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Abstract: The accumulation of carbon dioxide (CO2) pollutants in the atmosphere begets global
warming, forcing us to face tangible catastrophes worldwide. Environmental affability, affordability,
and efficient CO2 metamorphotic capacity are critical factors for photocatalysts; metal-organic
frameworks (MOFs) are one of the best candidates. MOFs, as hybrid organic ligand and inorganic
nodal metal with tailorable morphological texture and adaptable electronic structure, are contemporary
artificial photocatalysts. The semiconducting nature and porous topology of MOFs, respectively,
assists with photogenerated multi-exciton injection and adsorption of substrate proximate to void
cavities, thereby converting CO2. The vitality of the employment of MOFs in CO2 photolytic reaction
has emerged from the fact that they are not only an inherently eco-friendly weapon for pollutant
extermination, but also a potential tool for alleviating foreseeable fuel crises. The excellent synergistic
interaction between the central metal and organic linker allows decisive implementation for the
design, integration, and application of the catalytic bundle. In this review, we presented recent
MOF headway focusing on reports of the last three years, exhaustively categorized based on central
metal-type, and novel discussion, from material preparation to photocatalytic, simulated performance
recordings of respective as-synthesized materials. The selective CO2 reduction capacities into syngas
or formate of standalone or composite MOFs with definite photocatalytic reaction conditions was
considered and compared.

Keywords: metal-organic frameworks; composite MOFs; photosensitizer integrated MOFs;
heterostructure quantum dot-MOFs assembly; metal ion doping; heterogeneous photocatalyst;
CO2 transformation; CO2 reduction

1. Introduction

Planet Earth is warming, and it is widely recognized that the global average surface temperature
has increased considerably in the past few decades, entailing global warming [1] and devastation
of entire ecosystems [2]; sea ice melting and rising ocean levels, shifting precipitation patterns,
and migration of wildlife habitats are noticeable impact of global warming [3–5]. Ever since the
discovery of fossil fuels in 1597 by Andreas Libavius [6,7], burning fossil fuel has been the primary
means of energy exploitation, which in turn, aggravates the accumulation of greenhouse gasses (GHGs)
in the atmosphere [8,9]. The effect of heat-trapping GHGs on the atmosphere was pictured by alteration
of the Earth’s natural solar-irradiation-reflection cycle, leading to an environmental temperature
surge [10,11].

The atmospheric carbon dioxide (CO2) concentrations in the preindustrial era and 2018 were
280 ppm and 407.4 ppm [12–14], respectively, implying that the accumulation of CO2 has increased
throughout the industrialized era. The Intergovernmental Panel on Climate Change declares that,
of all GHG constituents, CO2 emissions are the primary cause of climate change [15,16]. Data for 1951
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recorded by the Goddard Institute for Space Studies indicated that global warming was indeed on
course; the global temperature has risen by at least 0.8 ◦C by that time [17–20], and emissions have
never ceased to date. According to the State of Climate 2018 report, due to an undisciplined boom of
atmospheric GHG emissions, the average global surface temperature increased by 0.3–0.4 ◦C from
1981–2010 (Figure 1) [21]. Despite the endorsement of industrialized countries in favor of CO2 reduction
by at least 5.2% over a decade ago (Kyoto Protocol) by attempting to employ green energy sources
(e.g., solar, hydropower, and wind) for the gradual eradication of fossil fuel usage [22], implementation
was impeded due to shortcomings of renewable energy utilization (i.e., affordability, accessibility,
technological advancement, adequacy, and efficiency) [23–26].
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Figure 1. Yearly average surface temperature comparison (1850–2018). The background is an image 
of Earth from National Oceanic and Atmospheric Administration (NOAA)’s DSCOVR satellite 
(August 3, 2018). The average surface temperature for 1981–2010 is taken from four analysis groups, 
i.e., NOAA (red), National Aeronautics and Space Administration (NASA) (tan), the University of 
East Anglia (pink), and the Japan Meteorological Agency (orange). Adopted from the State of Climate 
in 2018 report from the American Meteorological Society (AMS) with permission [21]. Copyright 2018 
NOAA. 

On that basis, countermeasures for post-fossil fuel energy systems, such as physical capture of 
CO2 and storage (i.e., carbon capture and storage, CCS) [27] and/or reprocessing (carbon capture and 
utilization, CCU), have been formulated [28]. As for geological sequestration for CCS, different 
methods have been invoked at the emission source point of the huge plants (e.g., coal- and gas-fired 
industries) to reduce anthropogenic CO2 emissions; these include amine scrubbing, carbonation-
calcination, and oxy-fuel [29] processes. Typical concentrations of flue gas from fossil-fuel-burning 
power plants released at nearly 1 atmospheric pressure are 15–16% CO2, 73–77% N2, 5–7% H2O, 3–
4% O2, and a small amount of acidic gas [30]. In the amine scrubbing method, liquid amine 
compounds are used on a large scale as CO2 sorbent [31]; of all aqueous solutions, monoethanolamine 
(MEA), diethanolamine (DEA), and methyl diethanolamine (MDEA) have proven to be effective tools 
in capturing CO2 emissions at the source [32–34]. However, limitations in using these amine 
adsorbents include (I) mandatory pre-adoption stream purification (i.e., of SOx and NOx) due to 
amine reactivity, [35–37], (II) corrosive liquid amine resulting in equipment wear-out during the 
adsorption process and the prevalent loss of sorbent [38], and (III) the excessive amount of 
regeneration energy required for sorbent recycling [39].  

Another technology used to capture CO2 is carbonation-calcination, by which fixation 
consummated through carbonation reaction produces limestone (calcium carbonate, CaCO3) from 
quicklime (calcium oxide, CaO) and CO2, and then back-treating CaCO3 in a calcination reactor 

Figure 1. Yearly average surface temperature comparison (1850–2018). The background is an image of
Earth from National Oceanic and Atmospheric Administration (NOAA)’s DSCOVR satellite (August 3,
2018). The average surface temperature for 1981–2010 is taken from four analysis groups, i.e., NOAA
(red), National Aeronautics and Space Administration (NASA) (tan), the University of East Anglia
(pink), and the Japan Meteorological Agency (orange). Adopted from the State of Climate in 2018
report from the American Meteorological Society (AMS) with permission [21]. Copyright 2018 NOAA.

On that basis, countermeasures for post-fossil fuel energy systems, such as physical capture of
CO2 and storage (i.e., carbon capture and storage, CCS) [27] and/or reprocessing (carbon capture and
utilization, CCU), have been formulated [28]. As for geological sequestration for CCS, different methods
have been invoked at the emission source point of the huge plants (e.g., coal- and gas-fired industries)
to reduce anthropogenic CO2 emissions; these include amine scrubbing, carbonation-calcination,
and oxy-fuel [29] processes. Typical concentrations of flue gas from fossil-fuel-burning power plants
released at nearly 1 atmospheric pressure are 15–16% CO2, 73–77% N2, 5–7% H2O, 3–4% O2, and a small
amount of acidic gas [30]. In the amine scrubbing method, liquid amine compounds are used on a large
scale as CO2 sorbent [31]; of all aqueous solutions, monoethanolamine (MEA), diethanolamine (DEA),
and methyl diethanolamine (MDEA) have proven to be effective tools in capturing CO2 emissions
at the source [32–34]. However, limitations in using these amine adsorbents include (I) mandatory
pre-adoption stream purification (i.e., of SOx and NOx) due to amine reactivity, [35–37], (II) corrosive
liquid amine resulting in equipment wear-out during the adsorption process and the prevalent loss of
sorbent [38], and (III) the excessive amount of regeneration energy required for sorbent recycling [39].

Another technology used to capture CO2 is carbonation-calcination, by which fixation
consummated through carbonation reaction produces limestone (calcium carbonate, CaCO3) from
quicklime (calcium oxide, CaO) and CO2, and then back-treating CaCO3 in a calcination reactor
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performs the reverse reaction (products will be CaO and CO2) [40–42]. Even though this method
has a comparative advantage by overriding the pre-desulfurization process (unlike in amine
scrubbing) [43,44], excessive heat of the carbonation (650 ◦C) and calcination (900 ◦C) procedures
imposes a hefty economic impact [45,46]. CCS, being energy-intensive (for proper functioning and
adsorbent regeneration), having poor stability, and in need of large-scale confined geographical storage
reservoirs, has limited applicability [47,48].

Given that meeting the global energy demands in the foreseeable future relies on fossil fuel
utilization, scientists around the globe have endeavored to acquire a quick remedy to alleviate
atmospheric pollution not only by minimizing CO2 accretion but also conversion into valuable fuel
products to meet foreseeable energy crunch [49,50]. Not long ago, many types of porous organic
polymers, such as a conjugated microporous polymer, hyper-crosslinked polymers, polymer of
intrinsic micro-porosity, covalent organic frameworks, covalent triazene frameworks, and porous
aromatic frameworks, were notable as materials with good gas absorbance, storage, and catalytic
compatibility [51–60]. Although the possession of compatibility morphological structures make porous
organic frameworks feasible for use in gas CO2 storage [61,62], the advance utilization of this material
faces obstruction due to low rates of gas diffusion-transport emanated from its lower density [63].
On the other hand, deployment of inorganic semiconductors, such as SrNb2O6, ZnGeO4, HNb3O8,
Fe2V4O13, and BiWO6, for photoinduced CO2 reduction operation also encounters limitations emergent
from their large band gaps and poor visible light collection. Moreover, absurd, non-porous structural
characteristics of these semiconductors impose photocatalytic reactions to be carried on the external
surface, resulting in bulk charge recombination [64–66]. This scenario significantly lessens the efficiency
of the photocatalytic reduction process, and comparatively porous organic-inorganic frameworks are
justified to pacify these setbacks [67–69].

