lloyd, 2014). sPLS-R was implemented using the “mixomics” package
in R, dedicated to the multivariate analysis of biological “omics”
datasets (Rohart et al., 2017). First, a 70/30 split was performed on

the entire dataset such that 50 subjects (70% of the dataset) would

be used to build a model whose predictions could then be tested on

the remaining 21 subjects (30% of the dataset). The hyperparameters

for sPLS are the number of components to retain (H) and the

ℓ1-regularization penalty (keepX), selected on the basis of optimizing

prediction accuracy using mean absolute error). Here, we chose to fix

the H at five while evaluating a list of different penalties with a maxi-

mum keepX of 100, tuned using repeated k-fold cross validation

(k = 5, repeats = 50).

2.5 | Variable selection using the Bootstrap-
variable importance in projection (VIP) approach

In order to rank the retained features on the basis of their predictive

value, the variable importance in projection (VIP) method was used

(Chong & Jun, 2005; Farrés, Platikanov, Tsakovski, & Tauler, 2015).

VIP is regarded as the impact of a given variable into the construction
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of the PLS components, weighted by the explained variance across

the components. Features with a large VIP score, larger than one,

have been shown to indicate relevance for explaining the outcome

measure and this cutoff is widely used as a criterion for variable selec-

tion (Chong & Jun, 2005; Colombani et al., 2012; Farrés et al., 2015).

In order to establish distributions around the VIP estimates, the

bootstrap-VIP method (Gosselin, Rodrigue, & Duchesne, 2010) was

implemented wherein the sPLS model tuning procedure was repli-

cated 8,000 times using bootstrap resamples of the training set and

the VIP scores for the principal PLS component at each iteration

was recorded. If a variable is truly important in predicting the out-

come measure, we may expect it to not only consistently survive the

regularization penalty but also maintain a relatively strong VIP score

across the different pseudo-independent datasets (Afanador, Tran, &

Buydens, 2013; Colombani et al., 2012). For this reason, the candi-

date pathways for subsequent analysis were identified using the

aforementioned “greater than one” threshold on the mean of the

bootstrap distribution (Chong & Jun, 2005; Farrés et al., 2015), while

imposing that these features survived the regularization penalty on

the majority of resampling iterations (selection stability frequency

greater than 50%) (Lê Cao et al., 2011; Tillisch et al., 2017). Lastly,

the resulting features were used to fit a PLS model on the training

set and its predictions were then evaluated for statistical signifi-

cance using their correlations with repetition scores from the

unseen test set.

3 | RESULTS

The complete feature space of 2,591 connections is displayed as a

chord diagram in Figure 1 using the circlize package in R (Gu, Gu, Eils,

Schlesner, & Brors, 2014), whose arcs represent each of the distinct

connections between brain regions defined by the AICHA atlas

(Figure 1). The behavioral scores on the WAB-R and PRT for all

participants—shown in Figure 2—show the marked variability in

behavioral performance within and between several of the aphasia

classifications as well as the distribution of lesions within each sub-

type (Figure 2). This pattern of variability supports our approach to

model a continuous outcome for repetition performance rather than

differentiate aphasia classifications categorically. Nevertheless, the

aphasia subtypes with most severe repetition deficits were observed

in the Conduction, Broca's, Global, and Wernicke's aphasia subtypes;

these groups presented with lesions impacting posterior perisylvian

cortex to varying degrees. The lesions in the remaining groups were

located relatively anterior to their repetition-impaired counterparts,

located predominantly in the frontal lobe and insular cortex (Figure 2,

bottom). When adjusting for the effects of age and months post-

stroke, the former showed a positive but statistically weak association

with repetition scores (β = 0.00086, p = .18), while the latter showed

a relatively stronger but nonsignificant negative association

(β = �0.006, p = .08) which together explained 7% of the total vari-

ance, F(2, 68) = 2.395 (p = .09887, multiple R2 = 0.06579).

