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Background: Major depressive disorder (MDD) has become a leading cause of
disability worldwide. However, the diagnosis of the disorder is dependent on clinical
experience and inventory. At present, there are no reliable biomarkers to help with
diagnosis and treatment. DNA methylation patterns may be a promising approach for
elucidating the etiology of MDD and predicting patient susceptibility. Our overarching
aim was to identify biomarkers based on DNA methylation, and then use it to propose
a methylation prediction score for MDD, which we hope will help us evaluate the risk of
breast cancer.

Methods: Methylation data from 533 samples were extracted from the Gene Expression
Omnibus (GEO) database, of which, 324 individuals were diagnosed with MDD.
Statistical difference of DNA Methylation between Promoter and Other body region
(SIMPO) score for each gene was calculated based on the DNA methylation data. Based
on SIMPO scores, we selected the top genes that showed a correlation with MDD in
random resampling, then proposed a methylation-derived Depression Index (mDI) by
combining the SIMPO of the selected genes to predict MDD. A validation analysis was
then performed using additional DNA methylation data from 194 samples extracted from
the GEO database. Furthermore, we applied the mDI to construct a prediction model
for the risk of breast cancer using stepwise regression and random forest methods.

Results: The optimal mDI was derived from 426 genes, which included 245 positive
and 181 negative correlations. It was constructed to predict MDD with high predictive
power (AUC of 0.88) in the discovery dataset. In addition, we observed moderate power
for mDI in the validation dataset with an OR of 1.79. Biological function assessment of
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the 426 genes showed that they were functionally enriched in Eph Ephrin signaling and
beta-catenin Wnt signaling pathways. The mDI was then used to construct a predictive
model for breast cancer that had an AUC ranging from 0.70 to 0.67.

Conclusion: Our results indicated that DNA methylation could help to explain the
pathogenesis of MDD and assist with its diagnosis.

Keywords: major depressive disorder, DNA methylation, prediction model, breast cancer, mDI

INTRODUCTION

Major depressive disorder (MDD) is a mental disease
characterized by pervasive and persistent low mood with
loss of pleasure, feelings of guilt, and inferiority. The lifetime
prevalence of depressive disorder among Chinese adults is 6.8%,
with 3.4% for MDD (Lu et al., 2021). MDD is a multifactor
disease with both environmental and genetic factors playing
a role. A previous epidemiological study using a large patient
cohort identified adverse life events, particularly in childhood,
that were highly associated with the onset of MDD, with its effects
persisting beyond childhood (Kessler et al., 1997). Furthermore,
spousal violence has also been identified as a risk factor for
MDD, with a twofold to threefold higher probability compared
to non-exposed women (Beydoun et al., 2012). In addition to
strong evidence of environmental factors contributing to the
disease, genetic predisposition has also been identified as a
factor of MDD. A previous meta-analysis demonstrated that the
heritability of MDD was approximately 31–42% (Sullivan et al.,
2000). This is much lower compared to other mental diseases,
such as schizophrenia, which is estimated to be approximately
70% (Sullivan et al., 2003). The interaction of gene and the
environment has drawn increasing attention. Life event such as
having a stressful life have been highly correlated with MDD and
are partly influenced by genetic factors (Kessler, 1997; Kendler
et al., 1999). In addition to life events, individuals mistreated
during childhood have a high susceptibility to develop MDD,
which in turn has been associated with genetic and epigenetic
factors (Teicher and Samson, 2013).

During the interaction between genes and environment,
epigenetic factors may play a critical role in the pathogenesis
of MDD. A previous study found that children who were
abused had a site-specific methylation at NR3C1, suggesting
the potential role of DNA methylation in the interaction of
gene-environment (McGowan et al., 2009). A study on genome-
wide cytosine methylation patterns in mice found differential
methylation following exposure to chronic social defeat stress
(CSDS) in susceptible animals (O’Toole et al., 2019). These
studies suggested that DNA methylation could be used to evaluate
and predict depression.