2. Big Picture of Metal-Organic Frameworks (MOFs)-Photoinduced CO2 Metamorphosis

MOFs are products of repeatedly engineered amalgam (organic/inorganic) compounds in different
regular dimensions (i.e., 1D, 2D, 3D) to yield coordinated porous polymers with organic ligands (linkers)
and nodal metal ions as a cluster [70–72]. Organic linkers are created from organic material seeking
enhanced CO2 adsorption and smooth photogenerated exciton drift to the reduction metal site [73–76],
while metal clusters are reduction sites of the adsorbed CO2 compatible with excited electron and
hole interaction. Metal ions in MOFs metallic clusters are usually divalent and trivalent metal ions
of 3d transition metal, 3p metal, and/or lanthanides [77–79]. MOFs are still remarkable research
topics for water splitting, organo-synthesis [80], gas absorption/storage-separation, drug delivery,
and catalysis [75,77,81,82].

This material plays an indispensable role in CO2 photocatalytic reduction by virtue of its
large gas-adsorption capacity and electronic collaboration, which originates from its enriched void
morphological texture, chemical tunability, highly available porous reaction surface area, and densely
coordinated unsaturated metal sites [83–85]. Although some materials have limited practical
applications of CO2 absorption-reduction directly at the source point of power plants due to their
susceptibility to harsh conditions (e.g., acidity, alkalinity, heat, humidity), they are categorized as
cost-effective with potent CO2 absorption and elimination ability [86,87]. Moreover, this material could
be packed at the nanoscale to be deployed for atmospheric CO2 trapping and conversion to retrieve
the environment being [88–92].

In addition, they can be designed from various types of high-density open metal sites and
Lewis basic sites, which achieve great synergic interaction between CO2 substrate and pore site,
rendering efficient CO2 absorption capacity [93,94]. Therefore, the construction of MOFs with the
structural integrity to withstand harsh conditions (acid, alkaline, moisture, and heat) would be
triumphant in tackling atmospheric CO2 pollution once and for all [95]. Diverse MOFs materials have
been assembled from the different organic framework and nodal metal; selection of photocatalytic
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packs has accounted for some determinant aspects. Organ-metal compatible communication, higher
CO2-adhesive void energy, and photolytic environment endurance are mentionable [96–98].

2.1. Factors Affecting Sorbent Material Selection

MOFs can be applied for gas adsorption, separation, storage, catalysis, and electronics [99,100].
The gas adsorption ability of this material could be improved by increasing the surface area, texture,
and pores volume, while the catalytic activity could be improved by increasing the number of
metal sites and adsorption enthalpy [101]. Logical scrutiny of the preferentiality of a given MOF
depends on the palatability of the electronic and physical-chemical architecture for the photolytic redox
reaction [102,103]. Therefore, the design and fabrication of MOFs equipped with superior CO2 uptake
and redox potential for robust photocatalytic conversion is the ultimate ambition in the environmental
pollution reduction arena, with pivotal elements of harmonious organo-metal cooperation, higher CO2

adhesive void energy, and photolytic versatility [96–98,104].

2.2. Electronic Structure and Photosensitivity of MOFs for CO2 Photolytic Reaction

The photoreduction of CO2 with MOFs is accomplished by combining an array of proton-reinforced
exciton-driven reactions with the oxidation of H2O to O2. To achieve this, the proper bandgap structure
of MOFs is fundamental for the visible light radiation harvest and subsequent photolytic CO2

metamorphotic reaction [105–107]. The light-harvesting semiconductive nature of this material is
crucial in converting incoming irradiation photons into activation energy to decrease the bandgap
barrier. Upon incident irradiation, the generation of excitons is enacted from the valence bands (VBs) by
leaving holes behind and drifting to active catalytic metal sites through conductive organic linkers [108].
Once the electron arrives on the metal center, it instantly activates and transforms the adsorbed substrate
(CO2) to the corresponding intermediate product depending on the number of excitons and activation
potential (Table 1). Photoinduced excitons complete travel in a truncated distance from an organic linker
to a neighboring metal cluster, i.e., linker-to-metal cluster charge transfer (LCCT) [109], for subsequent
reduction. It is worth noting that such materials can serve as photocatalysts or photocatalytic hosts
in the photoreduction process. Heavier ligands create energy-level alignment flaws and asymmetry
between constituent component orbitals (ligands and metal clusters) of MOFs, which forces electrons
to transfer only short-range distances; as a result, some MOFs exhibit low electrical conductivity, which,
in turn, causes loss of sensitivity towards visible light illumination [110]. However, many productive
studies have been done to develop photoactive MOFs, capable of efficient synergetic communication
within organic linkers and metal clusters, by augmenting semiconductivity dynamism [111,112].

Table 1. Reduction potential (E) vs. normal hydrogen electrode (NHE) of different intermediate
products during metal-organic frameworks (MOF)-driven CO2 photolytic reduction coincident with
H2O oxidation to O2.

Reactant Protonation and Electron Inoculation Product E (V vs. NHE, at pH = 7)

CO2 + 2H+ + 2e− HCOOH −0.61

CO2 + 2H+ + 2e− CO + H2O −0.53

CO2 + 4H+ + 4e− HCHO + H2O −0.48

CO2 + 6H+ + 6e− CH3OH + H2O −0.38

CO2 + 8H+ + 4e− CH4 + 2H2O −0.24

2H+ + 2e− H2 −0.41

H2O + 2h+ 1/2O2 + 2H+ +0.41
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2.3. CO2 Saturation Capacity

The other significant factor affecting MOF selection is uptake capacity; thus, the morphological
properties of a photocatalytic material are directly related to the accessible surface area, porosity,
number of metal sites, apt binding energy, and aromaticity [113,114]. A porous sorbent with chemically
improved adsorption enthalpy is favored to trap void wall-encircling gases upon contact [115,116],
and the void opening of the material affects its efficiency and applicability. In 2019, Sun et al. reported a
carbonaceous biomass-based sorbent prepared from the receptacle and stalk of sunflowers spongy-like
flesh through pyrolysis; this material was found to possess an abundant small-sized (<0.7 nm) porous
surface area (nearly 3072 m2

·g−1), with a high micropore ratio (79%), and intriguing structural suitability
for pore wall-CO2 synergy, leading to greater substrate adsorption [117].

3. Photocatalytic CO2 Reduction Process Steps

As substantial eco-friendly CO2 transformer tools to mitigate environmental damage, MOFs are
excellent photocatalysts with compelling energy utilization of bountiful solar energy and reduction
capacity, mimicking the green plant photosynthesis route [118]. To better achieve the utilization of
solar radiation for activation energy in CO2 reduction into valuable products, MOFs should possess
suitable electronic structures and apt morphological properties. MOF-driven photocatalytic CO2

reduction processes have three major steps. (I) Light-harvesting: by design, photocatalysts are meant
to collect much solar irradiation; for there to be adequate solar energy consumed by the photocatalytic
reaction. Of the total solar irradiation, visible light contributes 42.3% (400 < λ < 700 nm), infrared
radiation 49.4% (700 nm < λ < 1 mm), and ultraviolet (UV) rays 8%(λ < 400 nm) [119], implying that
photocatalysts functioning under visible light are more favorable to have a higher energy-collection
degree of freedom. (II) Separation of electron-hole pairs (charge assimilation): solar irradiation
causes the excitation of valence electrons (leaving holes behind) from the VB or highiest occupied
molecular orbital (HOMO) to the conduction band (CB) or lowest unoccupied molecular orbital
(LUMO) [120,121], which are then separated and transported to the photocatalyst surface where the
CO2 reduction is carried out (Figure 2). The charge recombination in semiconductors results in a
decline in photocatalytic efficiency. Two methods have been devised to mitigate this problem: metal
corroboration (surface metalation), in which metals serve as electron sinks for effective electron-hole
separation and adopting heterojunctions [122], which achieves effective solar irradiation energy
consumption. In addition, active catalytic surface exposure to solar radiation aggravates CO2 reduction
adjacent to active sites [123]. (III) CO2-selective adsorption and conversion is the last step, in which
the structural-driven thermodynamically stable CO2 substrate mandate the installation of highly
efficient photocatalytic substances to achieve an appropriate endothermic selective redox reaction.
Therefore, MOFs should inherently retain the semiconductivity feature with a lower bandgap and
higher adsorption, and have an abundant activation unit within their structure. To convert CO2 to the
subsequent formate, contrastively, MOFs’ CB potential should be more negative than the respective
intermediate formation potential, so that excitons upon incident irradiation will easily drift to the metal
center for instantaneous activation [124]. What’s more, the type of central metal significantly affects
the performance of the photolytic process. This depends on how well it interacts with the substrate
activation concomitantly due to morphology or porosity (high pore volume to surface area ratio) of
the MOF, and binding energy will alter the activity; the binding energy (void surface and substrate
interaction) needs to be high for CO2 selective reduction [125,126]. For further fostering solar irradiation
harvesting, MOFs may be coupled with photosensitizers (PSs). PSs are illumination-sensitive materials
that have compatible band edge alignment to MOFs’ structure with the lowest possible CB to assist
hot multi-exciton injection to active catalytic sites [127,128]. On the other hand, materials will be
incorporated into the morphological texture of MOFs to advance the physical adsorption capacity of
the void crew. From an environmental mitigation perspective, MOFs should be durable as well as
exhibit strong reduction performance [129,130].
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Figure 2. Diagrammatic representation of HOMO/LUMO band of exciton interaction over MOF
photocatalyst for CO2 conversion upon irradiation (S = substrate, S·+ = oxidized substrate). HOMO:
highly occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; MOF: metal-organic
framework; VB: valance bands; CB: conduction band.

