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Abstract: Background: A deregulated immune system has been implicated in the pathogenesis of
post-cardiac arrest syndrome (PCAS). A soluble form of programmed cell death-1 (PD-1) ligand
(sPD-L1) has been found at increased levels in cancer and sustained inflammation, thereby deregulat-
ing immune functions. Here, we aim to study the possible involvement of sPD-L1 in PCAS. Methods:
Thirty out-of-hospital cardiac arrest (OHCA) patients consecutively admitted to the ER of Mie
University Hospital were prospectively enrolled. Plasma concentrations of sPD-L1 were measured by
an enzyme-linked immunosorbent assay in blood samples of all 30 OHCA patients obtained during
cardiopulmonary resuscitation (CPR). In 13 patients who achieved return-of-spontaneous-circulation
(ROSC), sPD-L1 levels were also measured daily in the ICU. Results: The plasma concentrations of
sPD-L1 in OHCA were significantly increased; in fact, to levels as high as those observed in sepsis.
sPD-L1 levels during CPR correlated with reduced peripheral lymphocyte counts and increased
C-reactive protein levels. Of 13 ROSC patients, 7 cases survived in the ICU for more than 4 days.
A longitudinal analysis of sPD-L1 levels in the 7 ROSC cases revealed that sPD-L1 levels occurred in
parallel with organ failure. Conclusions: This study suggests that ischemia- reperfusion during CPR
may aberrantly activate immune and endothelial cells to release sPD-L1 into circulation, which may
play a role in the pathogenesis of immune exhaustion and organ failures associated with PCAS.

Keywords: post-cardiac arrest syndrome; immunosuppression; inflammation; PD-1; PD-L1; lymphocytes

1. Introduction

Post-cardiac arrest syndrome (PCAS), which occurs in resuscitated patients under-
going cardiac arrest, is characterized by four key pathological manifestations includ-
ing post-cardiac arrest brain injury, post-cardiac arrest myocardial dysfunction, systemic
ischemia-reperfusion, and persistent precipitating pathophysiology [1–3]. Successful man-
agement of PCAS constitutes a vital component of post-cardiac arrest care, critically affect-
ing the prognosis of resuscitated out-of-hospital cardiac arrest (OHCA) patients [4]. An
ischemia-reperfusion injury that systemically occurs in PCAS induces a deregulated im-
mune response and sustained inflammation, resembling the pathophysiology of sepsis [5].
Immune-suppression represents an important pathology involved not only in sepsis, but
also in PCAS, thereby increasing the risk of such infections as pneumonia during post-
cardiac arrest care [6]. Leukocytes isolated from PCAS patients have been shown to exhibit
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reduced TNF, IL-6, and IL-10 production [7], as well as reduced expression of leukocyte
antigen DR [8]. The plasma samples of PCAS patients have been shown to contain immuno-
suppressive activities, thereby inhibiting cytokine production of circulating leukocytes [5].
However, the underlying immunosuppressive mechanisms associated with PCAS remain
to be elucidated.