F IGURE 1 Connectomic feature space. A chord diagram representing the complete feature space of 2,591 white matter connections
analyzed in this study. Each colored rectangular bar along the circumference of the circle represents a particular region of interest defined by the
AICHA atlas and the interconnecting arches or lines represent the connections between region pairs generated with probabilistic tractography.
This connectome was mapped for each of the 71 participants, resulting in a 71 � 2,591 data matrix
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Visualizing the bootstrap-VIP distributions from 8,000 resampling

iterations applied on the training set (70% of the dataset), sixteen fea-

tures (i.e., connections) were identified as candidates by surviving the

greater than one mean VIP threshold and greater than 50% selection

frequency threshold (Figure 3a,b). Of these sixteen candidate features

selected, fifteen (94%) had terminations within parieto-temporal

nodes (Figure 3c); namely in supramarginal (38%), superior temporal

(31%), and inferior parietal areas (25%). The remaining feature was a

connection between ventral rolandic areas (G_Rolandic_Oper-2 and

S_Rolando-1). The two features showing the strongest averaged

bootstrap-VIP score (VIP > 10) and selection frequency (Freq ≥ 90%)

was a long-range connection between the superior temporal gyrus

and the dorsal precentral sulcus (G_Temporal_Sup⟷4S_Precentral-6;

VIP = 12.3, Freq = 92%) and a short-range connection within the sup-

ramarginal gyrus (G_SupraMarginal-4⟷G_SupraMarginal-2; VIP =

11.66, Freq = 90%). The identified features were all positively corre-

lated as shown by the symmetric connectivity matrix (Figure 4, right),

and could be further characterized into highly correlated feature

clusters using a hierarchical clustering algorithm. This unsupervised

approach identified two predominant parietal and perisylvian clusters

with similar connectivity patterns, with the latter being further sub

grouped into three smaller clusters as shown by the clustering den-

drogram (Figure 4, left). Perisylvian clusters 1 and 2 contained similar

elements of fronto-temporal and supramarginal connections, with the

notable difference being that the former contained connections char-

acteristic of the classic arcuate fasciculus as shown by the connec-

tions interconnecting pars triangularis of the inferior frontal gyrus

with the superior temporal sulcus. Perisylvian cluster 3 contained pre-

dominantly rolandic connections while the parietal cluster contained

short-range connections constrained to the parietal lobule (Figure 4).

After identifying the candidate features using the VIP (VIP > 1)

and selection frequency (Freq >50%) threshold, the predictive value

of three different nested models were evaluated on the basis of their

progressively higher threshold combinations (Figure 5, panel 1). The

justification of this approach was to select the optimal model that pro-

duced predictions with statistically significant correlations on the

F IGURE 2 Repetition performance by aphasia subtype. (Upper) Barplots and respective standard errors of the normalized behavioral
performances for the two speech repetition tasks administered: (1) the Western Aphasia Battery—Revised (WAB-R) subtest for repetition (shown
in gray) and (2) the Philadelphia Repetition Test (PRT) (shown in violet). These scores were normalized by dividing them by the maximum. Bars are
grouped according to their respective aphasia taxonomies and sorted in descending order based on performance. Given the strong correlation
between these scores (r = .84), performance was averaged prior to subsequent analyses. (Middle) Lesion overlap maps for each subtype are
displayed beneath the x-axis with their respective crosshairs being centered on the center of mass to enable visualization. (Lower) Overall lesion
overlap maps across the entire cohort are displayed along with their respective sagittal slice coordinates in MNI space
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unseen test set. The first model contained all 16 features identified by

the feature selection protocol, the second contained the top 10 fea-

tures, and the third contained the top 2 features (Figure 5). Each

nested model was used to train a PLS model on the training set whose

predictions were then evaluated on the held out test set (30% of the

dataset). Of the three models evaluated on the training set, all made

predictions that were significantly correlated with the adjusted repeti-

tion scores. Model 1 (16 features) showed the best performance on

the training set (R = 0.75, p = 2.2e�10, one-tailed) with models

2 (R = 0.74, p = 4.47e�10, one-tailed) and 3 (R = 0.7, p = 1e�08,

one-tailed) similarly showing significant correlations on the training

data (Figure 5, panel 2a–c). Of these three models, models

2 (R = 0.45, p = .02, one-tailed) and 3 (R = 0.41, p = .03, one-tailed)