4. Photocatalyst MOFs Category

Given their outstanding CO2 chemisorption and activation performance, MOFs have been an
important area of research for GHG pollutant reductions. It is the target of all researchers to develop
MOFs with exellnet CO2 photoreduction efficiency, and this effort escalates aspect-wise innovation.
Thus, depending on the focus area, findings concerning MOFs could be divided into two main groups:
the advancement of (I) the electronic structure and (II) morphological properties [131]. The electronic
structure implies the semiconducting nature of the material; this feature is responsible for light
irradiation harvesting and photoinduced multi-exciton generation-injection to the catalytic active
central metal node, thereby achieving CO2 activation [132]. Equivalently, the morphological texture of
the assembly significantly affects the reduction performance; a material having a porous structure with
higher CO2 binding energy and apt metal cluster has superiority for selective substrate reduction [133].
Overall, the smooth interaction between the organic linker and nodal metal plays an important role in
the advancement of photolytic reduction.

Recently, countless breakthroughs have been accomplished regarding MOFs, targeting innate
synergistic activity intensification. However, those reported publications are not reviewed yet.
The objective of our work was to briefly document and unveil the latest progress from respective
motivation through material fabrication to application in a clear and concise manner with technical
reflection. We aimed at providing better awareness of MOFs present prospects toward CO2 reduction.

4.1. Zr-Based MOFs

Zirconium (Zr)-based MOFs are known for their unusual structural suitability for photo-driven
catalytic reaction, in which Zr(IV)-carboxylate coordination bonds enable the synthesis of MOFs
with high surface area, better electronic structure, and reaction environment flexibility. Furthermore,
the vulnerability of Zr-based MOFs to the functionalization of different moieties via many synthesis
methods is an exemplification of their superiority [134,135]. Accordingly, Zr-based MOFs draw much
attention in the exploration in photocatalyst input.

In 2017, Tu et al. studied the photocatalytic activity improvement of a Zr-based MOF
(UiO-66) by microwave-assisted post-synthesis for incorporating a cation (titanium), with some
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Zr(IV) metal in Zr-Oxo clusters of UiO-66 replacement by Ti(IV) to produce UiO-66 (Zr/Ti)-M [136].
The Brunauer-Emmett-Teller (BET) surface area of this MOF before and after Ti metal incorporation
was measured, and the value indicated minor-deviation [969.7 m2

·g−1 of UiO-66, and 965.8 m2
·g−1

of UiO-66 (Zr/Ti)-M] due to the proper pore occupancy. On the other hand, the bandgaps of UiO-66
and UiO-66 (Zr/Ti)-M were 4.00 and 3.75 eV, respectively. The HOMO and LUMO of UiO-66 were
3.40 and −0.60 V (vs. NHE), respectively, while UiO-66 (Zr/Ti)-M showed a HOMO of 3.45 eV and a
LUMO of −0.30 eV (vs. NHE). As mentioned above, the replacement of some Zr metal with Ti indeed
improved the electrical property of the MOF through band-edge alignment of Ti to the MOF template.
The photocatalytic activity enhancement of UiO-66 (Zr/Ti)-M is due to the upgraded interfacial charge
transfer of the exciton from the linker Benzene-1,4-dicarboxylic acid (BDC) to the Zr-oxo cluster, and the
donation of the electron for Zr(IV) (to be an electron sink) is achieved through Ti(IV) introduction [137].
This n-type semiconductor has proven to have potential as a photocatalyst for CO2 photoreduction.
The metalation of MOF on its core structure will advance the solar responsiveness by enhancing
the photocatalytic reduction reaction through prolonged multi photoinduced exciton generation and
transmission to the active site, resulting in adsorbed CO2 activation [138]. Aside from photocatalytic
reduction performance, the metalation of Zr-based MOF shows resilient performance in a harsh
reaction environment.

Moreover, in 2018, Chen et al. discovered a Zr-based MOF with extraordinarily great pH resilience
(hyperstability of all Zr-MOFs) to harsh (HCl, pH = 1 and concentrated NaOH) reaction condition [139].
Via a top-down synthesis process, MOFs (Zr2C44H22O12N4 (ZrPP-1)) with NbO-like topology, featuring
immense Zr(IV)-oxo chains linked by polyphenolate groups on four peripheries of eclipse-organized
porphyrin macrocycles, were successfully constructed by deploying non-intercrossed Zr(IV)-pyrogallic
porphyrin MOFs, ZrPP-1. These possessed the stability even under severely alkaline conditions
with an exquisite photocatalytic CO2 deoxygenation reduction reaction (i.e., CO2 to CO). Compared
to other Zr(IV)-carboxylates, this MOF [140–144] has maintained its excellent status. From a N2

adsorption-desorption isotherm, a porous ZrPP-1 MOF had a Langmuir surface area of 512.5 m2
·g−1

(BET, 744.5 m2
·g−1). Taking advantage of its high alkaline reaction condition resistance, different metals

were incorporated into the organic ligand of this MOF (ZrPP-1-M, where M = H2, Fe, Co, Cu, Zn),
of which co-integrated n-type photocatalyst MOFs exhibited superb photoreduction performance
when collaborating with a proton-donating agent. The defined and well-ordered active metal centers,
apt bandgap (1.78 eV) and metalation (Co) at the porphyrin core were responsible for the superior
CO2 uptake at 273 K (87.7 cm3

·g−1) and selective photocatalytic reduction (Table 2). The efficient
photoinduced exciton separation and transfer of this cobalt-based MOF were due to its narrow bandgap
and the apparently crossed Fermi levels of the ZrPP-1 entity. Furthermore, this MOF could be recovered
and recycled for three rounds without obvious loss of morphological integrity and performance.
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Table 2. The photocatalytic performance of MOFs converting CO2 to CO, CH4, H2, and HCOO− with specified reaction conditions.

Photocatalyst
Active Metal

Cluster
Organic

Metal Linker
BET

(m2/g)
Photocatalytic Reaction Condition [Catalyst Loading,

Solvent, Power, Sacrificial Agent, Irradiation, Time (h)]
Throughput (µmol/g)

Ref.
CO CH4 H2 HCOO−

ZrPP-1-Co Zr/Co THPP 852.3 (20 mg), MeCN/TEOA, 300-W xenon lamp (λ > 420 nm),
TEOA, 15 h 210 7.5 [139]

Pbz-MOF-1 Zr-O HCBB ≈1768 (20 mg), MeCN/H2O, 300-W xenon arc lamp (λ ≥ 420 nm),
TIPA, 12 h

176.5
[140]

PCN-136 Zr-O HCHC 1768 526

CsPbBr3 QDs
(15%)/UiO-66(NH2) Zr-O H4L 465.68 (10 mg), H2O/ethyl acetate, 300-W xenon arc lamp (λ ≥ 420

nm), H2O, 12 h 98.57 3.08 [141]

MOF-253-Re-(CO)3Cl Re-O dcbpy (5 mg), DMF/H2O, (400 < λ < 800 nm), TEOA, 4 h 446 22 1900 [142]

NH2-rGO (5
wt.%)/Al-PMOF Zr-O TCPP 1180 (50 mg), MeCN/TEOA, 125-W mercury lamp, TEOA, 6 h 4113.6 [143]

NH2-MIL-101(Fe) Fe-O H4L (2 mg), Solvent-Free, 300-W xenon arc lamp (400 < λ < 780
nm), TEOA, 5 h

87.6
[144]

NH2-MIL-53(Fe) Fe-O H4L 15.7

AUBM-4 Zr-O cptpy 50 (20 mg), MeCN/TEOA, 150-W (420 < λ < 800 nm), TEOA, 6
h 2196 [145]

PCN-222 Zr-O TCPP 1728

(20 mg), MeCN/TEOA, 300-W (420 < λ < 800 nm), TEOA, 6
h

2197 [146]

Eu-Ru(phen)3-MOF Eu-O H3L 2205 [147]

NH2-MIL-53(Fe) Fe-O BDC 2199 [148]

253-Ru(5,5′-dcbpy)(CO)2Cl2 Ru-O dcbpy 2200 [149]

MIL-101(Fe) Fe-O ATA 2201 [148]

Zr-SDCA-NH2 Zr-O H2L1 2546 2202 [150]

NNU-28 Zr-O H2L 1490 2203 [151]

Ir-CP Ir-ligand dcbpy (20 mg), MeCN/TEOA, 500-W (420 < λ < 800 nm), TEOA, 6
h

2204 [152]

NH2-UiO-66(Zr) Zr-O BPDC 778 2198 [153]



Polymers 2019, 11, 2090 9 of 54

Table 2. Cont.

Photocatalyst
Active Metal

Cluster
Organic

Metal Linker
BET

(m2/g)
Photocatalytic Reaction Condition [Catalyst Loading,

Solvent, Power, Sacrificial Agent, Irradiation, Time (h)]
Throughput (µmol/g)

Ref.
CO CH4 H2 HCOO−

Zr-SDCA-NH2 Zr-O H2L1 2546 (40 mg), MeCN/TEOA, 300-W xenon lamp (420 < λ < 800
nm), TEOA, 12 h 470 [150]

co-cat. ZIF-67 Zn-O TCPP 445 (10 mg), MeCN/MeOH/TEOA, 300-W xenon lamp (420 < λ

< 800 nm), TEOA, 6 h 2120 209 [154]

ZnMn2O4,
nanoparticle Zn-O 2.7

(100 mg), H2O, 500-W Xenon arc lamp (λ = 400 nm), TEOA,
8 h

94.7

[155]
ZMO-350 Zn-O PTCDA 24.7 159.9

ZMO-450 Zn-O PTCDA 45.8 191.9

ZMO-550 Zn-O PTCDA 109.1 126.6

ZMO-650 Zn-O PTCDA 8.4 106.9

Co6-MOF Co-O NTB 1957.5 (3 mg), MeCN/H2O, 150-W xenon lamp (420 ≤ λ ≤ 780),
TEOA,3 h, PS 13.120 9376.7 [156]

QS-Co3O4HoMSs
(ZIF-67) Co-O 2-mIM (5 mg), H2O, 200-W xenon lamp (AM 1.5 filter), 5 h 231.5 [157]

BIF-101 Co-O NBDC 328.1 (10 mg), MeCN/H2O, (λ > 420 nm), 10 h, PS 58.300 11.000 [158]

MOF-74 Zn-O DHBDC

(30 mg), H2O, 500-W xenon lamp, 5 h

7.42

[159]
Pt/MOF-74 Zn-O DHBDC 8.85 9.04

Au@Pd@MOF-74 Zn-O DHBDC 12.31

Pt/Au@Pd@MOF-74 Zn-O DHBDC 2.42 12.35

Co1.11Te2⊂C Co-/Te-O 2-mIM 107 (1 mg), MeCN/TEOA/H2O, 200-W white LEDs lamp,
TEOA, 3 h, PS 34.200 73.4 12.394 [160]

Ni MOLs (Pure CO2) Ni-O BDC 48.9

(1 mg), MeCN/TEOA, 5-W white LED light (400 nm ≤ λ ≤

800 nm), TEOA, 2 h, PS

12.500 280

[161]

Ni MOLs (10% dilute
CO2) Ni-O BDC 12.5 0.38

Co MOLs (Pure CO2) Co-O BDC 44.6 4.61 2.34

Co MOLs (10% dilute
CO2) Co-O BDC 0.44 4.15
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Table 2. Cont.