Programmed cell death-1 (PD-1) is a major check-point regulator molecule expressed
on T-lymphocytes and other immune cells [9]. Upon binding of PD-1 ligand 1 (PD-L1), PD-1
transduces intracellular signaling to suppress T-lymphocyte effector functions, thereby
inducing immune exhaustion [10]. PD-1/PD-L1-mediated immune exhaustion has been
implicated in the pathogenesis of the types of immune evasion exhibited by cancers.
This has led to the development of several cancer immune therapies aimed at inhibiting
PD-1/PD-L1 interactions and reversing immune suppression [11]. PD-1/PD-L1 interac-
tions are thought to play important roles in the immune suppression associated with
sepsis, which is characterized by a deregulated immune system that induces inflammatory
tissue injury, a condition exacerbated by impaired functionality in lymphoid and myeloid
leukocytes [12,13]. PD-L1 exists not only on the cell surface in a membrane-bound form,
but also in the plasma in a soluble form. Soluble PD-L1 (sPD-L1) retains its ability to bind
to PD-1 on immune cells, thereby inducing immune exhaustion [14]. Elevated plasma
levels of sPD-L1 have been reported in both cancer and inflammatory disorders [15–17].
One meta-analysis of cancer patients showed that higher levels of sPD-L1 are associated
with poor prognoses, suggesting that plasma sPD-L1 plays a role in suppressing anti-tumor
immunity [18]. We have recently documented elevated plasma levels of sPD-L1 in sep-
sis patients, which is associated with impaired renal, central nervous, and coagulation
systems [19]. Given the potential similarities in the pathogenesis of sepsis and PCAS, we
hypothesize that sPD-L1 would be elevated in OHCA patients and might correlate with
the severity of PCAS. To address this, we have designed a pilot study to investigate the
plasma levels of sPD-L1 in OHCA patients.

2. Materials and Methods

This study protocol was reviewed and approved by the Institutional Review Board
(IRB) of the Mie University Graduate School of Medicine (#3027). Informed consent to
participate in this study was obtained in all cases from close family members of OHCA
patients admitted to the emergency department and intensive care unit (ICU) at Mie
University Hospital Japan.

2.1. Study Design and Patient Characteristics

This study enrolled 30 consecutive OHCA patients from August 2020 to May 2021.
Upon arrival at the hospital, all patients were immediately subjected to our institute’s stan-
dard cardiopulmonary resuscitation (CPR) protocol. Specifically, patients were intubated,
manually ventilated with 100% oxygen, and treated with standard chest compressions by
ICU physicians. The end-tidal carbon dioxide (EtCO2) concentrations were monitored
to assure effective heart compression during CPR. Blood samples were drawn from the
femoral arteries as soon as possible during CPR in all cases and from the arterial lines daily
in the ICU in ROSC cases, and were used primarily for clinical purposes (e.g., laboratory
testing). Parts of the blood samples were used to measure plasma cell-free PD-L1 concen-
trations. Platelet-free plasma fractions were prepared from blood samples as previously
described [20]. Platelet free-plasma samples were kept at −80 ◦C until use. Patient clinical
and laboratory data were extracted from electronic ICU records. In ROSC cases, the out-
come from resuscitation was assessed by the cerebral performance category (CPC) score at
the time of ICU exit. Whole-body, unenhanced postmortem computed tomography was
performed for the cadavers of all patients to diagnose pneumonia.
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2.2. Soluble PD-L1 Measurements

The concentrations of sPD-L1 in the plasma samples were measured using enzyme-
linked immunosorbent assay kits (Abcam, Japan, Cat#ab214565) according to the manu-
facturer’s instructions with known concentrations of human recombinant sPD-L1 as an
internal standard [19]. Each sample was analyzed in duplicate. The plasma levels of sPD-L1
in OHCA were compared with those of healthy volunteers and sepsis patients measured
by exactly the same method in our previous report [19].

2.3. Statistical Analyses

Statistical analyses were performed using SPSS software v.25.0 (IBM Corp, Armonk,
NY, USA). The results are presented as a median ± interquartile range, unless otherwise
noted. Kruskal–Wallis tests were used to compare three or more groups. Mann–Whitney
tests were used for two-group comparisons. To compare the correlations, Spearman’s
rank correlation was calculated between each data set. A p-value < 0.05 was considered
statistically significant.

3. Results
3.1. Plasma PD-L1 Levels in OHCA Patients Were as High as Those in Sepsis Patients

The thirty OHCA patients enrolled in this study included 12 females and 18 males
who ranged from 48 to 92 years old (75.4 ± 14.2) (Table S1). The causes of OHCA in-
cluded pneumonia (8 cases), acute myocardial infarction (8 cases), thoracic aortic dissection
(4 cases), chronic heart failure (4 cases), suicide by hanging (2 cases), myocarditis (1 case),
subarachnoid hemorrhage (1 case), and hyperkalemia from chronic renal failure (1 case)
and asphyxia (1 case) (Table 1). Twenty-six were non-shockable OHCA. Although, return
of spontaneous circulation (ROSC) occurred in 13 cases, of whom 7 survived in the ICU for
more than 4 days.