generalized their performance by achieving statistically significant cor-

relations on the unseen test set. The features of the optimal model

comprised four connections between the superior temporal lobe and

dorsal precentral cortex, three connections with terminations in the

supramarginal gyrus, and the remaining three were short-range

connections localized to the inferior parietal cortex posterior to the

supramarginal features (Figure 5, panel 4a). A scatterplot between the

optimal model fitted predictions and the actual (adjusted) repetition

scores are displayed in Figure 5 (Figure 5, panel 4b), with each point

color-coded with respect to the aphasia subtype of each respective

subject in the test set. The PLS loadings and variable importance in

projection scores for the optimal model's latent projection are shown

in descending order in Table 2. Four total features had VIP coeffi-

cients greater or equal to one, indicating their preferential significance

when constructing the principal PLS projection. Three of which were

long-range connections between the superior temporal gyrus and the

dorsal precentral cortex, but with the strongest coefficient (load-

ing = 0.35, VIP = 1.1) combination being attributed to the short-range

supramarginal connection (G_SupraMarginal-4⟷G_SupraMarginal-2)

(Table 2).

The connectivity values of the 10 identified parieto-temporal

white matter features were then inspected across the aphasia taxon-

omies in the entire group of 71 subjects (Figure 6b). Sorted by the

(a) (b)

(c)

F IGURE 3 Bootstrap-VIP variable selection results. (a) Variable importance in projection (VIP) scores of the candidate features averaged
across the 8,000 bootstrap resampling iterations of the sparse partial least squares regression (sPLS-R) algorithm applied on 70% of the dataset.
(b) Features surviving the “greater than one” VIP (x-axis) and greater than 50% selection frequency (y-axis) thresholds are plotted, resulting in
16 features for subsequent analysis. (c) The 16 features are displayed as edges and are overlaid onto the AICHA atlas. Edges are scaled in
diameter according to their respective bootstrap-VIP scores
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same descending order of aphasia taxonomies based on repetition

performance (Figure 2), the pattern of descending connectivity values

shows a markedly similar descending pattern. Subtypes with better

performance on the composite repetition test score showed greater

probabilistic streamlines in the identified parieto-temporal connec-

tions, indicating that the associated brain lesions spared these path-

ways. In contrast, subtypes with greater repetition impairment

showed lower streamline counts in the identified pathways likely due

to disruption caused by the respective lesion.