Recent studies have demonstrated the predictive power of
DNA methylation biomarkers in aging (Bell et al., 2019) and
cancer (Pan et al., 2018). Additionally, the role of DNA
methylation in psychiatric disorders has been demonstrated in
numerous studies. A recent study demonstrated that BDNF
DNA methylation was related to depression and could be
used as a blood biomarker for MDD (Fuchikami et al., 2011).

A study of postpartum depression demonstrated that DNA
methylation of HP1BP3 and TTC9B could be used as predictors
for postpartum depression with ∼80% accuracy (Guintivano
et al., 2014). Additionally, a recent DNA methylation study
on depression established a methylation risk score to predict
long-term depression with an area under curve (AUC) of 0.724
(Clark et al., 2020). Estimators of biological age based on
predictable age-related patterns of DNA methylation, so-called
“epigenetic clocks,” have shown promise for their ability to
capture accelerated aging in patients with depression (Protsenko
et al., 2021). The studies mentioned above all support the notion
that DNA methylation could be a promising biomarker to help
diagnose and treat depression.

The relationship between depression and risk of breast
cancer remains controversial. Numerous studies have shown
no significant relationship between depression and breast
cancer (Hahn and Petitti, 1988; Reeves et al., 2018). However,
some studies have found that patients with depression had a
higher risk of developing breast cancer. A 13-year prospective
study found that among female patients with MDD, the risk
of developing breast cancer was higher (Gallo et al., 2000;
Gross et al., 2010). Prospective study in Asia found that
the risk of developing breast cancer was 4.078 times higher
in individuals with depression compared to individuals who
were not depressed. This strongly suggested that depression
was a predictor of breast cancer risk (Yeh and Lee, 2016).
Furthermore, a meta-analysis found that depression was
highly correlated with cancer recurrence and mortality (Wang
et al., 2020). Another study demonstrated the relationship
between childhood maltreatment and breast cancer, which was
potentially due to alterations in immune-related gene expression,
particularly in the classical NF-κB-related proinflammatory
signaling pathway. Interestingly, childhood maltreatment was
a strong predictor of adult depression by interacting with
immune dysregulation (Bower et al., 2020). Overall, these
studies provide important insights into the relationship between
depression and breast cancer. A review published concluded
that the assessment of depression may affect the investigation
of the relationship between depression and breast cancer (Possel
et al., 2012), thus an objective laboratory examination may
help to elucidate the latent association between depression
and breast cancer.

In this study, we investigated the association of DNA
methylation at the gene level with depression and proposed
a methylation-derived depression index (mDI) to predict
depression. We subsequently validated the index to predict the
risk of breast cancer.
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MATERIALS AND METHODS

Data Source
DNA methylation data for depression was extracted from the
Gene Expression Omnibus (GEO) with the accession number
GSE128235. The data consisted of 324 depressed and 209 healthy
participants of European ethnicity recruited from the Max Planck
Institute of Psychiatry. Depressed individuals were diagnosed
using the Diagnostic and Statistical Manual of Mental Disorder
(DSM) IV criteria. The demographic information of this cohort
is shown in Table 1. Methylation profiles were obtained using the
Illumina HumanMethylation450 BeadChip (450K), of which the
details have been previously described (Zannas et al., 2019).

SIMPO Algorithm
A previous study demonstrated that the difference between
methylation of the gene body and promoter were significantly
associated with gene expression with a correlation coefficient of
0.67, suggesting it to be a promising predictor of gene expression
(Li et al., 2019). Based on this, we had previously proposed an
algorithm, Statistical difference of DNA Methylation between
Promoter and Other body region (SIMPO), to evaluate the DNA
methylation value at gene level (Quan et al., 2021). Based on
the SIMPO algorithm, our group achieved promising results for
DNA methylation biomarker identification of type 2 diabetes
(Liang et al., 2021) and colon cancer (Quan et al., 2020).