Photocatalyst
Active Metal

Cluster
Organic

Metal Linker
BET

(m2/g)
Photocatalytic Reaction Condition [Catalyst Loading,

Solvent, Power, Sacrificial Agent, Irradiation, Time (h)]
Throughput (µmol/g)

Ref.
CO CH4 H2 HCOO−

Zn2GeO4 56.4 (20 mg), MeCN/H2O, 300-W
xenon arc lamp (200 < λ < 1100 nm), 9 h

1.8
[162]

Zn2GeO4/Mg-MOF-74 Zn-O H4DOBDC 406.7 12.94

PCN-138 Zr-O TCPP 1261 (10 mg), MeCN/H2O, 300-W xenon lamp (λ ≥ 420 nm),
TIPA, 12 h 2021 [163]

Co-cat. Ni3(HITP)2 Ni-N4/Ni2+ HATP 630 (2 mg), MeCN/H2O/TEOA, 100-W LED light (λ = 420 nm),
TEOA, 3 h, PS 103.50 3745 [164]

O-ZnO/UiO-66-NH2 Zr/Zn-O ATA
(100 mg), NaHCO3 aq., 300-W xenon lamp (λ > 420 nm), 6 h

29.6
[165]

O-ZnO/rGO/UiO-66-NH2 Zr/Zn-O ATA 877.3 38.5

TiO2 42

(3 mg), 150-W xenon lamp (λ > 325 nm), H2, 6 h

17.1

[166]

NH2-UiO-66 Zr-O BPDC 871 9

1-TiMOF Zr/Ti-O BPDC 173 22.44

2-TiMOF Zr/Ti-O BPDC 202 25.44

3-TiMOF Zr/Ti-O BPDC 268 20.22

4-TiMOF Zr/Ti-O BPDC 284 17.1

MOF-525 Zr-O TCPP 2127.7
(2 mg), MeCN/TEOA, 300-W xenon arc lamp (400 nm < λ <

800 nm), TEOA, 6 h

384.12 37.2

[167]MOF-525-Co Zr-O TCPP 1317.8 1203.6 220.56

MOF-525-Zn Zr-O TCPP 1264.2 670.2 69.81

C-Cu2−xS@g-C3N4 Cu-O TAA 95.1 (1 mg), H2O, (300 nm < λ < 800 nm), H2O, 12 h 1062.6 26.42 [168]

QS-Co3O4HoMSs(ZIF-67) Co-O 2-mIM (1 mg), H2O, 200-W xenon lamp, H2O, 5 h 231.5 [157]
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Table 2. Cont.

Photocatalyst
Active Metal

Cluster
Organic

Metal Linker
BET

(m2/g)
Photocatalytic Reaction Condition [Catalyst Loading,

Solvent, Power, Sacrificial Agent, Irradiation, Time (h)]
Throughput (µmol/g)

Ref.
CO CH4 H2 HCOO−

g-C3N4 34.55

(20 mg), MeCN/TEOA, 300-W xenon arc lamp, TEOA, 6 h

32.442 9.294

[169]

BIF-20@g-C3N4, (10%
g-C3N4) Zn-O BH-(mim)3− 378.83 170.85 56.1

BIF-20@g-C3N4, (15%
g-C3N4) Zn-O BH-(mim)3- 283.67 242.75 72.7

BIF-20@g-C3N4, (20%
g-C3N4) Zn-O BH-(mim)3- 1276.01 305.85 88.15

BIF-20@g-C3N4, (25%
g-C3N4) Zn-O BH-(mim)3- 1177.77 257 75.35

AD-MOF-1 Co-O HAD/BA (5 mg), MeCN/H2O, 300-W xenon lamp (420 < λ < 800 nm),
TIPA, 4h 716

[170]

AD-MOF-2 Co-O HAD/IA (5 mg), MeCN/H2O, 300-W xenon lamp (420 < λ < 800 nm),
TIPA, 5 h 1773

MIL-101-EN Cr-O TPA 839.7
(5 mg), H2O/TEOA, light-intensity-controlled xenon lamp,

TEOA, 10 h

472 17.12

[171]MIL-101-SO3H Cr-O TPA 1936.9 217 13

MIL-101-Cr Cr-O TPA 3126.5 83 17

NNU-29 Zn-O L (10 mg), H2O/TEOA, 300-W xenon arc lamp (420 < λ < 800
nm), TEOA, 16 h, PS 18 58 3520 [172]

MOF-Cu Cu-O TCA
(5 mg), MeCN/H2O, 300-W xenon lamp (λ ≥ 420 nm), TIPA,

12 h, PS

344 1162

[173]MOF-Co Co-O TCA 4564 5062

MOF-Ni Ni-O TCA 4472 104
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Table 2. Cont.

Photocatalyst
Active Metal

Cluster
Organic

Metal Linker
BET

(m2/g)
Photocatalytic Reaction Condition [Catalyst Loading,

Solvent, Power, Sacrificial Agent, Irradiation, Time (h)]
Throughput (µmol/g)

Ref.
CO CH4 H2 HCOO−

TiO2 138.07

(10 mg), H2O, 300-W xenon lamp (λ > 300 nm), 8 h

6.56

[174]PCN-224(Cu) Zr-O TCPP 2285 29.76 10.86

15%
PCN-224(Cu)/TiO2

Zr-O TCPP 178.05 297.68 1.69

(Co/Ru)2.4-UiO-67(bpydc) Co-O bpydc 103.3 (1 mg), MeCN/H2O, 450 nm LED light, TEOA, 16 h, PS 4520.4 9121.5 [175]

36% CdS/MIL-101(Cr) Cr-O TPA 0.1324 (10 mg), H2SO4 + NaHCO3, (λ ≥ 400 nm), 3.33 h 54.5
[176]

CdS (10 mg), MeCN/TEOA, 300-W xenon lamp (λ ≥ 420 nm),
TEOA, 10 h 230 2480

CdS/UiO-bpy Zr-O bpydc 52.6 (10 mg), MeCN/TEOA, 300-W xenon lamp (λ ≥ 420 nm),
TEOA, 10 h

2750
[177]

CdS/UiO-bpy/Co Zr-O bpydc 25.5 2350 410

CsPbBr3@ZIF-8 Zn-O 2-mIM
(4.5 mg), H2O, 100-W xenon lamp AM 1.5G filter, H2O, 3 h

1.515 5.434
[178]

CsPbBr3@ZIF-67 Co-O 2-Mim 2.301 10.537

The data in this table conscript recent MOFs’ CO2 conversion capacities in yield with detailed reaction conditions for respective selectivities and references; some data are modified from
originally reported units to ensure dimensional homogeneity (µmol per gram of catalyst). PS ([Ru(bpy)3]Cl2·6H2O) stands for PSPS, which was discussed in the main body. Selectivity
calculation: S = [nco/(nco + nCH4 + nH2 + nHCOOH)] × 100%, where nco = yield of CO, nCH4 = yield of CH4, nH2 = yield of H2, and nHCOOH = yield of formate.



Polymers 2019, 11, 2090 13 of 54

The structural agreement with the electronic property of MOF stack promotes efficient charge
transfer with enhanced solar irradiation collection, even though MOFs have the same metal
cluster, framework topology, particle size, crystallinity, and pore size arrangement; thus, it is
plausible that MOFs may experience different CO2 photocatalytic reduction potentials rendered
from structural deviation [179]. Recently, structural modification of MOFs has been studied for
enhanced photolytic exertion, achieved by alteration of MOFs structure via large π-conjugated ligand
inclusion onto Zr-based MOF (Zr6(µ3-O)4(µ3-OH)4(OH)6(H2O)6(HCHC), where HCHC = hexakis
(4-carboxyphenyl) hexabenzocoronene), denoted as PCN-136. In the fabrication process, a solvothermal
reaction was used to synthesize pbz-MOF-1 (Zr6(µ3-O)6(µ3-OH)2(Ac)5(OH)(H2O)(HCBB)) from
Zr4+ salt and hexakis(4′-carboxy[1,1′-biphenyl]-4-yl) benzene (HCBB) ligand followed by oxidative
cyclodehydrogenation under FeCl3 catalyst. Thereby, PCN-136 was constructed by post-synthetic
annulation of pbz-MOF-1 via transforming the hexaphenylbenzene core of the HCBB ligand to
the planarized hexabenzocoronene ligand (HCHC). Semiconductor characteristics of PCN-136 were
assessed to have 1.18 eV as its optical bandgap, while LUMO and HOMO are −0.75 and 0.43 V (vs.
NHE), respectively; the lower LUMO value from the reduction potential of CO2 to formate guarantees
the photoreduction potential of this MOF catalyst. Furthermore, PCN-136 CO2 uptake capacity at 273
K was found to be 61.01 cm3

