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Abstract: Ferroptosis is a novel type of programmed cell death involved in many diseases’ pathological processes. Ferroptosis 
is characterized by lipid peroxidation, reactive oxygen species accumulation, and iron metabolism disorder. Newborns are 
susceptible to ferroptosis due to their special physiological state, which is prone to abnormal iron metabolism and the 
accumulation of reactive oxygen species. Recent studies have linked ferroptosis to a variety of diseases in the neonatal period 
(including hypoxic-ischemic encephalopathy, bronchopulmonary dysplasia, and necrotizing enterocolitis). Ferroptosis may 
become an effective target for the treatment of neonatal-related diseases. In this review, the ferroptosis molecular mechanism, 
metabolism characteristics of iron and reactive oxygen species in infants, the relationship between ferroptosis and common 
infant disorders, and the treatment of infant diseases targeted for ferroptosis are systematically summarized. 
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Introduction
The concept of ferroptosis was first proposed by Dr. Brent R Stockwell in 2012, which is a programmed cell death mode 
caused by iron-dependent lipid peroxidation and reactive oxygen species accumulation.1 Unlike other forms of cell death 
discovered so far, it has distinct characteristics regarding cytogenetics, biochemistry, metabolism, and morphology. A wave- 
like spreading pattern can be seen in its spread through cellular populations.2 During ferroptosis, lipid peroxides (eg, 
malondialdehyde (MDA) and 4-hydroxynonoleic acid (4-HNE)) increase, ferroptosis-related gene changes (eg, SLC7A11, 
ACSL4, TFR1 up-regulated, RGS4 down-regulated) and specific changes in cell morphology (decrease in mitochondrial 
volume, increase in mitochondrial membrane density, decrease or disappearance of mitochondrial cristae, rupture of 
mitochondrial outer membrane, despite normal nucleus size, without nuclear condensation or chromatin marginalization), 
which is reversed by ferroptosis inhibitors like ferrostatin-1.3 In various neonatal diseases, ferroptosis plays a significant role in 
the pathological process and may serve as a potential therapeutic target.4–7 In this article, we will review ferroptosis’ molecular 
mechanisms and its potential role in neonatal diseases. The relationship between ferroptosis and neonatal hypoxic-ischemic 
encephalopathy, neonatal bronchopulmonary dysplasia, and neonatal necrotizing enterocolitis was emphatically introduced.

Molecular Mechanism of Ferroptosis
Ferroptosis is a form of programmed cell death caused by iron-dependent lipid peroxidation. Lipid peroxidation, reactive 
oxygen species (ROS) accumulation, and iron metabolism imbalance are the basic and central link in the molecular 
mechanism of ferroptosis3. (Figure 1, which modified from Zhang, X.2023)8.

Iron Metabolism and Ferroptosis
Iron is an essential trace element in the human body, playing a crucial role in hematopoiesis, ATP production, and DNA 
synthesis.9 Maintaining iron homeostasis is vital, as disruptions in this balance are closely associated with ferroptosis.10 

Journal of Inflammation Research 2023:16 2661–2674                                                     2661
© 2023 Chen et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                         Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 26 March 2023
Accepted: 13 June 2023
Published: 26 June 2023

http://orcid.org/0000-0002-7896-1472
http://orcid.org/0000-0003-2345-4040
http://orcid.org/0009-0006-9764-2975
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


Excessive iron leads to lipid peroxidation and ferroptosis through the Fenton reaction or increased activity of iron- 
containing enzymes.

In newborns, breast milk and formula are the sole sources of iron.11 Lactoferrin (LF) in breast milk binds to the 
lactoferrin receptor (LFR) and is absorbed by intestinal epithelial cells through clathrin-mediated endocytosis.12–14 Iron is 