The input data for the SIMPO algorithm are the DNA
methylation values of probes in the gene promoter and other
regions (including the gene body, 3′UTR, 5′UTR, and 1stExon).
T-test was used in the SIMPO algorithm, and the degree of
difference between probes in the gene promoter and other regions
(SIMPO score) was used to characterize the DNA methylation for
each gene:

SimPo score =
x− y

Sw
√

(1/m)+ (1/n)
∼ t (m+ n− 2) ,

Where,

S2
w =

1
m+ n− 2

[(m− 1) S2
1(n− 1)S2

2]

Herein, x is the average DNA methylation value of probes
located in the promoter region, y is the average DNA methylation
value of probes located in the other regions, m is the number of
probes located in the promoter region, n is the number of probes
that are located in the other regions, S2

1 is the variance of DNA
methylation values of probes located in the promoter region, S2

2
is the variance of DNA methylation values of probes located in
the other regions.

Prediction Model for Depression
We subsampled 90% of the DNA methylation data for depression
300 times without replacement, compared the difference of gene
SIMPO values between cases and controls based on t-test and
selected the top 50 genes ranked by the p-value of t-test for
each iteration. As a result, we obtained a candidate gene list
sorted by the number of occurrence in the top 50 genes for each

iteration. Based on the gene list, we introduced an index, the
methylation-derived Depression Index (mDI), by using the top
K genes in the candidate gene list. The K genes were divided into
a “positive” subgroup whose average t-scores were higher than
0 and a “negative” subgroup whose average t-scores were lower
than 0. The mDI was derived from the statistical method t-test:

mDI = 1+
x− y√
S2

x
n +

S2
y

m

Herein, x is the average SIMPO value of genes in the positive
gene set, y is the average SIMPO value of genes in the negative
gene set, S2

x is the variance of SIMPO values of genes in the
positive gene set, S2

y is the variance of SIMPO values of genes in
the negative gene set, n is the number of genes in the positive gene
set, and m is the number of genes in the negative gene set.

The number of genes K ranging from 10 to 500 was
used for mDI calculation and the best K was selected where
mDI was the most significantly associated with depression
based on the Pearson correlation method (with the highest
correlation coefficient).

Validation of Methylation-Derived
Depression Index
To validate the predictive power of the prediction model,
we tested whether our mDI model could be used in an
independent dataset. The dataset was extracted from GEO with
the accession number GSE113725. It included 98 individuals
with a self-reported history of depression and 96 individuals
without a self-reported history of depression or diagnosed mental
health problems. The methylation profiles were obtained using
the Illumina Infinium HumanMethylation450 BeadChip. The
demographic information of the data set is provided in Table 1.

The mDI was used in the validation dataset. To validate the
predictive power of mDI, we calculated the correlation between
mDI scores and phenotype using the Pearson correlation method
and compared the difference in mDI scores between cases and
controls using a t-test.

Functional Analysis and Network
Analysis
Two gene expression datasets for MDD were used for comparison
with the genes for mDI. One dataset was from Jansen et al.
(2016) which compared the difference of gene expression
between 882 subjects with current MDD and 331 healthy
controls using peripheral blood samples. The other dataset was
from brain tissues published by Labonté et al. (2017), which
included 26 MDD samples and 22 controls. Gene enrichment
analysis was performed on the genes for mDI calculation using
Gene2Func in the functional mapping and annotation of genetic
associations (FUMA) software (Watanabe et al., 2017). First,
tissue specificity was evaluated using the differentially expressed
gene (DEG) sets in GTEx v8 by employing a hypergeometric
test (PBonferroni < 0.05). Then, a hypergeometric test was used to
assess whether our genes were overrepresented in the predefined
gene sets derived from Reactome. The false discovery rate
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TABLE 1 | Demographic information of the three data sets.

Discovery dataset Validation dataset Breast cancer dataset$

Case Control Case Control Case Control

Total 324 209 98 96 235 424

Age (Mean, SD) 47.51, 13.63 48.15, 13.17 45.87, 9.54 45.7, 10.01 52.45, 7.42 53.23, 7.19

Gender (Female/Male) 180/144 125/84 73/25 71/25 233/2 340/84

$The case and control number is for the last follow-up (2010), the age is for the baseline.