·g−1. This suggests that communication between sp2-bonded carbon atoms
within hexabenzocoronene fragments is indeed responsible for the amplified CO2 adsorption capacity
of PCN-136. Photocatalytic CO2 reduction potential of PCN-136 was shown by Qin et al. to have
selective CO2 reduction to HCOO−, yielding 10.52 µmol formate, which is 3-fold more than the pristine
pbz-MOF-1 conversion yield in the same reaction condition (Table 2). This reduction outperformance is
attributed to extended π-conjugated hexabenzocoronene-based linkers in PCN-136, which will assist its
photoinduced redox reaction by broadening the visible light spectrum absorption range and increasing
current density (Figure 3a,b). Thermogravimetric analysis (TGA) reveals that the as-prepared material
exhibits better thermal resistance relative to the precursor complex (Figure 3c,d) [140].
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Figure 3. (a) UV−vis spectra of pbz-MOF-1 and PCN-136; insets are the optical pictures of pbz-MOF-1
(left) and PCN-136 (right), (b) Transient photocurrent responses of pbz-MOF-1 and PCN-136 in 0.5 M
Na2SO4 aqueous solution under visible-light irradiation. The thermogravimetric analysis (TGA) curves
from room temperature to 800 ◦C at the heating rate of 10 ◦C·min−1 of (c) PCN-136 and (d) pbz-MOF-1.
Reproduced with permission [140]. Copyright 2019 American Chemical Society.
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The incorporation of material that has high light-harvesting ability and surplus electron
density to Zr-based MOF will provide extraordinary CO2 reduction capacity of the templet,
and the inclusion of Ru-complex in Zr-based MOFs advances the photoinduced reduction
and conversion not only by supplying higher oxidation-reduction capacity but also long-lived
exciton generation with better charge carrier separation [180,181]. An exemplary Zr-based
MOF (AUBM-4, American University of Beirut Materials) embellished with Ru-based ligand
has been reported for improved photolytic operation, the catalyst assembly achieved through
(Ru(cptpy)2), [bis(4′-(4-carboxyphenyl)-terpyridine)Ru(II)complex] embodiment on the backbone
of ZrO8 cluster [145]. AUBM-4 is a one-dimensional structured MOF BET with a surface area of
50 m2

·g−1 and 1.88 eV optical bandgap; this absorption band is supplied from ruthenium metallic
ligand (inside MOF architecture) of singlet metal-to-ligand charge transfer (MLCT). The further
demonstration of AUBM-4 electronic structural activity in response to light irradiation for CO2

photoreduction (Scheme 1) is believed to have Zr-O metal cluster with 4d orbital Zr metal and
Ru(cptpy)2 supportive organic ligand, indicating that the ruthenium metal center is responsible
for light-harvesting and exciton provision to organic linker cptpy (4′-(4-carboxyphenyl)terpyridine).
This organic linker will form radical cptpy•−, and then there is a direct reduction of CO2 via
Zr-metal coordination; notably, the presence of electron donors is vital to enhance the repeatability
of the reduction process by protonating deprotonated Ru-metal center. As reported by Elcheikh
Mahmoud et al., AUBM-4′s superb CO2-to-HCOO− conversion capacity was in the same reaction
condition compared to other catalysts, such as PCN-222 [Zr6(µ3-OH)8(OH)8-(TCPP)2], NH2-UiO-66(Zr),
253-Ru(5,5′-dcbpy)(CO)2Cl2, MIL-101(Fe) [Fe3F(H2O)2O(BDC)3], Zr-SDCA-NH2, NNU-28, Ir-CP,
and Eu-Ru(phen)3-MOF (Table 2) [146–153].
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natural photocatalytic reaction approach of green plants [182,183]. Using this material in combination 
with Zr-based MOFs for photocatalytic CO2 conversion would result in better energy collection and 
utilization, thereby boosting photocatalytic conversion. In 2019, Hu et al. developed 2D light-
harvesting MOF analogs [i.e., metal-organic-layer (MOL)], which were efficient multiple photo-
exciton injectors in short duration and transport to Re- and Ir-based reaction metal site for 
photocatalytic reduction of CO2 to CO and/or HCOOH [184]. Therefore, the incorporation of MOLs 
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Scheme 1. The illustration of Zr-based MOF (AUBM-4) photolytic CO2 reduction mechanism upon
light illumination, (a) Incident irradiation, (b) Exciton generation and transmission of Ru-to-cptpy
MLCT, (c) Ru-reducing via protonation from TEOA sacrificial agent, (d) cptpy•− radical will provide
electron to neighboring CO2 molecule for conversion. Color coding (excluding hydrogen): Ru(gold),
Zr(green), C(gray), O(red), N(blue). Reproduced with permission [145]. Copyright 2019 American
Chemical Society.

To maximize the photocatalytic conversion ability of Zr-based MOF 2D metal-organic layers
(MOLs), crystalline is a perfect ally for the enhancement of light-harvesting capability of a MOF
template. Characteristics like separated ligand by metal connected nodes, weak chromophore
coupling region, and efficient energy transfer to reaction site attribute for 2D MOLs, mirroring
the natural photocatalytic reaction approach of green plants [182,183]. Using this material in
combination with Zr-based MOFs for photocatalytic CO2 conversion would result in better energy
collection and utilization, thereby boosting photocatalytic conversion. In 2019, Hu et al. developed
2D light-harvesting MOF analogs [i.e., metal-organic-layer (MOL)], which were efficient multiple
photo-exciton injectors in short duration and transport to Re- and Ir-based reaction metal site for
photocatalytic reduction of CO2 to CO and/or HCOOH [184]. Therefore, the incorporation of MOLs
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catalytic antenna enhances the directional multi-photon-generated electron injection and improves
transport to the reductive site of the MOF catalytic center (Re- and Ir-based), affecting prohibited
charge recombination to increase the photocatalytic performance of the respective conjugated MOFs.
In another study, the integration of ligands with distinguished engineered solids proved to be an effective
avenue for the designability of MOFs equipped with advanced CO2 uptake and photoreduction;
this MOF entwined bond formation of explicit building units (molecules and clusters) with an
extended skeleton through topological consideration [185]. To further elaborate the above-mentioned
stipulation, Qiu et al. recently contrived two MOFs-mixed ligands with two 3D Archimedean
solids (Ass), rhombicuboctahedron and cuboctahedron. Despite the complication of ASs design
[i.e., (I) ASs have identical apex, (II) at least two different regular polygons should constitute to
each member of ASs, (III) each regular polygon in ASs (e.g., square, pentagon, hexagon, octagon,
decagon, equilateral triangle) should have equal edge-length], these ASs are potential candidates to
synthesize endured MOFs with careful design and manipulation. The number of metal nodes to be used
affects the construction of ASs-based MOFs, commonly 7-connected Zn4O clusters and 12-connected
Zr6 clusters. The two ASs-based MOFs were constructed based on a polyhedron-blueprint from
stacking of rhombicuboctahedron (PCN-137) and cuboctahedron (PCN-138); it is worth noting that
1,3,5-benzene(tris)-benzoate (BTB) and/or 4,4′,4”-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoate (TBTB)
organic ligands and tetrakis(4-carboxyphenyl)-porphyrin (TCPP) ligand had equilateral triangles and
square, respectively (Scheme 2a,b). This geometrical side-length equivalency asserted the utilization
of ASs to construct rhombicuboctahedron cast (3,4,7)-connected topology PCN-137 via face-sharing
(Scheme 2c,d). Onto the rhombicuboctahedron cast, theµ4-oxygen atom at the equator was connected to
two Zn1 and two Zn2 atoms, fashioning a Zn4(µ4-O) cluster (Scheme 2e). Contrarily, 12-connected Zr6

metal nodes were attached to four discrete TCPP ligands in the central plane through four carboxylate
moieties and eight TBTB ligands at the top and bottom of the central plane via eight carboxylate
moieties (Scheme 3a,b), producing a PCN-138 framework using two different-sized cages (Scheme 3c,d)
with interconnection of three or four Zr6 clusters to deprotonated TBTB or TCPP ligand, respectively
(Scheme 3e). The nitrogen sorption analysis showed that the BET surface area of PCN-138 was 1261
m2
·g−1, and its CO2 uptake capacities was 63.07 and 40.72 cm3

·g−1 at 273 and 298 K, respectively.
This n-type semiconductor MOF (PCN-138) had VB(HOMO) 0.96 V vs. NHE and CB (LUMO) of
−0.86 V vs. NHE. Thus, the more negative value of PCN-138 LUMO from the CO2 to formate reduction
potential (−0.28 V vs. NHE) certified that PCN-138 was viable for CO2 reduction potential (20.21 µmol
formate) [163].
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4.2. Zn-Based MOFs

Although extensive research has been done on the utilization of noble metal and dye molecules
as PS to achieve enhanced photocatalytic performance with selective product reduction of CO2,
and their application is seemingly impractical due to lack of abundance and stability issue under light
irradiation [186–189], the inclusion of noble-metal-free co-catalyst together with sensitizer possessing
high light absorption ability and irradiation stability is the best way to counteract the above-mentioned
problem. Moreover, a zinc (Zn)-based MOF could be concocted in a modified dimensional structure
for the ramification of better adsorption-reduction capacity. It is noteworthy that the integration
of improved ligand-to-metal synergy achieves better photothermal resilience; this aspect not only
increases the recyclability of ordinary MOFs’ photocatalysts but also critical determinant characteristics
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for PS design [190]. To elucidate this aspect, in 2018, Ye et al. studied ultrathin two-dimensional
Zn-MOF [Zn porphyrin], based on TCPP ligand, nanosheet with BET surface area of 445 m2

·g−1 and CO2

adsorption potential of 103.8 cm3
·g−1. This Zn-MOF was applied as a PS in cobalt complex co-catalyst

ZIF-67 [Co2(OH)L](ClO4)3; (L = N[(CH2)2NHCH2(m-C6H4)CH2NH(CH2)]3N) in a MOF/ZIF CO2

photocatalytic reduction system [154]. Photoreduction was carried out by feeding pure CO2 (99.999%)
to the preassembled bulk Zn-MOF and ZIF-67 (0.18 µmol), yielding 21.20 µmol of CO and trace H2

(91% selectivity of CO over H2) (Table 2).
Having higher BET surface area, ultrathin (4.7 nm thickness) Zn-MOF semiconducting PSs

possess admirable electronic structure, attributing enhanced irradiation harvest and thus the increased
photolytic performance of MOF/ZIF hybrid system achieved for the selective deoxygenated reaction
of CO2 under mild redox condition. The hybrid photocatalyst outperforms bulk MOF, affirming the
synergistic communication between the matrices and sensitizer. This MOF shows better thermal
stability, and TGA confirms that decomposition of TCPP causes loss of mass and pores to subsequent
decline of photoreduction efficiency after 400 ◦C. Therefore, incorporation of a suitable semiconductor
as a PS to a MOF complex will aggravate the photocatalytic sensibility for CO2 reduction with detracted
photon radiation degradation; thus, making noble metal obsolete in the design and synthesis of
photoreductant MOFs is another accomplishment.