Figure 1 Mechanism of ferroptosis. PUFA became a part of the cell membrane under the action of ACSL4 and LPCAT3.Through the Fenton reaction and enzymatic 
reaction, PL-PUFA on the cell membrane undergoes a lipid peroxidation reaction to form PL-OOH. Due to the consumption of PL-PUFA and the toxic effect of peroxidation 
products, the cell membrane ruptures, eventually causing ferroptosis. Cystine enters the cytoplasm through System Xc- and rapidly transforms into cysteine to participate in 
GSH synthesis. GPX4 inhibits lipid peroxidation while reducing GSH to GSSG. Lipid peroxidation is also inhibited by FSP1 and DHODH on the cell membrane, which reduce 
CoQ10 to CoQ10H2. GCH1 can inhibit lipid peroxidation directly or indirectly. When the TF binds to the TFR on the cell membrane, it is endocytosed into the cell. Under 
the action of STEAP3 and DMT1, Fe2+ enters the cytoplasm and forms labile iron pools. Most Fe2+ is kept in ferritin. When intracellular iron is deficient, ferritin is 
transported to the lysosomes by NCOA4 to release Fe2+ through iron autophagy. Excess intracellular iron is excreted out of the cell through FPN1. When intracellular iron 
metabolism is imbalanced, the Fenton reaction and increased iron-containing enzyme activity cause ferroptosis. 
Note: Adapted from Zhang X, Ma Y, Lv G, Wang H. Ferroptosis as a therapeutic target for inflammation-related intestinal diseases. Front Pharmacol. 2023;14:1095366.8
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stored by ferritin (FTN) in the cytoplasm or exported by ferroportin-1 (FPN1).15 Transferrin (TF) transports circulating 
iron in complex form to various tissues. Moreover, in addition to iron absorption from the digestive tract, macrophages 
can phagocytize aging red blood cells and degrade Fe2+ in hemoglobin through heme oxygenase-1 (HO-1).16 

Overexpression of HO-1, leading to increased iron release, can promote ferroptosis.17

Hepcidin regulates the balance of circulating iron. It is produced by the liver in response to high iron levels in the 
body. In enterocytes and macrophages, hepcidin binds to FPN1, leading to its degradation.18 This negative regulation of 
iron levels reduces the uptake of dietary iron and the release of iron from macrophages. Enterocytes, with a short lifespan 
of 3–4 days, shed the iron that is not transported into circulation.19 The synthesis of hepcidin is influenced by factors such 
as erythropoietin, inflammation, and iron levels in the body. High iron levels or inflammation increase the release of 
hepatic hepcidin while decreasing FPN1 expression. Conversely, anemia, hypoxia, and low iron levels result in decreased 
hepcidin expression, increasing FPN1 activity and iron mobilization.20 Increased hepcidin expression can alleviate 
ferroptosis in hypoxia-reperfused rat cardiomyocytes.21

Extracellular transferrin binds to the transferrin receptor (TFR) on the cell membrane, undergoes endocytosis, and 
forms endosomes.22 Within the endosomes, a protein called six-transmembrane epithelial antigen of the prostate 3 
(STEAP3) reduces Fe3+ to Fe2+, which is then transported to the cytoplasm by the divalent metal ion transporter 1 
(DMT1).23 The TFRs are recycled back to the cell membrane. Intracellular Fe2+ is utilized in enzymatic reactions and 
heme synthesis. Cellular iron homeostasis is maintained by either pumping excess iron out of the cell membrane through 
FPN1 or storing it in ferritin. When intracellular Fe2+ levels decrease, ferritin is transported to lysosomes via nuclear 
receptor coactivator 4 (NCOA4). In the lysosomes, ferritin undergoes degradation through iron autophagy, releasing iron 
ions that are exported to the cytoplasm via DMT1 on the lysosome.24 This process helps maintain intracellular iron 
balance. TF and TFR promote ferroptosis by importing iron into cells.25 Conversely, iron export mechanisms can render 
cells resistant to ferroptosis.26 Iron autophagy also regulates ferroptosis.27,28 For example, specific knockout of NCOA4 
can inhibit ferroptosis induced by Erastin, controlled by autophagy-related genes ATG5 and ATG7.29