Table 1. Demographic characteristics of OHCA patients.

Patient Cause of
OHCA Age Gender UMC sPDL1

(pg/mL)
EMS 1

(mins)
Hospital 2

(mins)
Bystander

CPR Rhythms 3 ROSC 4 CPC
Scale

1 AD 87 F HT 101.5 9 27 N

2 Myocarditis 48 M HL 137.5 6 18 N + 4 4

3 Pneumonia 80 M DM 146.4 8 39 N + 5

4 SAH 63 F 108.5 12 25 + N +

5 CHF 70 M 50.3 11 27 + S

6 Pneumonia 89 M 109.7 12 38 N

7 AD 90 F HT 92.1 9 15 + N

8 CHF 82 M OMI 88.6 12 30 + N

9 AMI 92 F DM 93.4 11 30 + N + 5

10 Hanging 87 F RA 98.9 7 20 N

11 AD 90 F AF, TAA 91.0 8 31 N

12 AD 62 M DM, CKD 113.6 9 22 + N

13 Hyperkalemia 65 F SLE, CKD, HT 151.3 12 23 + N

14 Pneumonia 75 F CI, OMI 162.8 9 31 N

15 AMI 91 F DM, HT 87.0 17 29 N + 4 5

16 Pneumonia 85 M HT 346.0 6 19 N

17 AMI 83 M HT, OMI 118.3 9 26 + N + 5

18 Pneumonia 82 M DM 143.3 5 20 + N + 5

19 CHF 78 M 239.3 7 29 N

20 AMI 89 F 20.7 8 14 N
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Table 1. Cont.

Patient Cause of
OHCA Age Gender UMC sPDL1

(pg/mL)
EMS 1

(mins)
Hospital 2

(mins)
Bystander

CPR Rhythms 3 ROSC 4 CPC
Scale

21 Pneumonia 76 F 49.1 17 41 N

22 Hanging 50 M Depression 190.1 6 30 + N + 4 5

23 Pneumonia 86 F 100.1 11 29 N

24 Asphyxia 88 M 27.4 11 21 + N

25 Pneumonia 86 M DM, HT, CKD 293.8 9 27 N + 5

26 AMI 52 M DM, HT, AF 91.6 10 28 + S + 4 1

27 AMI 52 M 55.3 6 21 N

28 AMI 69 M CI 33.9 6 29 + S + 4 1

29 AMI 58 M CHF 74.8 8 15 S + 4 3

30 CHF 58 M HL, OMI, AF 43.6 11 28 + N + 4 2

OHCA: out-of-hospital cardiac arrest, sPD-L1: soluble PD-L1, EMS: emergency medical services, CPR: cardio pulmonary resuscitation,
ROSC: return of spontaneous circulation, ICU: intensive care unit. AD: aortic dissection, SAH: subarachnoid hemorrhage, CHF: congestive
heart failure, AMI: acute myocardial infarction, UMC: underlying medical conditions, CPC scale: cerebral performance category scale, HT:
hypertension, HL: hyperlipidemia, DM: diabetes mellitus, OMI: old myocardial infarction, RA: rheumatoid arthritis, AF: atrial fibrillation,
TAA: thoracic aortic aneurysm, CKD: chronic kidney disease, SLE: systemic lupus erythematosus, CI: cerebral infarction. All patients were
transported to emergency department with ongoing CPR. 1 EMS arrival time (defined as the interval from 1-1-9 call receipt to EMS arrival);
2 time from EMS arrival at scene to EMS arrival at hospital; 3 N, non-shockable; S, shockable; 4 stayed in the ICU for more than 4 days.