(FDR) was controlled using the Benjamini–Hochberg method
(FDR < 0.05). Based on the genes enriched in the pathways, we
constructed a protein-protein interaction (PPI) network using
the STRING database (Szklarczyk et al., 2019) with a confidence
cutoff of 0.4. We identified PPI network modules using Molecular
Complex Detection (MCODE) (Bader and Hogue, 2003) plugged
in Cytoscape 3.9.0 (Shannon et al., 2003). The network modules
with a degree cutoff of 2, node score cutoff of 0.2, k-core of 2, and
max depth of 100 were extracted.

Methylation Data for Breast Cancer
Breast cancer sample data in our study were extracted from
the EPIC-Italy cohort obtained from Gene Expression Omnibus
(GEO) with accession number GSE51032. This cohort was
established at the Human Genetics Foundation (HuGeF) in
Turin, Italy and was a prospective study aimed at investigating the
etiology of cancer and other chronic diseases. The investigators
recruited 659 participants at baseline, and evaluated the
participants every year for breast cancer. The sample information
is shown in Table 1. The number of diagnosed breast cancer
patients and cancer-free participants at each follow-up is shown
in Supplementary Table 1. At the last follow-up (2010), 424
individuals remained cancer-free, and 235 were diagnosed with
breast cancer. The average age of the participants was 53 years
old at the baseline and 87% of the participants were female
(Riboli, 2001).

Whole blood samples were collected from all participants
at baseline, and genome-wide DNA methylation patterns were
profiled using the Infinium HumanMethylation450 BeadChip
array. The cell proportions of the whole blood were calculated
using the R minfi package using the DNA methylation signature
(Houseman et al., 2012; Aryee et al., 2014). This included the
proportion of T cells, B cells, NK cells, lymphocytes, monocytes,
granulocytes, CD4 cells, CD8 cells, and the calculated ratio of
CD4–CD8, the ratio of granulocytes to lymphocytes (NLR), and
the ratio of monocytes to lymphocytes (MLR).

Construction of Prediction Model for
Breast Cancer
A previous study demonstrated that immune-inflammatory cells
are an essential component for cancer progression and play
an important role in tumor microenvironment (Hanahan and
Weinberg, 2011). A meta-analysis showed that a high neutrophil-
to-lymphocyte ratio (NLR) was found to be related to worse
overall survival (OS) and disease-free survival (DFS) in patients
diagnosed with breast cancer, and had a significant effect on

estrogen receptor (ER)-negative and human epidermal growth
factor receptor-2 (HER2)-negative patients (Ethier et al., 2017).
To increase the accuracy of our prediction model, we used the
mDI scores and cell proportion data as the predictor variables
and phenotype y as the response variable. It was defined as 1
if the study participants developed primary breast cancer and 0
if they were cancer-free. Considering that the cell proportions
ranged from 0 to 1 and the mDI was a t-score from the
t-test, which included both positive and negative values, we
performed normalization for all the independent variables. The
normalization was performed using z-transformation:

z =
x−m

S

Herein, x is one independent variable, m is the average value
of the independent variable, and S is the standard deviation.
After this process, we could convert the z value into a normal
distribution with an average of 0 and standard deviation of 1.

Using the stepwise regression method, we constructed a model
to predict the risk of breast cancer. Stepwise regression is a
systematic method where terms are added and removed from
a linear or generalized linear model based on their statistical
significance to explain the response variable. In our study,
we applied the stepwiseglm function in MATLAB to run the
prediction model with the selected variables. In addition, we
used R package flexplot (Fife, 2021) to compare the explained
variance of our constructed model and the model without
mDI. Furthermore, we applied random forest to construct the
prediction model to further investigate the predictive potential
of mDI (Breiman, 2001).