Iron regulatory proteins 1 and 2 (IRP1 and 2) are crucial for regulating intracellular iron levels.9 They interact with 
iron-responsive elements (IREs) in genes related to iron metabolism, controlling processes such as absorption, storage, 
utilization, and output of iron.30,31 When intracellular iron is deficient, IRP1 is detached from the iron-sulfur cluster and 
binds to IRE located at the 3 “end of the gene, increasing gene transcription of DMT1 and TFR and promoting iron 
uptake. In addition, IRP1 can bind to the ferritin gene”s IRE at its 5’end and negatively regulate FTN, thereby reducing 
iron storage. Upon intracellular iron excess, IRP1 rebinds to iron-sulfur clusters, resulting in increased FTN and 
decreased TFR and DMT1, thereby reducing iron levels. Similar to IRP1 in structure, IRP2 is degraded by ubiquitin 
upon iron accumulation and modulates gene expression to regulate iron metabolism.16 During ferroptosis, IRP plays 
a key role. The expression of IRP1 and IRP2 is increased during ferroptosis of melanoma cells, and inhibition of IRP1 
can significantly inhibit ferroptosis.32 Overexpression of IRP2 in hepatic stellate cells reduces liver fibrosis through 
ferroptosis.33

Lipid Peroxidation and Ferroptosis
Lipid peroxidation is a key step in ferroptosis.34 It occurs when lipids have one or more carbon-carbon double bonds. 
Active hydrogen atoms are located between the methylene bridges (-CH2-) on both sides of the double bond. Free 
radicals acquire hydrogen atoms from cell membranes through these bridges, leading to cell damage through free radical 
chain reactions.35 Lipid oxidation results in the accumulation of lipid peroxidation products in cells, altering cell 
membrane fluidity and permeability, ultimately causing structural and functional damage.36 Phospholipids containing 
polyunsaturated fatty acids (PUFAs) are particularly susceptible to lipid peroxidation and ferroptosis due to their multiple 
double bonds. Deuterium isotope of hydrogen, found at the bi-allylic position of PUFAs, inhibits PUFA peroxidation and 
blocks ferroptosis.37 Increasing the synthesis of monounsaturated fatty acids (MUFAs) or adding palmitoleic acid or oleic 
acid can also inhibit ferroptosis.38 MUFAs may displace PUFAs in cell membranes, inhibiting lipid peroxidation.39 

However, not all PUFAs cause lipid peroxidation.3 ROS attack phosphatidylethanolamines with specific fatty acid 
groups, making them major targets for lipid peroxidation.8
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The lipid peroxidation process that causes ferroptosis can be divided into two steps: phospholipid synthesis with 
PUFAs as substrates and peroxidation reaction. First, Lysophosphatidylcholine acyltransferase 3 (LPCAT3) integrates 
PUFA-CoA into cellular membranes after synthesis by acyl-CoA synthetase 4 (ACSL4).40 Phospholipids- 
polyunsaturated fatty acids (PL-PUFA) will participate in subsequent peroxidation reactions as peroxidation substrates. 
In the peroxidation step, either a Fenton reaction or enzymatic reaction induces lipid peroxidation.41 The Fenton reaction 
converts Fe2+ to Fe3+, generating ROS that attack PL-PUFA and cause lipid peroxidation.42 In the lipoxygenase- 
promoted lipid peroxidation pathway,43 PL-PUFA is oxidized by 15-lipoxygenase (15-LOX), which binds to phospha-
tidylethanolamine-binding protein 1 (PEP1). PUFA-PE-OOH is then produced, resulting in ferroptosis in the cells.44,45 In 
the endoplasmic reticulum, NADH-cytochrome B5 reductase (CB5R) converts electrons from nicotinamide adenine 
dinucleotide phosphate (NADPH) into superoxide (O2-) which is then used to initiate lipid peroxidation directly or 
indirectly by acquiring methylene hydrogen from PL-PUFA or by reducing ferric iron.46 Since the cells are in an 
oxidative imbalance, Lipid peroxidation will continue until PL-PUFA is exhausted. As PL-PUFA is an integral part of 
cell structure, its excessive consumption will eventually result in cell ruptures and perforations. Furthermore, major lipid 
peroxidation products (PL-OOH, MDA, 4-HNE, etc.) produced during lipid peroxidation do further damage to the cell 
membrane, resulting in membrane pores and ferroptosis.47

ROS and Ferroptosis
Lipid Peroxidation Induced by ROS
ROS, including superoxides (O2-), peroxides (H2O2), and free radicals (HO- and RO-), are products of O2 gaining 
electrons.48 These reactive oxygen species play a central role in promoting lipid peroxidation. Increased accumulation of 
ROS in cells makes them more vulnerable to ferroptosis.

Regulatory Mechanism of ROS
The body clears lipid peroxides caused by ROS through the GSH/GPX4 system and GPX4-independent regulatory 
mechanisms. Once these regulatory mechanisms are abnormal, intracellular ROS accumulation and lipid peroxidation 
will occur, leading to ferroptosis.