We have studied the plasma levels of sPD-L1 as early as possible during CPR before
ROSC, in which chest compressions partially restored circulation, potentially triggering
ischemia-reperfusion injury [21]. We have shown that the plasma levels of sPD-L1 in
OHCA during CPR were increased (Figure 1). Compared with the previous results that we
reported using the exactly same methods [19], the PD-L1 concentrations in OHCA were
significantly higher than those of healthy volunteers (Figure 1) and were as high as those of
the sepsis patients measured by the exactly same method in our previous report (Figure 1).

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 4 of 12 
 

 

20 AMI 89 F  20.7  8 14  N   
21 Pneumonia 76 F  49.1  17 41  N   
22 Hanging 50 M Depression 190.1  6 30 + N + 4 5 
23 Pneumonia 86 F  100.1  11 29  N   
24 Asphyxia 88 M  27.4  11 21 + N   
25 Pneumonia 86 M DM, HT, CKD 293.8  9 27  N + 5 
26 AMI 52 M DM, HT, AF 91.6  10 28 + S + 4 1 
27 AMI 52 M  55.3  6 21  N   
28 AMI 69 M CI 33.9  6 29 + S + 4 1 
29 AMI 58 M CHF 74.8  8 15  S + 4 3 
30 CHF 58 M HL, OMI, AF 43.6  11 28 + N + 4 2 

OHCA: out-of-hospital cardiac arrest, sPD-L1: soluble PD-L1, EMS: emergency medical services, CPR: cardio pulmonary 
resuscitation, ROSC: return of spontaneous circulation, ICU: intensive care unit. AD: aortic dissection, SAH: subarachnoid 
hemorrhage, CHF: congestive heart failure, AMI: acute myocardial infarction, UMC: underlying medical conditions, CPC 
scale: cerebral performance category scale, HT: hypertension, HL: hyperlipidemia, DM: diabetes mellitus, OMI: old myo-
cardial infarction, RA: rheumatoid arthritis, AF: atrial fibrillation, TAA: thoracic aortic aneurysm, CKD: chronic kidney 
disease, SLE: systemic lupus erythematosus, CI: cerebral infarction. All patients were transported to emergency depart-
ment with ongoing CPR. 1 EMS arrival time (defined as the interval from 1-1-9 call receipt to EMS arrival); 2 time from 
EMS arrival at scene to EMS arrival at hospital; 3 N, non-shockable; S, shockable; 4 stayed in the ICU for more than 4 days. 

We have studied the plasma levels of sPD-L1 as early as possible during CPR before 
ROSC, in which chest compressions partially restored circulation, potentially triggering 
ischemia-reperfusion injury [21]. We have shown that the plasma levels of sPD-L1 in 
OHCA during CPR were increased (Figure 1). Compared with the previous results that 
we reported using the exactly same methods [19], the PD-L1 concentrations in OHCA 
were significantly higher than those of healthy volunteers (Figure 1) and were as high as 
those of the sepsis patients measured by the exactly same method in our previous report 
(Figure 1). 

 
Figure 1. Comparisons of plasma sPD-L1 levels in OHCA, sepsis, systemic inflammatory response 
syndrome (SIRS), and healthy volunteers. The data in OHCA patients (black dots) were obtained in 
this study. For comparison, our previously reported data (gray dots) of sepsis, SIRS, and healthy 
volunteers measured by exactly the same method are shown. 

A sub-group analysis has shown that the presence of pneumonia was associated with 
increased sPD-L1 levels in OHCA during CPR (Figure 2A). Nevertheless, the sPD-L1 lev-
els in the OHCA sub-group without pneumonia remained higher than those in healthy 

C o n tro l
(h e a lh y

v o lu n te e rs )

S IR S  
(w ith o u t 
s e p s is )

S e p s is O H C A
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

sP
D

-L
1 

(p
g/

m
l)

P=0.807

P<0.01

P<0.01

P<0.01

P<0.01

P=1.0

Figure 1. Comparisons of plasma sPD-L1 levels in OHCA, sepsis, systemic inflammatory response
syndrome (SIRS), and healthy volunteers. The data in OHCA patients (black dots) were obtained
in this study. For comparison, our previously reported data (gray dots) of sepsis, SIRS, and healthy
volunteers measured by exactly the same method are shown.