RESULTS

Methylation-Derived Depression Index
Prediction Model
We observed that the optimal mDI model was when the number
of genes was 426, with coefficient = 0.59 and p-value = 2.06e-51
for the correlation between the mDI and case–control phenotype
(Figure 1A). After that, the curve had a steep drop, and the
correlation coefficient fluctuated at approximate 0.3. The gene
list is provided in Supplementary Table 2 and consists of 245
“positive” genes and 181 “negative” genes. Based on the 426 genes,
mDI was applied to the prediction model for depression. The
receiver operating characteristic (ROC) curve for mDI had an
area under the curve (AUC) of 0.88 (Figure 1B). We observed
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FIGURE 1 | Prediction model for depression. (A) The number of genes (K = 10∼500) in the mDI (x-axis) plotted against the coefficient (y-axis). The curve plateaus at
K = 426, with a coefficient of 0.59. (B) Receiver operating characteristic (ROC) curve of mDI. (C) Boxplot of mDIs for cases and controls in the discovery dataset.
(D) Boxplot of mDIs for cases and controls in the validation dataset. The p-value derived from two-sample t-test.

that the mDI of cases significantly differed from controls (p-
value = 5.29e-43, Figure 1C), and a higher mDI indicates a
strong risk of developing depression with an OR of 16.25. This
suggested that mDI was a reliable model to classify depressed and
healthy individuals.

Validation of the Methylation-Derived
Depression Index Prediction Model
To validate our prediction model, we used additional methylation
dataset. A significant correlation between the mDI value and
phenotypes was found in the validation dataset (coefficient = 0.19,
p-value = 0.007). A significant difference in mDI scores between
cases and controls was observed, with a p-value = 0.008
(Figure 1D). Furthermore, we observed a high risk of
developing depression in the group with higher mDI scores,
with an OR of 1.79 and the predictive power of mDI in
the validation data generated an AUC of 0.60. These results
validated our mDI model.

Functional and Network Analysis of the
Genes Used to Derive the
Methylation-Derived Depression Index
Among the 426 genes identified in our study, 128 genes
were differentially expressed in MDD blood samples
(Jansen et al., 2016) (FDR < 0.5), 103 and 94 genes were

differentially expressed in female and male brain samples,
respectively. Tissue-specific enrichment analysis showed that
the 426 genes used in the mDI model showed significant
enrichment in brain tissues, including putamen basal ganglia,
amygdala, hippocampus, substantia nigra, anterior cingulate
cortex BA24, caudate basal ganglia, frontal cortex BA9, nucleus
accumbens basal ganglia, and hypothalamus (Supplementary
Figure 1, Bonferroni corrected p-value < 0.05). In addition,
pathway enrichment analysis of these genes revealed a total of
11 Reactome pathways. To achieve more specific enrichment, we
excluded pathways with more than 500 genes. Seven pathways
were enriched, included EPH Ephrin signaling, beta catenin-
independent Wnt signaling, signaling by Wnt and signaling by
Notch (Figure 2A).

Twenty five genes were found to be present in the seven
enriched pathways. CLTC and CLTA were present in 6 of
the pathways, PSMD11, PSMD3, and PSMB1 were present in
four of the pathways, and ADAM10, VANGL2, TNRC6A, and
DVL2 were present in three of the pathways (Figure 2B). The
25 genes were used to construct a protein–protein interaction
(PPI) network (Figure 2B). In addition, three modules were
identified. These modules included PSMB1, PSMD3, and
PSMD11 that were associated with the proteasome; CLTA,
CLTC, GJA1, and DVL2, which were associated with autophagy;
and EPHA10, EFNA1, and ADAM10, which were involved in
Ephrin signaling.
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FIGURE 2 | Pathway analysis results of the 426 genes selected in the mDI model. (A) Bar plot of enriched Reactome pathways that passed a
Benjamini–Hochberg-adjusted p-value < 0.05. The length of the bar indicates the degree of significance. (B) Network of the enriched pathways and their involved
genes, Gene interactions were extracted from STRING. Genes are drawn as blue circles where their size indicates the number of involved pathways, and pathways
are drawn as orange diamonds. The interaction between pathways and involved genes is indicated by yellow lines, the interactions between genes are indicated by
blue lines. The three modules identified by MCODE are highlighted with circles.