GSH/GPX4 Inhibits ROS 
GPX4, a selenium protein, is the primary enzyme in mammalian cells responsible for reducing PL-OOH, a lipid 
peroxide.49 It catalyzes the reduced glutathione (GSH) to the conversion of oxidized glutathione (GSSG) and reduces 
cytotoxic PL-OOH to non-toxic phospholipid alcohol (PL-OH),50 thus inhibiting ferroptosis. However, compounds like 
RSL3 and FIN56 can directly inhibit or degrade GPX4, promoting ferroptosis.3

Glutathione (GSH), a tripeptide, acts as an intracellular antioxidant and inhibits ferroptosis. It is synthesized from 
glutamic acid, glycine, and cysteine, with cystine being crucial for GSH biosynthesis.51 Cystine enters cells through the 
cystine/glutamate antiporter (system Xc-), facilitated by the proteins SLC7A11 and SLC3A2L. Inside the cell, cystine is 
rapidly reduced and then converted into GSH through enzymatic reactions.52 GSH, under the influence of GPX4, helps to 
neutralize ROS, reducing lipid peroxidation and preventing ferroptosis.53 Inhibitors like erastin and P53 target SLC7A11, 
hindering cystine uptake and suppressing GSH synthesis, ultimately leading to lipid peroxidation and ferroptosis.1,54 

N-acetylcysteine can counteract ferroptosis by promoting GSH synthesis.55

Regulation of Lipid ROS Independent of GPX4 
In addition to GSH/GPX4, three GSH/GPX4-independent signaling pathways have been identified to regulate ferroptosis: 
the FSP1-CoQ10-NADPH pathway, the DHODH-CoQ10 pathway, and the GCH1-BH4 pathway.3

By using NADPH, ferroptosis suppressor protein 1 (FSP1), which is translocated to the cell membrane, converts 
ubiquinone (also known as CoQ10) into ubiquinol (CoQ10H2). Antioxidant ubiquinol traps lipid-ROS to form ubiqui-
none, inhibiting lipid peroxidation in this process and attenuating ferroptosis.56,57 Researchers have found that inhibiting 
FSP1 can induce ferroptosis in tumor cells.34
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A flavin-dependent enzyme, dihydroorotate dehydrogenase (DHODH) is present in the mitochondrial membrane. 
DHODH can oxidize dihydro whey to whey acid and reduce CoQ10 to CoQ10H2 in the mitochondrial membrane, thus 
inhibiting lipid peroxidation and ferroptosis.58 Through mTOR signaling, DHODH promotes ferroptosis in cervical 
cancer cells.59

Tetrahydrobiopterin (BH4), synthesized from GTP catalyzed by GTP cyclohydrolase 1 (GCH1), is a lipophilic 
antioxidant with a function like CoQ10H2 to prevent lipid peroxidation.60 In addition to catalyzing the synthesis of 
BH4, GCH1 can also lead to the remodeling of the lipid membrane environment, increase CoQ10H2, and consume PL- 
PUFA.3 Thus, by overexpressing GCH1 or supplementing with BH4, ferroptosis can be reduced.61

Neonates are Susceptible to Ferroptosis
Newborns’ susceptibility to ferroptosis is due to imbalanced iron metabolism and increased ROS levels. Their delicate 
physiology and unique metabolism make them prone to this process. As a result, various neonatal diseases are closely 
linked to ferroptosis. (Figure 2, which modified from Du, X. 2022).62

Newborns are Prone to Increase Free Iron
Newborns are prone to the accumulation of non-transferrin-bound iron (NTBI) due to factors such as perinatal acidosis, 
recurrent hypoxic ischemia, and immature antioxidant system.63 Red blood cell transfusions in newborns also contribute 
to NTBI accumulation.64 In addition, newborns are at risk for NTBI through red blood cell transfusions.65 The increased 
extracellular NTBI can elevate intracellular iron levels,66,67 leading to oxidative stress and lipid peroxidation, ultimately 
resulting in ferroptosis.