A sub-group analysis has shown that the presence of pneumonia was associated
with increased sPD-L1 levels in OHCA during CPR (Figure 2A). Nevertheless, the sPD-L1
levels in the OHCA sub-group without pneumonia remained higher than those in healthy
volunteers and SIRS without sepsis (Figure S1). Application of bystander CPR might
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reduce the duration of whole-body ischemia, thereby possibly mitigating reperfusion
injury. However, bystander CPR did not affect sPD-L1 levels in OHCA during CPR
(Figure 2B). The sPD-L1 levels in OHCA during CPR did not correlate with the subsequent
occurrences of ROSC (Figure 2C).
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Figure 2. Subgroup analyses comparing plasma sPD-L1 levels in OHCA patients with or without pneumonia (A); OHCA
patients who were treated with bystander CPR or not (B); and OHCA patients who subsequently underwent ROSC or
not (C). Each black dot denotes individual patient’s data.

3.2. Correlations of Plasma sPD-L1 Levels with Clinical Parameters in OHCA Patients

While investigating how sPD-L1 levels affected the clinical laboratory test results
sampled during CPR, we found that they correlated with increased blood urea nitrogen
(BUN) and creatinine (Cre) and decreased estimated glomerular filtration rate (eGFR)
values (Table 2, Figure 3). In addition, sPD-L1 levels correlated with reduced lymphocyte
numbers and increased C-reactive protein levels (Table 2).

Table 2. Correlations of soluble PD-L1 with laboratory and clinical parameters in OHCA patients.

1 R Values Correlated with sPD-L1

Total protein −0.147

Albumin −0.199

Blood urea nitrogen 0.545 *

Creatinine 0.590 *

Estimated glomerular filtration rate −0.569 *

Na 0.190

K 0.172

Cl 0.141

Aspartate transaminase 0.186

Alanine transaminase 0.062

Total bilirubin 0.147

C-reactive protein 0.427 *

White blood cell counts −0.236

Red blood cell counts −0.221

Haemoglobin −0.101

Haematocrit −0.123

Neutrophil −0.166

Lymphocyte −0.369 *

Monocyte −0.258
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Table 2. Cont.

Platelet 0.137

Activated partial thromboplastin time −0.102

Prothrombin time −0.015

Prothrombin time (%) 0.012

Prothrombin time-international normalized
ratio −0.022

Fibrinogen 0.098

D-dimer 0.058

pH 0.049

Partial pressure of arterial oxygen 0.171

Partial pressure of arterial carbon dioxide −0.152

HCO3
− 0.015

Lactate 0.156

Troponin I 0.069
2 EMS arrival time −0.278

3 EMS-to-hospital time 0.072
1 Levels of correlations (i.e., R values) are shown for each pair. Values in bold indicate significant difference
(* p < 0.05). 2 EMS arrival time (defined as the interval from 1-1-9 call receipt to EMS arrival). 3 Time from EMS
arrival at scene to EMS arrival at hospital.
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3.3. Longitudinal Changes of sPD-L1 Levels in ROSC Cases