4 | DISCUSSION

Using a high-dimensional connectomics approach combined with

algorithmic feature selection, the present study isolated the white

matter substrates for speech repetition among the broader set of

cerebral white matter. By obviating the need to restrict analysis to a

priori selected pathways, we show how modern machine learning

algorithms could leverage connectomics data to generate novel

hypotheses for uncovering brain-behavior relationships when study-

ing the neurobiology of language. It is worth emphasizing that most—

if not all—studies on the white matter correlates of speech repetition

have focused exclusively on the classical arcuate fasciculus (AF) given

its implication from classical neurobiological models (Berthier

et al., 2012; Forkel et al., 2020; Yeatman et al., 2011). The

connectomic approach implemented here identified short- and long-

range connections emanating from the superior temporal cortex and

parieto-temporal junction as essential for repetition function

(Figure 3). Of the connections identified, an optimal subset of 10 white

matter features were capable of making significantly accurate predic-

tions on the unseen test set—thereby attesting to the generalizability

of our findings (Figure 5, panel 4). Fifty percent of the optimal fea-

tures were short-range connections in the inferior parietal lobe, with

preferential contributions from short supramarginal white matter

closely delineating cortical area Spt (Table 2), and with the remaining

set highlighting longer range connections terminating in ventral and,

most notably, in dorsal premotor cortex (Figure 5, panel 4a). Contrary

to the Wernicke-Geschwind theoretical framework, our analysis strat-

egy offers a rather nuanced architecture of the dorsal stream's white

matter circuitry—apart from the role of the classical arcuate

fasciculus—that is more in line with findings from the functional imag-

ing literature (Buchsbaum et al., 2011). Our study supports the notion

that repetition is carried out by cortico-subcortical circuits within the

parieto-temporal cortex along with fronto-parieto-temporal pathways

with frontal terminations not limited to Broca's area. Importantly, all

identified pathways shared an anatomical feature in common—their

F IGURE 4 Feature correlations and clusters. (Right) A clustered correlation matrix heatmap of the 16 candidate features illustrating the
positive correlations among the feature space. The features could be clustered into four distinct groups with shared connectivity patterns—as
indicated by the cluster dendrogram—and these clusters are displayed as color-coded edges on the AICHA atlas for visualization (Left). Each of
the individual edges are labeled numerically, corresponding to the row labels of the correlation heatmap for identification

5696 BABOYAN ET AL.



posterior terminations in parietal or temporal cortex, further

cementing this region as critical for the sensorimotor transformations

required to repeat aurally presented linguistic stimuli.

Consistent with modern imaging studies, our results underscore

the importance of the parieto-temporal cortex for the repetition of

speech (Buchsbaum et al., 2011; Fridriksson et al., 2010; Hickok &

Poeppel, 2007; Yourganov, Fridriksson, Rorden, Gleichgerrcht, &

Bonilha, 2016). Lukic et al. (2019) have recently shown a relationship

between the cortical thickness in parieto-temporal cortex and

repetition performance—a finding that has since been replicated by

Forkel and colleagues (Forkel et al., 2020; Lukic et al., 2019). Similarly,

Rogalsky and colleagues—using a VLSM approach—localized repeti-

tion impairments to focal brain damage in the same vicinity (Rogalsky

et al., 2015). Combined with these studies and others (Buchsbaum

et al., 2011; Hickok & Poeppel, 2007; Isenberg, Vaden Jr, Saberi,

Muftuler, & Hickok, 2012), the present work highlights the signifi-

cance of parieto-temporal cortical area Spt (Hickok et al., 2003) and of

its subjacent subcortical connections for auditory-motor integration

F IGURE 5 PLS model selection. (1) Three connectomic PLS models were evaluated by applying progressively higher feature selection
thresholds on the 16 candidate features: a model containing the complete set of 16 features (dark gray), a model containing the top 10 features
(orange), and a model containing the top two features (red). (2) The three models were trained on the training set (n = 50) (2a–c) and their
performances were evaluated on the held out test set (n = 21) using correlations computed between fitted and actual repetition scores for each
respective model (3a–c). (4) On the basis of its predictive performance on the test set (R = 0.45, p = .02), the connectomic PLS model containing
the top 10 features was chosen as the optimal model (4a). The actual versus fitted scores of the optimal model are plotted with respect to the
aphasia subtypes present in the test set (4b)
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(Figure 3c). This claim was justified by the feature selection procedure,

as nearly 70% of the candidate features had terminations in either

superior temporal or supramarginal nodes (Figure 3). Furthermore,

when fitting the PLS model using the optimal 10 features across the

entire dataset (i.e., on the combined training and test set), the feature

with the strongest VIP and loading coefficient was a short-range

connection within the supramarginal gyrus (G_Supramarginal-

4$G_SupraMarginal-2) which precisely overlaps with area Spt

(Figure 5, Table 2) (Isenberg et al., 2012).