Newborns are Prone to ROS Accumulation
The accumulation of ROS in newborns is due to an imbalance between oxidative stress and antioxidants. High oxidative 
stress during pregnancy, delivery, and the postnatal period exposes neonates to increased ROS production. Maternal 
conditions like preeclampsia, chronic hypertension, obesity, and infections contribute to elevated oxidative stress.68 

Maternal elevated oxidative stress also impact newborn ROS levels.69 Neonates experience a transition from intrauterine 
hypoxia to postnatal hyperoxia, leading to ROS generation.70 The body degrades ROS through enzymatic (SOD, CAT, 
GPX) and non-enzymatic antioxidants (glutathione, tocopherol, etc.).68 Newborns, especially preterm infants, have 
immature antioxidant systems and imbalanced oxidation.71 Neonatal diseases like BPD, ROP, NEC, and HIE are 

Figure 2 Neonatal disease and ferroptosis. Newborns are easily exposed to oxidative stress environments such as hypoxia, hyperoxia, infection, inflammation, acidosis, and blood 
transfusion after birth, and their antioxidant capacity and iron metabolism capacity are poor, which will lead to increased ROS and free iron, and then cause ferroptosis through lipid 
peroxidation. A variety of neonatal diseases may be caused by ferroptosis, such as hypoxic-ischemic encephalopathy, bronchopulmonary dysplasia, necrotizing enterocolitis, and 
retinopathy of prematurity. 
Note: Adapted from Du X, Dong R, Wu Y, Ni B. Physiological effects of ferroptosis on organ fibrosis. Oxid Med Cell Longev. 2022;2022:5295434.62
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associated with increased ROS levels.72 Excess ROS triggers ferroptosis via lipid peroxidation.73 Inhibiting the 
ferroptosis signaling pathway can attenuate tissue damage caused by these diseases.7,74–76

The Role of Ferroptosis in Common Neonatal Diseases
The Role of Ferroptosis in Neonatal HIE
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological injury caused by hypoxia-ischemia of brain 
tissue.77 Despite mild hypothermia, half of infants with moderate to severe HIE still die or suffer neurological sequelae.78

Oxidative stress is a key factor in neonatal hypoxic-ischemic encephalopathy (HIE) due to decreased activity of 
antioxidant enzymes in the immature brain.79 Hypoxia-ischemia and hyperoxia in newborns lead to the production of 
excessive ROS in the brain, causing lipid peroxidation. Infants with perinatal asphyxia show significantly elevated levels 
of malondialdehyde (MDA) in cord blood and blood, indicating increased oxidative stress.80 Elevated serum lipid 
peroxides in neonates can serve as a sensitive diagnostic marker for HIE.81 High concentrations of MDA in the 
cerebrospinal fluid of neonates with HIE suggest lipid peroxidation in nerve cells.82 Mild hypothermia is the main 
therapeutic approach for HIE and works by inhibiting ROS production in the nervous system.83 Hypothermia treatment 
has been shown to reduce MDA levels compared to normothermic controls.84

Due to the Fenton reaction, non-transferrin-bound iron (NTBI) generates free radicals, leading to lipid peroxidation 
and triggering ferroptosis. NTBI has been detected in significant amounts in the cerebrospinal fluid and serum of 
neonates after hypoxic-ischemic encephalopathy (HIE).82,85 The concentration of NTBI is directly related to the severity 
of brain injury and can predict long-term neurodevelopmental outcomes in infants.85 During cerebral ischemia- 
reperfusion, increased levels of ROS cause the release of iron from binding proteins and red blood cells, exacerbating 
brain damage.20,86 Iron-induced free radicals disrupt the blood-brain barrier and contribute to endothelial necrosis.87 

Intracellular iron accumulation in microglia following hypoxia contributes to the death of oligodendrocytes and axonal 
swelling.88 Iron released from heme disruption in hypoxic-ischemia-induced intracerebral hemorrhage leads to lipid 
peroxidation and ferroptosis.89 Treatment options such as deferoxamine, an iron chelator, and erythropoietin, which 
promotes iron sequestration, have shown beneficial effects in reducing brain injury after HIE.90,91 Heat shock protein 
B (HSPB1) plays a role in reducing cerebral infarction and brain ferritin levels in HIE by regulating iron metabolism, 
promoting antioxidant enzyme expression, and alleviating ferroptosis.92