Prediction Model for Breast Cancer
Using mDI scores and cell proportion data as predictor
variables and the diagnosis of breast cancer for each year
as response variable, we constructed prediction models for
breast cancer. Because the number of diagnosed individuals
was limited during the first 2 years, we constructed the model
using the data derived from the third year onwards. We
observed the AUC curve for the prediction model for each
year had a slightly increasing trend and then fluctuated at
approximately 0.68 (Figure 3A). Furthermore, the ORs of
the models for the different years were higher than 1 except
for the last year (Figure 3B). To investigate the contribution
of mDI to breast cancer, we divided the samples into 4
subsamples based on the fourth quantile of mDI scores and
observed a higher risk in the highest 25% of mDI scores
compared to the lowest 25% with ORs ranging from 2.57
to 5.35 (Figure 3B). For the prediction model at the 6th,
7th, 9th, 10th, and 11th years, the mDI interacted with the
ratio of CD4 and CD8 to contribute to the prediction model
(Supplementary Table 3).

The regression model at the 11th year is shown in
Table 2, with an AUC of 0.70 (Figure 3C). For the regression
models, we found that the p-value of mDI was significant (p-
value < 0.05, Supplementary Table 3). Considering the potential
bias introduced by age, we included age in the regression
model, and found no significant contribution to the model
(Supplementary Table 4). Furthermore, the correlation between
mDI score and the ratio of CD4 and CD8 was significant,
with coefficient = 0.558 and p-value = 0.048. To investigate the
contribution of mDI in the model, we tried to remove mDI from
the regression model at the 11th year, and found a significant
change of R square (P = 0.004), implying the important
contribution of mDI in our prediction model (Supplementary
Table 5). Furthermore, we performed random forest to construct
a prediction model at the 11th year. We observed a predictive

model with as AUC of 0.72 (Figure 3C) with mDI having
important contribution to the model (Figure 3D).

DISCUSSION

In this study, we proposed a methylation-derived depression
index (mDI) to predict depression. It was found to be highly
related with depression, with a coefficient of 0.59 and AUC
of 0.88 in the discovery dataset and a coefficient of 0.19 and
AUC of 0.60 in the validation dataset. The mDI score was then
used to construct a prediction model for breast cancer risk
by combining blood cell proportion data. We observed high
predictive power with mDI making important contribution to the
overall reliability of the model.

DNA methylation is extensively involved in biological
activities. Several studies have demonstrated that DNA
methylation plays an important role in the nervous system
(Martinowich et al., 2003; Moore et al., 2013). Emerging evidence
has also shown that DNA methylation participates in the
pathogenic mechanism of stress-related psychiatric disorders,
such as MDD (Klengel et al., 2014). Using DNA methylation
as a biomarker to predict psychiatric disorders has gradually
gained attention in recent years. Kundakovic et al. found that
DNA methylation of BDNF could be a predictor for early life
adversity, and changes in DNA methylation in blood could be a
predictor of changes in the brain (Kundakovic et al., 2015). In
our study, we integrated the DNA methylation values of genes
using the SIMPO algorithm, and then identified difference in
SIMPO scores between patients and healthy controls. Using
this approach, we obtained the associated genes based on DNA
methylation. We then calculated mDI using these associated
genes to predict depression. mDI was found to be a strong
predictor, which was validated using an additional cohort.
Our results demonstrated that DNA methylation was a latent
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FIGURE 3 | The results of the prediction model for breast cancer at various years. (A) AUC of the prediction models for each year. (B) OR of the prediction models.
The blue line indicates the OR for the prediction model for each year; the green line indicates the OR for the comparison between the highest 25% of mDI scores and
the lowest 25%. (C) The receiver operating characteristic (ROC) curve of the prediction model for breast cancer at the 11th year using two methods. AUCsw

indicates the AUC obtained by stepwise regression. AUCRF indicates the AUC obtained by random forest. (D) Bar plot showing the predictive importance estimates
of each predictor in the random forest prediction model.