One of the distinct feature clusters sharing strongly correlated

connectivity patterns was localized to the inferior parietal lobule

(Figure 4, left), with connections spanning the intraparietal sulcus and

TABLE 2 PLS component
coefficients and feature statistics

Structural connection Loadings VIP Mean (SD) Range

G_Supramarginal-4$G_SupraMarginal-2 0.35 1.1 2.12 (3.28) 13.22

G_Temporal_Sup-4$S_Precentral-6 0.34 1.09 0.01 (0.03) 0.15

G_Temporal_Sup-4$S_Precentral-3 0.33 1.05 0.01 (0.03) 0.14

S_Intraparietal-3$S_Intraparietal-2 0.32 1.02 18.89 (15.04) 73.28

G_Temporal_Sup-4$S_Precentral-2 0.32 1 0.02 (0.04) 0.23

S_Sup_Temporal-4$S_Precentral-6 0.31 0.96 0.02 (0.05) 0.26

G_Rolandic_Oper-1$G_Supramarginal-1 0.3 0.96 1.12 (2.38) 9.04

G_SupraMarginal-5$G_SupraMarginal-2 0.3 0.94 1.5 (3.03) 17.96

S_Intraparietal-3$S_Intraparietal-1 0.3 0.94 9.01 (9.41) 38.73

S_Intraparietal-2$G_Angular-1 0.29 0.9 5.35 (6.55) 28.08

Note: PLS component coefficients and feature statistics. Loadings and variable importance in projection

(VIP) coefficients of the principal component resulting from the partial least squares (PLS) model fit on

the optimal 10 features across the entire dataset (n = 71). Means, standard deviations, and ranges are

also reported for each individual feature.

(a)

(b)

F IGURE 6 Connectome-Symptom Mapping. Using the same descending order shown and described in Figure 2, barplots of the normalized
probabilistic streamline counts are shown across the entire group (N = 71) for each of the optimal 10 features identified. Both the behavioral
patterns and structural connectivity measures show similar descending patterns across the aphasia taxonomies
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angular gyrus. Indeed, several such connections of the intraparietal

sulcus persisted when selecting the predictive model that generalized

to the unseen test set (Figures 5 and 6). Interestingly, Geschwind had

originally speculated that association cortex of the angular gyrus was

likely involved in Wernicke's aphasia—later called Geschwind's terri-

tory (Catani & Mesulam, 2008)—and among the aphasia subtypes

enrolled in this study, Wernicke's aphasics showed the poorest per-

forming repetition scores (Figure 2). This group concomitantly showed

the greatest disruption in the parieto-temporal pathways; which

included several short-range connections in this territory (Figures 5

and 6). Similarly, Buchsbaum and colleagues have implicated the

intraparietal sulcus (IPS) in sensorimotor integration by demonstrating

fMRI activations of this area during both encoding and rehearsal

phases of a verbal working memory task requiring participants to

covertly rehearse aurally presented stimuli for subsequent recall

(Buchsbaum et al., 2011). Their analysis showed relatively bilateral IPS

fMRI activations when compared to the lateralized activations

observed in area Spt. This might explain why the supramarginal fea-

tures identified here showed relatively stronger PLS coefficients when

fitting the optimal model (Figure 5) on the entire dataset (Table 2),

such that the dorsal stream circuit appears to rely more on left-

lateralized parieto-temporal elements as opposed to the less

lateralized parietal areas.

In addition to the short-range features identified in the parietal

and temporal cortex, the present work stresses the importance of sev-

eral long-range connections originating from these areas and termi-

nating in frontal premotor cortex (Figures 3 and 4). Notably, features

interconnecting the essential posterior nodes of the superior temporal

and supramarginal regions appeared to connect to ventral premotor

as well as dorsal premotor areas of the frontal lobe (Figure 5, panel

4a). This finding points to a role of the superior longitudinal fasciculus,

particularly of its sub-branches (i.e., AF and SLFIII), as being involved

in the dorsal repetition circuit. Perisylvian cluster 1 (Figure 4, left) con-

tained connections between superior temporal and pars triangularis of

the inferior frontal gyrus which precisely mirrors the trajectory of the

arcuate fasciculus (Catani, Jones, & Ffytche, 2005). Perisylvian cluster

3 contained rolandic white matter interconnecting the supramarginal

gyrus with the ventral premotor cortex (vPMC), which similarly

approximates the third branch of the SLF (SLFIII) (Forkel et al., 2014).