The expressions of SLC7A11, GSH, and GPX4 were decreased in HIE neonatal rat brain tissues, indicating the 
activation of ferroptosis-related signaling pathways.93 Inhibition of ferroptosis through intraventricular injection of 
a ferroptosis inhibitor increased GPx4 expression and reduced MDA and iron levels in the hippocampi of HIE rats. 
The SIRT1/NRF2/GPx4 signaling pathway plays a crucial role in this process.94 TLR4 also contributes to ferroptosis in 
HIE, and the use of a TLR4 inhibitor called TAK-242 elevated SLC7A11 and GPX4 levels in hippocampal tissue, both 
in vivo and in vitro. It also reduced the expression of genes associated with ferroptosis.95 Lipocalin 2 (LCN2) was 
identified as a critical gene associated with HIE, promoting ferroptosis through the NF-κB/STAT3 pathway. LCN2 can 
serve as a biomarker for the diagnosis of HIE.96

The Role of Ferroptosis in Neonatal BPD
Bronchopulmonary dysplasia (BPD) is a common lung disorder in premature infants. Oxidative stress plays a significant 
role in its development.68,97 Premature infants have immature type II alveolar cells, leading to the accumulation of 
intracellular ROS.98 Excessive ROS damages the lung epithelium and vascular endothelium, impairing lung development 
and contributing to BPD.99 The pathogenesis of BPD involves lipid peroxidation, supporting the association with 
ferroptosis. Lipid hydrogen peroxide (LOOH) is generated during lipid peroxidation, causing damage to biological 
macromolecules. Infants with BPD exhibit higher levels of LOOH in their alveolar lavage fluid, likely due to ROS 
overload.100

Hyperoxia is a risk factor for bronchopulmonary dysplasia (BPD) and is commonly used to create an animal model of 
BPD.101 Ferroptosis has been observed in neonatal rats experiencing hyperoxia-induced lung injury, indicating its 
involvement in lung development impairment.102 The increased transcription and activity of P53, along with enhanced 
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acetylated P53 expression, are observed as a result of hyperoxia exposure.103 P53 inhibits SLC7A11, leading to 
decreased glutathione (GSH) synthesis and GPX4 activity, resulting in ROS accumulation and triggering ferroptosis.104

Excessive iron supplementation in infants with very low birth weight increases the risk of developing BPD.105 

Experiments on a mouse model of lung injury demonstrated the accumulation of iron ions in the lung, which can induce 
ferroptosis.106 Inflammation also plays a role in BPD, and the activation of the KEAP1-NRF2/HO-1 pathway by 
panaxydol inhibits ferroptosis, thereby reducing LPS-induced pneumonitis.107,108

In summary, hyperoxia, oxidative stress, inflammation, and excessive iron are key factors contributing to the 
development of BPD, and their association with ferroptosis suggests a significant role of ferroptosis in BPD pathology. 
However, more research is required to elucidate the specific regulatory mechanisms underlying ferroptosis in BPD.

The Role of Ferroptosis in Neonatal NEC
Neonatal necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder. Factors such as oxidative stress, ischemia- 
reperfusion, and inflammation play a role in its development. Ferroptosis is closely associated with the pathogenesis of 
NEC and may contribute to its progression.

First, NEC is characterized by intestinal ischemia.109 Ischemia-reperfusion generates ROS and free iron, worsening 
intestinal injury.110 Elevated free iron levels enhance the Fenton response, leading to the production of highly toxic free 
radicals.111 Free iron and ROS cause ferroptosis through lipid peroxidation, contributing to tissue damage in NEC.

Second, NEC development is linked to lipid peroxidation damage. NEC-affected infants had higher total oxidative 
state and oxidative stress index, which correlated with NEC severity.112 NEC infants’ cord blood had higher levels of 
NTBI and ROS compared to non-NEC infants.113 High levels of NTBI and ROS lead to tissue damage through lipid 
peroxidation. Lipid peroxidation products in cord blood strongly correlate with NEC.113 Preterm infants with NEC had 
increased intestinal MDA.114,115 Animals with NEC exhibited decreased levels of GPX, SOD, and GSH in intestinal 
tissues, along with significantly elevated MDA levels.116 Recent research discovered that Lactobacillus can alleviate 
NEC by reducing lipid peroxidation in enterocytes.117