TABLE 2 | Regression model results for the breast cancer prediction model
at the 11th year.

Row Estimate SE T Stat P-value

mDI 0.6037 0.1200 5.0324 4.843E-07

Mono 1.1239 0.2997 3.7501 0.000177

Gran 4.4030 1.1066 3.9790 6.919E-05

Lympho 4.5001 1.1602 3.8787 0.000105

CD4/CD8 −0.4782 0.1767 −2.7066 0.006798

NLR −0.2074 0.3227 −0.6427 0.520430

mDI:CD4/CD8 0.5579 0.1976 2.8231 0.004756

CD4/CD8:NLR −0.3372 0.2014 −1.6744 0.094047

The variables with P-value < 0.05 were marked as bold.

biomarker to understand the underlying mechanism of MDD
and was useful for diagnosis and treatment.

Of the 426 genes used to construct the prediction model for
depression, several genes were previously known to be associated
with depression. IGF1 was found to be the most significantly
different between patients and controls (p-value = 1.38e-4). It
functions in regulating body growth and development and has
been demonstrated to play a role in MDD. A previous study

found significantly higher levels of IGF1 in patients compared
to healthy controls (Kopczak et al., 2015). To compare the
relation between IGF1 and treatment response, the authors
compared the levels of IGF1 in patients with a Hamilton
depression rating scale (HAM-D) 21-item score < 10 after 6
weeks of psychopharmacological treatment and those without
remission. They found that remitters had a lower level of IGF1
compared to non-remitters. In addition, knockout of the IGF1
gene induced depressive symptoms in mice (Mitschelen et al.,
2011). These results demonstrated that IGF1 could be a potential
risk factor for MDD.

Tissue enrichment analysis showed that the selected 426
genes were strongly expressed in several brain regions, such
as the hippocampus, amygdala and frontal cortex. At present,
there is no consensus regarding specific brain regions correlated
with MDD pathogenesis, however, several depression symptoms
have been related to the dysfunction of certain brain regions.
The neocortex and hippocampus have been shown to regulate
the cognitive aspects of MDD, the striatum and amygdala
have been shown to be involved in emotional memory, and
the hypothalamus has been shown to be associated with
neurovegetative symptoms such as too much or too little sleep,
energy and appetite (Nestler et al., 2002). There is a body of
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evidence showing that the frontal cortex plays a vital role in
the development of depression, and has been considered as a
treatment target (Hare and Duman, 2020). The genetic and
chemical changes in these regions may provide new insight into
the mechanism of depression.

Furthermore, we observed that the selected genes were
significantly enriched in Eph Ephrin signaling, which is
important for regulating the migration of neuronal cells and
developmental plasticity of synapses (Kania and Klein, 2016).
Increasing evidence has also demonstrated the relationship
between inflammation and depression (Benton et al., 2007;
Goldberg, 2010). In our study, immune-related pathways, such
as beta catenin-independent Wnt signaling and Wnt signaling,
were enriched. Wnt signaling has been correlated with neural
development (Ille and Sommer, 2005) and found to play an
important role in preventing postsynaptic damage induced by
Abeta oligomers in hippocampal neurons (Cerpa et al., 2010).
Several studies have also shown that the Wnt pathway to be an
important mediator of MDD (Sani et al., 2012). Studies have
shown increased expression of Wnt2 in rats after treatment
with antidepressants (Okamoto et al., 2010). Notch signaling
has also been shown to be associated with brain morphogenesis
(Fischer-Zirnsak et al., 2019). Results from this study showed
Notch signaling to be enriched, implying its potential role in the
etiology of MDD.