Interestingly, when the sixteen features were refined to retain the

subset most predictive of performance in the test set, the SLFIII fea-

ture (G_Rolandic_Oper-1$G_Supramarginal-1) was retained but the

arcuate counterparts were not (Figure 5, panel 4a). This attributes a

relatively stronger role for frontal pathways with posterior termina-

tions directed to the supramarginal gyrus, for reasons discussed in the

preceding paragraph. The SLFIII is therefore an essential neuroana-

tomical substrate for the dorsal language stream likely due to its role

in enabling the conversion of auditory input stored in verbal working

memory areas of the SMG into phonological and articulatory forms

within the ventral premotor cortex (Duffau, 2015 for a review).

Another set of features highlighted by the present work are the

contributions of a potentially novel set of fronto-temporal connec-

tions terminating in the dorsal premotor cortex (Figures 3–6). Across

the feature selection iterations subjected to the bootstrap resampling

procedure (Figure 3a), the feature with the strongest projection coef-

ficient and selection frequency was a connection between the supe-

rior temporal gyrus and the dorsal precentral sulcus

(G_Temporal_Sup-4$S_Precentral-6). Moreover, three out of the top

five candidate features terminated in this dorsal precentral region

(Figure 3a) and among the ten features selected in the optimal predic-

tive model, 40 % showed similar connectivity partners (Figure 5, panel

a). Although the connectivity values of this pathway were relatively

sparse in comparison to the other features identified (Figure 6), this

connection set appears to heavily augment predictive power when

considered in combination with adjacent short-range connections.

Indeed, of the three nested models evaluated on the test set, a model

containing just two features (Figure 5, model 3) produced significantly

correlated predictions with the test set data. This two-feature model

consisted of a short supramarginal connection and a long dorsal

premotor connection.

To our knowledge, this is the first large-scale study to implicate a

structural connection to dorsal premotor cortex as being involved in

repetition of speech. Classical neurobiological models of language

make no mention of an area yet contemporary models appear to sug-

gest a role for a dorsal premotor area in laryngeal motor control

(Dichter, Breshears, Leonard, & Chang, 2018; Hickok, 2017). The dual

stream theoretical model proposed by Hickok and Poeppel (2007)

noted a close coupling between sensory-motor area Spt and a dorsal

premotor area involved in articulation (Hickok & Poeppel, 2007).

Recently, functional imaging studies have localized an area in close

proximity to this region—area 55b—which appears to activate during

language tasks (Glasser et al., 2016). Similarly, recent direct electrical

stimulation studies have shown that stimulation of this dorsal

premotor region causes speech disturbances intraoperatively (Hazem

et al., 2021; Rech et al., 2019) and this area is both functionally and

structurally connected to the superior temporal cortex (Barbeau, Des-

coteaux, & Petrides, 2020; Rech et al., 2019). Moreover, neurosurgical

evidence suggests that tumor resection within the dorsal premotor

cortex can produce long-term speech production deficits character-

ized by apraxia and impairments with repetition (Chang et al., 2020).

These authors also demonstrated white matter connections to exist

between this dorsal frontal area and the temporal lobe via the supe-

rior longitudinal fasciculus. Indeed, a recent (anatomical study) from

Barbeau and colleagues have published evidence that a dorsal branch

of the arcuate fasciculus exists in humans, which terminates in the

posterior dorsolateral frontal region anteriorly and the superior tem-

poral cortex posteriorly (Barbeau et al., 2020)—precisely the connec-

tivity pattern identified in the present behavior-connectomic analysis.

Thus, we provide novel evidence of a structure–function relationship

between this pathway and a prominent language function.