Third, Ferroptosis is linked to TLR4, which is important in NEC. The TLR4 signaling pathway plays a role in 
embryonic crypt development and intestinal epithelial cell differentiation.118 Persistent TLR4 pathway hyperactivation in 
intestinal epithelial cells after birth is associated with gut damage in NEC. Inhibiting TLR4 signaling effectively reduces 
the occurrence and severity of NEC.119 LTR4 is also closely related to ferroptosis. Inhibition of TLR4 attenuates 
ferroptosis in hippocampal neurons during hypoxic-ischemic injury.95 TLR4 promotes ferroptosis in heart failure 
cardiomyocytes.120 During renal ischemia-reperfusion injury, TLR4/NOX4 induce oxidative stress and ferroptosis.121

Fourth, excessive inflammation is a major pathological change in NEC. In NEC intestinal tissue, immune cells release 
inflammatory factors like IL-6 and TNF-α. IL-6 promotes lipid peroxidation and ferroptosis in epithelial cells by 
increasing ferrous ions.122 TNF-α promotes ferroptosis by increasing the production of acyl-CoA synthetase long- 
chain family member 1 (ACSL1), which enhances the production of polyunsaturated lipids and subsequent lipid 
peroxidation in human endothelial cells.123 IFN-γ downregulates SLC3A2 and SLC7A11, causing lipid peroxidation 
and ferroptosis.124 Ferroptosis of intestinal epithelial cells further triggers an inflammatory response by releasing cellular 
contents. For instance, the lipid peroxidation product 4-HNE activates the NF-κB pathway, promoting inflammation.125 

Release of HMGB1, a protein found in ferroptosis cells, also contributes to NEC-related inflammation by activating the 
TLR4-mediated NF-κB signaling pathway.126,127 The evidence suggests a close association between inflammation and 
ferroptosis in NEC.8

In addition, In an NEC model created by anemia-blood transfusion, elevated levels of free iron and MDA were 
observed in the intestines, along with mitochondrial dysfunction. Ferroptosis inhibitors were found to alleviate intestinal 
injury in NEC.6 The analysis of genetic data in premature infants with NEC revealed that specific genes related to NEC 
were significantly enriched in the ferroptosis signaling pathway.128 While there is evidence linking NEC to ferroptosis, 
the precise mechanisms by which ferroptosis contributes to NEC and how it can be regulated to impact NEC are not fully 
understood.
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The Role of Ferroptosis in Other Common Neonatal Diseases
Premature infants are susceptible to retinal diseases such as retinopathy of prematurity (ROP), which can result in 
blindness. The mouse model of oxygen-induced retinopathy showed lipid peroxidation and ferroptosis markers in the 
mouse retina were found to increase significantly, suggesting that ferroptosis is critical in the pathological process of 
ROP, and ferroptosis inhibitors can alleviate the process of ROP middle retinal vascular occlusion and pathological 
neovascularization.5,129 Intracranial hemorrhage is a common complication in neonates, especially premature infants. In 
the intracranial hemorrhage model of neonatal rats, ferroptosis-related genes were detected higher 72 hours after 
hemorrhage, implicating ferroptosis in hemorrhage-induced brain injury pathology.130 Lipocalin 2 (LCN2) inhibition 
attenuated inflammation and ferroptosis in neonate acute respiratory distress syndrome (ARDS) through MAPK/ERK 
signaling.131 In addition, ferroptosis may play a critical role in the neuronal damage caused by hemolytic hyperbilir-
ubinemia in the brain.132

New Therapeutic Targets for Neonatal Diseases Based on Ferroptosis
In neonatal diseases, ferroptosis plays an important role, so targeting ferroptosis may be a promising treatment strategy 
(Table 1). For example, Vitamin D is an important antioxidant, which can increase the production of NRF2 and HO-1, 
lead to the increase of GPX4, SOD and GSH, reduce MDA and ROS, and reduce ferroptosis in brain injury.133 

Table 1 Targeted Drugs for Ferroptosis and Their Mechanisms in Common Diseases of Newborns