To examine the longitudinal changes of sPD-L1 levels in PCAS, we studied 7 ROSC
patients who survived for more than 4 days in the ICU (Figure 4) and, thereby, sought to
correlate the sPD-L1 levels with the severity of organ failures and the outcome. In these
cases, we found that sPD-L1 levels remained higher than normal, and appeared to correlate
with the severity of organ failures as represented by the SOFA scores (Figure 4). The CPC
score was used to assess the outcome of resuscitation. In the cases presenting high CPC
scores [22] at the time of ICU discharge, sPD-L1 levels remained exceedingly high as did
SOFA scores (Figure 4A–C). By contrast, in other cases presenting low to moderate CPC
scores at the time of ICU discharge, sPD-L1 levels gradually reduced, as did SOFA scores
(Figure 4E–G).
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Figure 4. Longitudinal changes of sPD-L1 levels in ROSC cases. sPD-L1 levels (solid lines) and
SOFA scores (dotted lines) are shown. The cerebral performance category (CPC) scores at the time
of ICU discharge are shown. Seven ROSC cases (A–G) who stayed in the ICU for more than 4 days
are presented.



J. Clin. Med. 2021, 10, 4188 8 of 12

4. Discussion

In this pilot study involving 30 OHCA patients, we observed significantly elevated
levels of plasma sPD-L1 during CPR. The sPD-L1 concentrations in OHCA were as high
as those of sepsis [19], thereby supporting our hypothesis that the PD-1/PD-L1 signaling
pathway might be involved in the pathogenesis of both PCAS and sepsis [12]. The increased
sPD-L1 levels are thought to result from ischemia-reperfusion, because, even before ROSC,
circulatory support by CPR with chest compressions partially restored tissue perfusion,
thereby activating the mechanisms that lead to ischemia-reperfusion injury [21]. Infections
such as pneumonia [23] and underlying medical conditions present in the current OHCA
cohort (Table 1) such as diabetes mellitus [17], rheumatoid arthritis [24], and systemic lupus
erythematosus [25] have been shown to associate with a modest increase in the plasma
sPD-L1 levels. Elevated sPD-L1 levels were found in all OHCA cases regardless of their
underlying medical conditions, thereby supporting the impact of ischemia-reperfusion
injury during CPR to cause a significant increase in sPD-L1 in the plasma. However, it is
possible that pneumonia and some underlying medical conditions could contribute to the
increased sPD-L1 levels seen in this study. Further investigations are needed to confirm
these suspicions.

sPD-L1 levels during CPR were indistinguishably elevated in both ROSC (+) and
ROSC (−) patients. To further study how sPD-L1 levels unfold during PCAS, we examined
7 ROSC patients treated in the ICU for more than 4 days. In all cases, sPD-L1 levels
remained high, albeit changing in proportion to the SOFA scores. This preliminary finding
needs to be further substantiated in future investigations to support our contention that
sPD-L1 may be included as a biomarker candidate to predict the severity of organ failures
in PCAS. Of note, in sepsis patients, sPD-L1 levels have been shown to correlate with SOFA
scores, as well as with specific laboratory and clinical parameters of the impaired renal,
coagulation, and central nervous systems [19].

PD-L1 is expressed not only in leukocytes such as macrophages and monocytes, but
also in non-leukocytic cells such as endothelial and epithelial cells [15,26]. Although the
present study did not demonstrate the upregulation of activation markers for endothelial
cells and leukocytes, previous studies have shown that ischemia-reperfusion injury in
PCAS induces aberrant endothelial [27–29] and leukocyte activation [30,31]. Thus, leuko-
cytes and endothelial cells likely release sPD-L1 in resuscitated OHCA patients. sPD-L1
is mostly produced by proteolytic cleavage of the extracellular part of membrane-bound
PD-L1, although a small proportion of sPD-L1 in the plasma may originate from alterna-
tively spliced PD-L1 mRNA lacking a transmembrane domain [15]. Several proteases such
as matrix metalloproteinase (MMP)-9 [32], MMP-13 [33], a disintegrin and metallopro-
teinase (ADAM)10 [34], and ADAM17 [35] have been shown to cleave membrane-bound
PD-L1, thereby forming sPD-L1. Notably, MMPs and ADAMs, including MMP-9 [36],
MMP-13 [37], ADAM10 [38], and ADAM17 [39], have been shown to be activated in
ischemia-reperfusion injury models. Thus, one plausible scenario is that the ischemia-
reperfusion injury that occurs during CPR activates MMPs and ADAMs, which cleave off
PD-L1 on leukocytes and endothelial cells to produce sPD-L1.