Heating MOFs’ nanomaterial can result in the fabrication of metal oxide nanostructures. Effective
selection and controlling of the synthesis route of nanostructure oxide formation yield dynamic
photocatalysts, which even outperforms the pristine components for CO2 reduction [191–193]. When it
comes to the employment of semiconductor nanostructures as photocatalysts, enlarged absorption
band, better charge-carrier separation, and high surface area to volume ratio are attainable. The effect
on the performance of hybridized MOFs at various temperatures is discernable. For example, Yan et al.
recently reported an investigation targeted on procuring affordable (low-cost), environmentally friendly,
and efficient photocatalyst of ZnMn2O4. This work has been secured in novel porous self-assembly
microsphere photocatalyst with controlled particle size, large specific available surface area, many
reactive sites, acknowledged redox reaction ability, harsh condition resilience, and apt bandgap [155].

ZnMn2O4 nanoparticles (NPs) were constructed from calcinated powder of zinc
acetate and manganese acetate; on the other hand, ZnMn2-ptcda (ZMO, where
ptcda = perylene-3,4,9,10-tetracarboxylic dianhydride) MOF precursor was calcinated at four different
temperatures (350, 450, 550, and 650 ◦C) to obtain powders denoted as ZMO-350, ZMO-450, ZMO-550,
and ZMO-650, respectively. Flower-like ZMO-based microspheres exhibited an increase in particle
size with the inclination of calcination temperature. The BET surface areas of ZMO-350, ZMO-450,
ZMO-550, and ZMO-650 were 24.7, 45.8, 109.1, and 8.4 m2

·g−1, respectively. Unlike the smaller
surface area drawback of ZMO-650, its electronic structure was appreciable due to the lowest bandgap
(2.15 eV) [194,195], while the precursor ZnMn2O4 NP had smaller BET surface area (2.7 m2

·g−1) and
large bandgap (2.1–2.6 eV); the large bandgap for the small ultrafine particle-sized nanostructure
(ZnMn2O4) was due to the quantum confinement effect. Due to increased photo harvest and
hindered charge recombination, the ZnMn2O4 microspheres possessed better CO2–to-CO conversion
photoreduction activity than ZnMn2O4 nanostructure (Table 2), rendered from electro-structural and
morphological disparity.

Although physic-thermal treatment promotes morphological and electronic characteristics of
MOFs, the type of organic ligand and heat tolerance still engender repressed applicability. As a
mitigation strategy, the envelopment of NPs in the hosting MOFs matrix seems productive [196].
More recently, Han et al. addressed enhanced photocatalysts via incorporation of NPs functionality in
MOFs. The assembled material was fabricated by direct encapsulation of core-shell (Au@Pd) NPs in
Zn-based MOF (MOF-74) catalytic material, where an Au@Pd core-shell (i.e., Au NPs used as the core
to grow Pd near-spherical shell) produced Au@Pd@MOF-74 MOF showed the complete conversion of
CO2 to CO [159]. Furthermore, the inclusion of Pt NPs in pure MOF and composite Pt/MOF-74 and
Pt@ Au@Pd@MOF-74, respectively, enhanced the CO2 reduction, for both methanation and reverse
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water-gas shift (RWGS), to CO at low concentration. Due to simple morphological controllability,
the MOF-74 catalyst was selected to be used as the template to envelop NPs. Resulting from weak
photon adsorption potential standalone, the Au@Pd NPs and Au@Pd@MOF-74 experienced lower
CO2 reduction [197]. Furthermore, the higher Pt loading and surface exposure assist charge trapping,
and the enhanced synergistic interaction between Pt and Au@Pd core-shell structure boosts the overall
reduction potential of the composite catalyst with acceptable stability.

It is noteworthy that the speculated capacity of Au@Pd@MOF-74 is to photoreduce CO2 to CO,
while Pt/MOF-74 has a capacity of converting CO2 to CH4. Therefore, Pt/Au@Pd@MOF-74 is expected
to possess the cumulative effect of those two co-catalytic materials, and potential candidates for
CO2 reduction to both CO and CH4; when this material is used in photocatalytic reduction reaction,
CO2 would be converted to CH4 (with 84% selectivity) and 100% CO generation when employed in
RWGS reaction.

4.3. Ti/TiO2-Based MOFs

Titanium dioxide (TiO2) semiconductor’s optical absorption is confined to only UVspectrum as
a result of its large bandgap 3.0–3.2 eV possession, and hence sensitivity to a low portion of total
solar irradiation (UV) and prevailing charge-recombination, both of which diminish the photocatalytic
performance of titanium semiconductor [198]. In another perspective, the handy-designability of
the TiO2 nanotube array structure allows enhanced light absorption spectrum band and higher
charge-carrier separation [199,200]. In 2018, Li et al. reported a light-concentrating photoreactor to
be used in CO2 photocatalytic reduction driven by inorganic semiconductor catalyst (TiO2 nanotube
array) prepared by anodization method capable of harvesting incident irradiation. The BET surface
area of this catalyst was 26 m2

·g−1, the photoinduced redox reaction was conducted between pure
CO2 and water on the catalyst, and capacity of CO2 to CH4 conversion was increased from 0.7 to 20.67
µmol·g−1

·h−1. This was attributed to the enhancement of incident light intensity and surface oxidation
state property of the catalyst [201].

TiO2 material could be molded in discrete methods, the results of each being positive with
respect to specific electro-physic-chemical aspects. It is customary for the incorporation of noble metal
(for example, Pt, Pd, Rh, Ru, Au, Cu, Cu, Pt, ZnPd, and AuCu) into bare TiO2-based photocatalyst
in order to suppress possible charge recombination of the electron-hole by providing a separation
heterojunction, and asserting better-photogenerated exciton transmission to the active catalytic metal
site (where the reduction takes place) [202–205]. The utilization of a noble metal for photocatalyst
design shortens the practical application emanated from a lack of abundance and stability [206].
However, the annealing method avoids the need for noble metal is avoided. Reports from Kar et al.
affirmed the development of standalone TiO2 photocatalyst by flame annulation of TiO2 nanotubes
(FANTs) for efficient CO2 photocatalytic reduction without any noble metal co-catalyst [207]. Solo TiO2

photocatalysts were proposed as stable photocatalysts based on FANTs converting CO2 into CH4

under visible light irradiation with a high formation rate of 156.5 µmol·g−1
·h−1. The promoted CO2

photocatalytic performance of FANTs stemmed from the sole rutile crystalline existence, increased
visible light absorption, and square morphology.

4.4. Fe-Based MOFs

Iron (Fe)-based photocatalysts are the most typical in the photocatalytic reduction arena; Fe-oxide
semiconductors have tremendous performance in photon collection and subsequent reduction of
substrates proximate to the active exciton electron site. The ability to harvest visible light for multiple
hot-electron injections, alterable structure, and material abundance (cost-effectiveness) is a major factor
for researchers to focus on Fe-based photocatalyst development. In particular, the integrability of
Fe-oxide with other materials with enhanced structural communication between the constituents
broadens the innovation of perovskite and MOFs for CO2 reduction [208]. Lately, Liu et al. developed
a MOF (Ag/AgCl@ MIL-53-Fe) with improved visible-light photocatalytic activity via solvothermal
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integration of plasmonic Ag/AgCl NP and MIL-53-Fe. Due to the enhanced synergistic photoinduced
charge transfer of Z-scheme morphological arrangement between the components in the composite
MOF (Ag/AgCl@MIL-53-Fe), the as-prepared composite photocatalytic material exhibited higher
solar-driven reduction potential compared to the precursor pristine material [209], and the bandgap of
2.64 V showed the possibility for further study in pollutant reduction.

Furthermore, environmentally adaptable MOFs’ photocatalysts could be designed using
Fe-O. Dao et al. proclaimed three solvent-free MOFs for photocatalytic reduction of CO2 with
the motif of boosting photoconversion efficiency and selectivity of CO evolution. Remarkably
their result forbade any evolution of H2, CH4, and/ or liquid product (i.e., HCOOH).
This corroborated that all Fe MOFs have extraordinary selective photocatalytic reduction of CO2

toward CO; thus, three Fe-based MOFs were experimentally synthesized by hydro-solvothermal
reaction and examined for CO2 deoxygenation photoreduction activity: NH2-MIL-53(Fe)
[Fe(OH) -(NH2-BDC)]·G, NH2-MIL-88B(Fe)[Fe3O(H2O)3(NH2-BDC)3]Cl·G, and NH2-MIL-101(Fe)
[Fe3O(H2O)3(NH2-BDC)3]Cl·G [144].