Study Disease Mechanism Dilemmas Potential Solutions for 
Therapy

Cai, Y. 2022133 HIE Increase NRF2 and HO-1 production, 

decrease ferroptosis

Rat model; Uncertainty regarding 

efficacy in the human body

Vitamin D

Zhu, K. 2022134 HIE Inhibit Ferroptosis and Neuroinflammation 

via the HMGB1/GPX4 Pathway

Rat model; Uncertainty regarding 

efficacy in the human body

Glycyrrhizin

Gou, Z. 2020135 HIE Inhibit ferroptosis by activating the Akt/ 

Nrf2/Gpx4 pathway

Rat model; Uncertainty regarding 

efficacy in the human body

Melatonin

Li, C. 202294 HIE Inhabit ferroptosis via activating the SIRT1/ 
Nrf2/GPx4 pathway

Rat model; Uncertainty regarding 
efficacy in the human body

Intraventricular injection 
Ferrostatin-1 or Resveratrol

Chou, H. 2022136 BPD Attenuates Hyperoxia-Induced Lung Injury 
by Inhibiting Ferroptosis

The specific mechanism of action 
is unclear

Cathelicidins

Lelli, J. 1993137 NEC Chelating free iron reduces ischemia- 
reperfusion injury in NEC

Rat model; Uncertainty regarding 
efficacy in the human body

Deferoxamine

Feng, YD. 2022138 NEC Inhibition of HO-1 and MAO-B activity 
suppresses ferroptosis

Rat model; Uncertainty regarding 
efficacy in the human body

Apigenin-7-O-β-D-(−6″- 
p-coumaroyl)- 

glucopyranoside

Ozdemir, 

R. 2013114

NEC Anti-inflammatory and antioxidant The specific mechanism of action 

is unclear

All-trans retinoic acid

Yazıcı, S. 2014139 NEC Inhibit peroxidation The specific mechanism of action 

is unclear

Boric acid and 

2-aminoethoxydiphenyl 

borate

Liu, CQ. 20235 ROP Inhibition of ferroptosis and pathological 

angiogenesis.

The specific mechanism of action 

is unclear; mouse model

Intravitreal injection 

Ferrostatin-1

Wang J 2022129 ROP Promoting angiogenesis by inhibiting 

ferroptosis through the xCT/GPX4 axis

Rat model; Uncertainty regarding 

efficacy in the human body

Elabela
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Intraventricular injection of ferroptosis inhibitor (Ferrostatin-1 or Resveratrol) can reduce neonatal cerebral ischemia- 
reperfusion injury.94 Glycyrrhizin attenuated RSL3-induced ferroptosis and inflammatory response in neonatal rat brain 
tissue by inhibiting HMGB1.134 Melatonin can inhibit the process of ferroptosis in hypoxic-ischemic encephalopathy by 
activating GPX4 activity and playing a protective role in the brain.135 Hyperoxia-induced lung damage can be prevented 
by cathelicidins, which have both antioxidant and ferroptosis inhibition properties.136 Deferoxamine would be able to 
attenuate intestinal damage in neonatal necrotizing enterocolitis by binding excess free iron in neonates.137 Flavonoid 
glycosides are potent antioxidants that attenuate endothelial ROS production and free iron accumulation by specifically 
binding to HO-1 and MAO-B, thereby inhibiting ferroptosis in the ischemia-reperfused intestine in a dose-dependent 
manner.138 All-trans retinoic acid treatment decreased intestinal MDA, increased SOD and GPX activity, and attenuated 
NEC by inhibiting lipid peroxidation.114 Boric acid and 2-aminoethoxydiphenyl borate can reduce NEC by increasing 
GSH expression and inhibiting lipid peroxidation.139 Further clinical studies are required to confirm the safety and 
effectiveness of novel medications targeting ferroptosis for the treatment of newborn illnesses.

Conclusion
Ferroptosis is a newly discovered form of programmed cell death triggered by free iron and ROS, leading to tissue 
damage through lipid peroxidation. Newborns, due to their unique physiological state and metabolic characteristics, are 
prone to accumulate free iron and ROS, resulting in organ damage via ferroptosis. Studies have shown that ferroptosis is 
involved in the development of neonatal diseases such as hypoxic-ischemic encephalopathy, bronchopulmonary dyspla-
sia, and necrotizing enterocolitis, and inhibiting ferroptosis can alleviate these conditions. Consequently, ferroptosis has 
emerged as a potential therapeutic target for newborn disorders. However, most research conducted so far has been 
limited to animal and cell studies, necessitating further clinical investigations to validate these findings.
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