As sPD-L1 retains the ability to bind PD-1 on the cell surface, thereby transmitting
signals to dampen immune cell activation [15], increased levels of sPD-L1 have been
implicated in the perturbed anti-tumor immunity observed in cancer patients [11] and in
the immune paralysis suffered by sepsis patients [19]. Increased sPD-L1 in OHCA patients
may constitute an important component of the immunosuppressive milieu in the plasma,
as previously suggested in cases of PCAS [5]. In this way, aberrant activation of PD-1
signaling by the increased expression of sPD-L1 could give rise to unwanted immune
suppression, which could predispose patients to opportunistic infections [12]. Activation
of PD-1 signaling by PD-L1 induces not only T cell unresponsiveness, but also apoptosis of
CD4 [40] and CD8 [41] T cell subsets. PD-1 is also expressed in B cells [42] and activation-
induced apoptosis of memory B cells has been reported in critically ill patients [43]. Thus,
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studying the potential depletion of different lymphocyte subsets in OHCA would be of
great interest.

Alternatively, increased levels of sPD-L1 may have regulatory and protective prop-
erties, as the PD-1 signaling elicited by PD-L1 alleviates ischemia-reperfusion injuries to
the kidney [44] and liver [45]. However, conflicting results have been reported in ischemia-
reperfusion in the brain. PD-1 deficiencies in knockout mice worsened brain infarction in
cases of ischemia-reperfusion, supporting the protective role played by PD-1 signaling [46].
By contrast, PD-L1 deficiencies in knockout mice reduced brain infarction [47]. Thus, the
roles of PD-1 signaling, as activated by PD-L1 during ischemia-reperfusion, may vary de-
pending on the types of organs. This could partly be explained by the deregulated balance
between effector and regulatory T cells in PCAS [48], as PD-1 signaling induces opposing
effects in each [49]. Whereas PD-1 signaling in effector T-cell function suppresses inflam-
mation, the signaling in regulatory T-cells results in the inhibition of immune-suppressive
effects, thereby augmenting inflammation [49].

A potential limitation of the present study is the concern that age differences could
explain the cause of the increased sPD-L1 levels in the OHCA cohort, as the OHCA cohort
is older than the healthy volunteer cohort (Table S1). The previous study that measured
plasma sPD-L1 concentrations in healthy volunteers of different age groups reported
that the concentrations between the 31–50-year-old group and that of the 51–70-year-old
group were similar [50], thereby suggesting a modest effect, if any, of ages in the present
results. However, as age-related underlying medical conditions could also affect the sPD-L1
measurements, further investigations involving an increased number of OHCA patients
and age-matched cases with similar underlying medical conditions are needed to address
the concern. Another potential limitation is that one should be cautious in interpreting
the correlations of sPD-L1 with certain clinical laboratory test results (e.g., increased BUN,
increased Cre, and decreased lymphocyte counts) and increased C-reactive protein levels
in blood samples obtained during CPR, as such test results may simply reflect the severity
of pre-existing diseases and/or the severity of ischemia-reperfusion.

5. Conclusions

In summary, this study supports our hypothesis that elevated levels of sPD-L1 in
OHCA patients during CPR reflect systemic ischemia-reperfusion, which aberrantly in-
duces immune and endothelial cells to shed the extracellular part of PD-L1 into the circu-
lation. Our results suggest that sPD-L1 may play a role in the pathogenesis of immune
exhaustion and the multi-organ failures associated with PCAS. Thus, sPD-L1 could be
added to the list of reported biomarkers of PCAS [21,28,30,51–55]. Follow-up control
studies involving a large cohort of OHCA patients are needed to validate our hypothesis.
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