This solvent-free MOF for photoreduction contains TEOA as a sacrificial electron donor; due to
the presence of an amine functional group in the photocatalyst, light absorption and CO2 reduction
affinity at the gas–solid interface will be upgraded [210]. Compared to the usual solvated CO2

photoreduction, this solvent-free MOF affords extra surface area of contact for the redox reaction and
is environmentally adaptable. All Fe-based MOFs have higher LUMO values to that of CO2 to CO
reduction potential (−0.53 V vs. NHE), insinuating achievable CO2 photoreduction [211]. Of the
three Fe MOFs, NH2-MIL-101(Fe) has superior CO2 photoreduction capacity and is plausible for CO2

deoxygenating redox reaction, with a conversion capacity of 87.6 µmol·g−1, which is nearly 5.6 times
higher than NH2-MIL-53(Fe) (Table 2).

The efficient performance of NH2-MIL-101(Fe) emanates from its better electrical dynamism.
Conductivity from Nyquist plots of NH2-MIL-101(Fe) is 4.1× 10−6 S·cm−1, while that of NH2-MIL-53(Fe)
is 1.1 × 10−6 S·cm−1 [212]; this deviation arises from their peculiar framework structures. However,
since all these photocatalysts have been designed to operate in a solvent-free system, their performance
in the presence of moisture, acid, and contaminants is not clearly stipulated, and it is noteworthy
that this hostile condition resilience of photocatalyst is critical to specify the application area of CO2

reduction [213].

4.5. Ni-Based MOF

Logically, metal nodes supply concentrated catalytic activation sites in MOFs, signifying the
compatible selection and designability of metal clusters propelling the photoreduction process by
cherishing unsaturated coordination of metal sites into the framework. For instance, the incorporation
of nickel (Ni) metal ion in the MOFs as metal clusters will not only increase the photolytic conversion
purified gases but also dilute forms of CO2 [214,215]. Recently, Han et al. studied nodal metal
dependence of MOF-based CO2 photocatalytic reduction using Ni-based MOF in monolayers [ultrathin
Ni MOLs] for efficient photocatalytic reduction of diluted CO2 (10%), which were constructed by
hydrothermally ultrasonication process and examined [161]. This material had a 48.9 m2

·g−1 BET
surface area. The photocatalytic conversion was carried out in a photoreactor containing a photocatalyst,
Ni MOLs, and [Ru(bpy)3]Cl2·6H2O (bpy = 2,2′-bipyridine) as PS and TEOA (triethanolamine) as a
sacrificial agent under visible light irradiation; CO and H2 were main throughputs of the redox reaction,
and Ni incorporation possessed superior performance compared to Co analogy (Table 2). Collating
Ni ion with the conjugated ligand with enlarged coordination is believed to advance the synergy,
and thereby the catalytic performance. In 2018, Zhu et al. revealed a 2D conductive MOF nanosheet
with co-catalyst Ni3(HITP)2, (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) for CO2 photoreduction
potential under visible-light irradiation fortified by [Ru(bpy)3]2+, PS, and TEOA as sacrificial agent [164].
Ni3(HITP)2 is a π-stacked stratified MOF with extended π-conjugated coordination, showing superb
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conductivity comparable to graphene (5000 S·m−1), which in turn enables Ni3(HITP)2 to be an electron
sink reservoir of photogenerated excitons sourced from PS [216,217].

In addition, the elevated exposed surface area (up to 630 m2
·g−1) of Ni3(HITP)2 is responsible

for the provision of extra catalytic reaction sites, which will aggravate the CO2 reduction potential of
hybrid MOF [218]. This MOF has been confirmed to persist its original photocatalytic performance for
over six subsequent cycles with enhanced selectivity of CO production over H2 (Figure 4a,b). The CO2

to CO conversion performance is greatly influenced by the concentration of co-catalyst and sensitizer.
The physical structural assessment of Ni3(HITP)2 has been confirmed to have a hexagonal phase.
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4.6. Cu-Based MOF

Copper (Cu) clustered MOFs are capacitated with remarkable CO2 absorption potential with
excellent selectivity over N2 at ambient conditions, even under stiffened reaction conditions in large
amounts as the simplest path. Moreover, Cu clustered MOFs can be regenerated and reused with
original adsorption capability [219]. The incorporation of metal ions into the MOFs will increase the
photocatalytic performance of CO2 reduction to respective products, rendered from the enhanced
photogenerated charge carrier and separation with apt minimum decay; thus, carefully engineered
Cu-based MOFs are effective in long-lived electron generation and substrate reduction. Goyal et al.
provided an orthorhombic structured NP of MOF from Copper (II)/Zeolitic Imidazolate Framework-8
(2Cu/ZIF-8N2) photocatalyst in ammonium hydroxide concentration via hydrothermal process used
for CO2 conversion to methanol; the as-synthesized MOF had a bandgap of 1.75 eV, VB (0.72 V vs.
NHE), and CB (−1.02 V vs. NHE @ pH = 7), implying lower VB than that of ZIF-8 (2.41 V vs. NHE),
meaning the oxidation reaction took place in ZIF-8 [220]. On the other hand, the more negative-value
CB of synthesized MOF to the CO2 to MeOH potential (−0.38 V) affirmed this MOF’s reduction
potential with apropos metal loading.

The electronic configuration and electronic sensibility confirmed that Cu metal is a strong candidate
in heterojunction formation to desensitize charge recombination. In 2019, Hu et al. reflected affordable
three-component heterojunction photocatalyst to convert CO2 to CO without an organic sacrificial
agent. This heterojunction was constructed from Cu2-xS nanotubes laminated with a carbon layer
(C-Cu2-xS) and g-C3N4, and the ternary heterojunction was C-Cu2-xS@g-C3N4 [168]. The precursors
of Cu-containing material in this ternary heterojunction MOF is HKUST-1 MOF, with the periodic
distribution of Cu nodes and carbon-rich organic ligand attributes for the candidacy of HKUST-1.
Via implementation of apt sulfidation and calcination, C-coated Cu2-xS (C-Cu2-xS) tubes with the
hollow structure are collected, followed by mixing of C-Cu2-xS with g-C3N4 under the hydrothermal
condition to acquire C-Cu2-xS@g-C3N4 [221,222]. Many techniques have been used to characterize the
topology, morphology, stability, and performance. In the heterojunction, different ternary MOFs have
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been fabricated by alternating Cu (C-Cu2-xS) weight ratios; among these, 0.71 wt.% loading has shown
superb photocatalytic reduction of CO2 to CO (evolution rate of 88.5 µmol·h−1

·g−1), with a suppressed
competitive H2 evolution. This composite MOF has promoted 97.6% CO selectivity (Table 2). Therefore,
this ternary composite MOF has outperformance in photocatalytic activity, and being environmentally
friendly and low-cost, this MOF is feasible to be employed in the photoreduction of CO2 to CO [223].

Meager resilience of MOFs towards heat, humidity, and acidic condition obstructs their application
in coal- and gas-fired plants on emissions source points. For mitigating the aforesaid limitation,
MOFs need to be carefully designed with greater flexibility. Cu, as a metal cluster could be used to
pave this aspect. Liang et al. reported a design of rod-shaped blue crystal from the dense open metal
site (OMS) and Lewis base site (LBS) of Cu(II)-MOF (FJI-H14) [219]. The as-synthesized Cu-clustered
MOFs possessed efficient CO2 adsorption tendency under the humid and acidic conditions in the large
amounts. Fundamentally, FJI-H14 could be regenerated and reused with original adsorption capability
with distinguished acidic endurance. Moreover, powder x-ray diffraction (PXRD) confirmed that these
MOFs operated at a high temperature, showing intact stability, underwater, and 2 ≤ pH ≤ 12 (basic
and acidic media) (Figure 5a,b). This is all attributed to higher synergy between the Cu central metal
and BTTA linker.
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4.7. Composite MOFs

Most MOFs exhibit low chemical stability and poor reaction environment (such as alkalinity,
acidity, and heat) resilience; this stringent trait limits the advanced applicability on CO2 emission-spot
of huge power plant [224,225]. The incorporation of functionalization material to MOFs is intended
to mitigate the performance restraints of both components (i.e., MOFs template and moieties),
showing that the hybrid material performs better than the standalone constituents. The selection of
functionalization components depends on the compatibility of band edge and morphological aspect to
each other, prevailing efficient photocatalytic performance [226–229]. Generic advantages of MOFs
in the composite are accessible porous surface area, uniformly distributed crystalline, and structural
maneuverability, while merits of various functionalization materials are peculiar optical, magnetic,
electrical, and catalytic properties, escorting MOFs with proper functional moieties. Thereby, the novel
physic-chemical property will be obtained from this sophisticated composite material, affirming a
comprehensive combined effect for photocatalytic performance [230–233].
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4.7.1. Ti/TiO2 Composite

As mentioned above, titanium-based semiconductor for photocatalytic reaction has drawbacks due
to poor visible light absorption spectrum range and significant charge recombination. TiO2 has merits
of being non-toxic, abundant/naturally occurring (in forms of rutile, anatase, and ilmenite), structurally
adaptable, and having a colored structural texture [234]. In 2015, Anitha et al. claimed the development
of n- and p-type transparent semiconductors from TiO2-based thin films and nanomaterials for
photocatalytic activities in atmospheric pollutant reduction for their classical electrically conductive
property. In addition, as-proposed titanium materials were feasible for synthesis, modification,
and energy-related phenomenon [235]. It has been suggested that furnishing and doping MOF templates
with this titanium material would result in a great outcome due to morphological rapport [236,237].
Cardoso et al. reported Ti/TiO2-based composite MOF for photocatalytic reduction of CO2 [238],
and remarkable thermal and chemical resilience zeolitic imidazolate frameworks (ZIFs) are still
important aspects of MOFs [239]. Porous ZIFs are composed of coordinated tetrahedral divalent cations
(Zn2+, Co2+, and Cd2+) with a zeolite-like framework consisting of imidazole spacer ligands [240].
ZIF-8 (Zinc-based compound [Zn(mIM)2], mIM = 2-methylimidazole), taking advantage of its porous
nature with a higher exposed surface area (1881 m2