We then constructed a PPI network using the selected
genes involved in the enriched pathways. This generated three
modules, of which, the first module comprised of PSMD11,
PSMD3, and PSMB1, which encode important subunits of
the proteasome. The proteasome is widely distributed in
eukaryotic cells and serves as a proteolytic system that is
dependent on ubiquitin. The ubiquitin-proteasome system (UPS)
regulates neural development and maintains the structure and
biological function of the brain. UPS has been found to be
related to schizophrenia (Luza et al., 2020). A study that
compared schizophrenia patients with healthy controls found
that expression levels of genes encoding proteasome subunits
and ubiquitin were reduced, suggesting that hypofunction of
the UPS may contribute to schizophrenia (Altar et al., 2005).
Based on our results, the role of the UPS in MDD needs to be
further investigated. The second module comprised of CLTA,
CLTC, GJA1, and DVL2. CLTC is an important gene related to
autophagy (Latomanski and Newton, 2018). Neuroinflammation
is an important mechanism related to MDD. A study found that
lipopolysaccharide-induced depressive-like behavior impaired
the autophagy system. Melatonin was found to significantly
improve autophagy function, suggesting that melatonin may
mediate autophagy through FOXO3a signaling (Ali et al., 2020).
This provides evidence of the important function of these two
major cellular quality control systems in psychiatric disorders and
provides opportunities for targeted treatment of MDD. The third
module comprised of ADAM10, EFNA1, and EPHA10. ADAM10
is a member of the ADAM family that participates in regulating
cell adhesion, migration, and signaling. ADAM10 plays a major
role in the Notch and Eph/ephrin pathways (Edwards et al.,
2008). Studies have demonstrated that ADAM10 deficiency was
linked to dysfunction of the central nervous system (Saftig and

Lichtenthaler, 2015). These results suggest that ADAM10 may be
a risk factor in MDD pathogenesis by targeting ephrin pathways.

Lastly, to investigate the value of mDI and validate its
predictive power, we used it to predict the risk of breast cancer.
The relationship between depression and breast cancer has been
a topic of contention. However, several studies have found that
patients with depression have a higher risk of breast cancer (Gallo
et al., 2000; Gross et al., 2010). In this study, we combined
mDI and cell proportion data to construct a prediction model
for breast cancer. Our results demonstrated that the model was
highly predictive of the risk of breast cancer. After removing mDI
and its related interaction terms, we found a significant decrease
in explained variance of the model. Furthermore, the random
forest model justified the important contribution of mDI in the
prediction model for breast cancer. Interestingly, the interaction
of mDI and the ratio of CD4 and CD8 strongly contributed to
the prediction model. We also found a significant correlation
between mDI scores and the ratio of CD4 and CD8, suggesting
an immune mechanism for depression.

There were several limitations to the present study. First, the
sample size of the datasets we used may have not been sufficient
to comprehensively detect all methylation markers related to
depression. This may be the reasons for the low predictive power
of the model in our validation dataset. The second limitation
was information on confounding factors such as smoking and
ethnicity, was not available, and hence may have contributed
to bias in our model. Third, the DNA methylation profiles of
whole blood samples may not reveal the complete mechanism of
epigenetic effects on depression, especially in brain tissues. The
comparison with gene expression data showed that the overlap
between DNA methylation genes and differentially expressed
genes from the different samples was limited. The current version
of mDI included the DNA methylation data from 426 genes. This
huge number may limit its potential in clinical applications. In
this study, we primarily demonstrated the contribution of mDI
to predict depression. We intent to analyze a larger cohort in the
future and generate more comprehensive models by combining
DNA methylation data with clinical biochemical results.

CONCLUSION

In conclusion, we found that our methylation-derived depression
index was highly associated with depression and had significant
predictive power. Furthermore, our model could be used to
predict the risk of breast cancer with significant reliability.
Biological function analysis of the selected genes also provided
clues for the mechanism of depression and provided insights into
the role of DNA methylation in the pathogenesis of depression.
This is valuable for the diagnosis and treatment of depression.
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