The association between conduction aphasia and apraxia has

been shown particularly in the presence of supra-sylvian lesions

located deep to the inferior parietal lobe (IPL); specifically near the

supramarginal gyrus (Basilakos, Rorden, Bonilha, Moser, &

Fridriksson, 2015; Benson et al., 1973; Geschwind, 1965; Mendez &

Benson, 1985; Poncet, Habib, & Robillard, 1987). This association may
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potentially be mediated by connectivity between area Spt and its

communication with this dorsal premotor speech area via the 55b-Spt

pathway critical for laryngeal motor control. These data suggest that

lesions to the IPL may disrupt communication between parieto-

temporal sensory-motor cortex and dorsal premotor areas critical for

buccofacial (Benson et al., 1973) and laryngeal motor control (Hickok,

2017), as these areas are functionally (Glasser et al., 2016; Rech

et al., 2019) and structurally (Chang et al., 2020; Rech et al., 2019)

interconnected. Among the 16 features identified in this study, the

dorsal premotor-superior temporal pathways showed the strongest

correlations with the supramarginal connections (Figure 4) to the

extent that they were clustered together (Perisylvian clusters 1 and

2), further suggesting that these connections might originate from

posterior aspects of the superior temporal gyrus. Contrary to claims

made by classical theoretical models, the posterior STG (i.e., anatomi-

cal Wernicke's area) is increasingly being recognized for its role in acti-

vating phonological representations rather than in the comprehension

of speech (see Binder, 2017 for a review).

Considering the present work implicates short- and long-range

connections outside of the classical arcuate pathway, what is the

functional role of the AF in the dorsal stream? The recent literature

suggests that the AF might instead be essential for syntactic

processing (den Ouden et al., 2019; Meyer, Cunitz, Obleser, &

Friederici, 2014; Wilson et al., 2011) rather than for the sensorimotor

functions needed for the repetition of speech. Considering that it con-

nects posterior syntactic comprehension sites in the posterior middle

temporal gyrus with anterior syntactic production sites in the poste-

rior frontal cortex (i.e., in Broca's area) (Matchin & Hickok, 2020), this

characterization appears more likely than it playing the major role in

phonological aspects of speech. If the AF were indeed involved in rep-

etition, we would expect to find that damage to its anterior termina-

tion in Broca's area would emerge as a strong cortical correlate in

VLSM studies—a finding not supported by recent work (Rogalsky

et al., 2015). Parietotemporal regions superior to Wernicke's area

increasingly appear critical for auditory-verbal working memory stor-

age and rehearsal processes (Lukic et al., 2019; Rogalsky et al., 2015)

in order to maintain complex stimuli online while simultaneously inte-

grating with articulatory-phonological areas that are coupled with

laryngeal motor cortex via the Spt-55b and Spt-vPMC pathways iden-

tified here. Taken together, the literature and the present work sup-

port the notion that the posterior STG (Basilakos, Smith, Fillmore,

Fridriksson, & Fedorenko, 2018) and its underlying connections, are

involved in the sensory guidance of speech whose disruption drasti-

cally impairs both production and repetition (Figure 6).

5 | CONCLUSION

The purpose of the present study was to isolate pathways critical for

speech repetition using a data-driven feature selection algorithm

applied on the structural connectome. By evaluating this relationship

in stroke patients presenting with varying lesions and varying degrees

of impairment, this connectome-based lesion symptom mapping

approach successfully highlighted a focal set of superficial parieto-

temporal connections as being essential for the prediction of repeti-

tion performance. This finding corroborates classical and contempo-

rary models by indicating that the repetition impairments observed in

conduction aphasia might rather be characterized as a parietotemporal

disconnection syndrome impacting cortical area Spt and associated

frontal circuits as opposed to being explained as purely a disconnec-

tion of the classical arcuate fasciculus. The study also identified an

additional important circuit involving superior temporal connectivity

to a dorsal premotor site that calls for further investigation in the

future. In conclusion, machine learning analyses frameworks offer

the unique capacity to assess clinico-anatomical correlations in a theo-

retically unbiased manner, leading to novel insights into the neurobiol-

ogy of language without having to reduce the complexity of the

underlying anatomical feature space that is often characteristic of

high-dimensional neuroimaging studies.
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