·g−1) and attractive stability, is famous for its
utilization due to selective chemisorption, activation, and co-catalytic activity in CO2 photoreduction.
Additionally, the presence of an imidazolate linker basic site assists the CO2 activation tendency of
ZIF-8 [241]. Fabricated MOF material topological property has been scrutinized by different techniques.
Scanning electron microscopy imaging reveals the original porous topology of TiO2 nanotube (NT)
(Figure 6A); TiO2NT has dimensionally characterized nanotube with a diameter of 90 to 100 nm,
the thickness of 20 to 30 nm, and length of nearly 1.2 µm, which is input for advancing gas adsorption
capacity of the hybrid MOF. After ZIF-8 embodiment on TiO2NT, NPs with an average size of 50–57 nm
agglomerate and are distributed over the entire surface of NT by nucleation and particle growth without
clogging the initial nanotube voids (Figure 6B,C). The EDS pattern (Figure 6D) ensures the attendance
of Ti, C, N, O, and Zn elements in the assembly complex. Moreover, TEM images (Figure 6E,F for
Ti/TiO2NT and Ti/TiO2NT-ZIF-8, respectively) confirm the incorporation of ZIF-8 NPs in-between and
within TiO2NT.
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of pure TiO2 nanotubes, (B,C) FEG/SEM images of NPs of ZIF-8 incorporated into Ti/TiO2NT, at two
different magnifications, (D) SEM-EDS spectrum of Ti/TiO2NT-ZIF-8, (E) TEM of Ti/TiO2 nanotube,
(F) TEM of Ti/TiO2NT-ZIF-8. Adopted and edited with permission [238]. Copyright 2007 Elsevier.
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Due to Ti4+ structural-incapacitation to adsorb CO2, bare Ti/TiO2NT shows very low CO2

photoreduction to ethanol (EtOH) and methanol (MeOH), while utilization of Ti/TiO2NT-ZIF-8
photocatalyst results in 430-fold of EtOH and 20-fold of MeOH, proving exceptional effects of MOF
complex toward CO2 reduction due to the hybridization of titanium-based nanotube and ZIF-8
decoration, affirming that EtOH is indeed favored. Therefore, Ti/TiO2NT-ZIF-8 photocatalyst acquires
efficient CO2 adsorption and conversion to fuel, owning substantial breakthroughs in the composite
MOFs arena [242].

Remarkably, porous ZIF-8 material is thermally stable up to 200 ◦C, and it can easily be fabricated
by treating Zn(NO3)2·6H2O with excess mIM at room temperature. Notably, this gives a quick
production of narrow-sized, regularly distributed nanocrystals [243]. This new subclass zeolitic-based
MOF could be coupled with different semiconducting materials, yielding improved photocatalytic
material [244,245].

Maina et al. [246] reported that the same template MOF (ZIF-8) was infused with coordinated
semiconductor NP (TiO2 and Cu-TiO2) via rapid thermal deposition (RTD) for CO2 photolytic activity.
It was found that the CO2 reduction rate of this heterostructure was higher compared to the pure
precursor (Figure 7a). Along with repeated cycles, the composite material exhibited lower efficiency
persistently, especially for CO evolution rate; furthermore, the production yield varied depending on
the concentration of inorganic dopant semiconductor NPs (Cu-TiO2) onto porous template (Figure 7b):
7 µg loading of Cu-TiO2 NP outperformed reduction potential of CO2, yielding 2170 ppm·g−1.cat. of CO
and 2238 ppm·g−1.cat. MeOH. Therefore, the controlled assimilation of inorganic NPs within the MOF
membrane not only increased the charge transportation (by hindering possible charge recombination)
but also improved the photocatalytic reduction potential with better stability.
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CO2 capture and conversion would be entertained by hiring TiO2 nanomaterial as a constituent
for MOFs composite fabrication. The surveillance for TiO2 material for photocatalytic application as
standalone or as a complex is due to its low cost, high chemical inertness, and adaptive structural
texture [247,248].

Charge carrier density improvement is vital for enhanced CO2 reduction, and the interfacial
synergy is a causative agent for this aspect. Therefore, theoretically, the morphological controlling of
MOFs-bundle upon assembly is paramount to the catalytic activity; to sink this stipulation, a bifunctional
nanocomposite material from integrated TiO2 nanosheet (NS) (BET surface area 42 m2

·g−1) and
NH2-UiO-66 (BET surface area 871 m2

·g−1) [Zr6O4(OH)4(NH2-BDC)6, BDC = Benzene-1,4-dicarboxylic
acid] MOF by forming heterojunction through in-between tight interaction, used not only to capture
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but also to photo-reduce CO2 under UV-vis illumination [166]. The segment-wise analysis has
confirmed that due to the cumulative effect, the purpose of each consisting component is to
advance the CO2 photocatalytic transmutation performance of the nanocomposite MOF. TiO2 and
NH2-UiO-66, respectively, are chosen for their photocatalytic activity and adequate void surface
with enhanced catalytic activity; therefore, the composite material (TiO2/NH2-UiO-66) possesses
long-lived photoinduced excitons generation capacity and enhanced substrate adsorption for an
efficient heterogeneous (gas–solid) CO2 photoreduction process [249].

In another study, controlled loading of TiO2 nanofiber onto the MOFs pattern was speculated
to improve charge separation, while worsening electron-hole recombination. TiO2-based MOF
(NH2-UiO-66) composite with enhanced charge transfer and superior CO2 adsorption-reduction [250]
and different mass NH2-UiO-66 particles were coated on 1D titanate or anatase nanofiber. In the
architecture component-integrating process, NH2-UiO-66 loading varied with range and with the
highest being 33 wt.% titanate/MOF composite (t-300-MOF), while anatase/MOF composite (T-300-MOF)
had 15 wt.% of NH2-UiO-66. Controlled morphologies of composite material have a paramount effect
on its photocatalytic activity; for example, efficient charge separation owned by exciton short distance
travel route, small-sized MOFs are more favored for light absorption [251]. Due to its regulated
framework, T-300-MOF hybrid material has better durability [252].

In addition to controlling morphology, pre-conformance of incorporating material for their
compatible communication has beneficial effects for bettering photocatalytic activity. Titanium oxide is
known to have a large bandgap, which limits its practical application in visible light irradiation for
light-absorbing semiconductor, signifying that the assimilation of titanium oxide to another material
to mitigate this restraint, which would further advance the development of novel solar illumination
hospitable complex. Given the above-stated advantage of achievable titanium oxide modification,
such attempts in photocatalytic complex construction are viable [253–255].

He et al. discovered ternary composite MOFs for the collaborative conversion of CO2 to CO
and CH4 from TiO2/Cu2O/Cu3(BTC)2 with a molar ratio of 20:0.55:0.45, respectively, under visible
light irradiation [256]. The purpose of TiO2/Cu2O composites in MOFs is to grant better
heterojunctions for appropriate charge separation and light absorption, while Cu2O and Cu3(BTC)2

(BTC = 1,3,5-benzenetricarboxylate) are used to provide electrons with the robust coordinative
unsaturated metal (Cu) sites for the activation of adsorbed CO2 to subsequent conversion into
intermediate and formate products upon light-illumination. On the other hand, generated holes will
undergo water hydrolysis to form H+, O2, and OH radicals for the reaction with the CO2 intermediates
to form syngas.

Atomic layer deposition (ALD) of titanium-based semiconductor with other material improves
the core/shell photocatalytic performance [257]. Zhao et al. reported nanocomposite-structure
Au/Al2O3/TiO2 ALD of Al2O3 inside the interweaved layer of Au and TiO2, revealing plasmonic Au NP
(NP) for CO2 photocatalytic reduction underwater by enhanced photoinduced charge separation with a
hindered aspect of exciton-hole recombination [258,259]. More recently, Feng et al. reported improved
(anatase-rutile) TiO2 hybridized MOF from MIL-125, followed by ultrathin MgO uniform overlayer
deposition over porous TiO2 through ALD for CO2 photoreduction to CO; this surface modification
assisted the deactivation of TiO2 surface state and prohibited surface charge recombination [260].
Porous TiO2 (PTiO2) is used to prepare the MIL-125 template by pyrolysis and calcination operation.
Given its abundance, and the nontoxic and adaptive structure, MgO via ALD is feasible [261,262]. Of
all composition, five layers of MgO (5ALD) is optimum configuration, showing better CO2 conversion
to CO (54 µmol/g). In comparison, 5ALD assembly has 52 m2

·g−1 BET surface area and 3.0 eV band
gap; however, below (thinning) and further (thickening) will attribute charge recombination and
insufficient exposed surface area for photoreaction, respectively, causing photocatalytic activity drop.
The incorporation of MgO into TiO2 surface causes the production of Ti3+ [261,263], postdated by
intimation with surface oxygen vacancy forming surface oxygen vacancy/Ti3+ (due to defective surface),
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which could advance CO2 adsorption and activation (conventional two- and eight-electron) by forming
formats of intermediate product (Equation 1-3) [249], implying facilitation of reduced output [264–266].

Ti3+ + CO2→ Ti4+
− CO2

− (1)

OH− + CO2→ HCO3
− (2)

Ti4+
− O2

− + CO2→ Ti4+
− CO3

2− (3)

4.7.2. CdS-Based Composite MOF

As one of the inorganic compounds, CdS is a semiconductor with a promising bandgap of 2.43 eV
responsive to visible light irradiation, and the conductivity of this material simultaneously increased
with incident illumination intensity [267]. This material has an important role in photolytic reduction
if crosslinked with other inorganic and/or MOF components. The design of integration depends on the
interest of the ultimate goal [268]: for instance, one of many designs is chiral inorganic nanomaterial
for their application in catalysis, optics, sensing, and biomedical applications [269,270]. CdS can
be assembled with MOFs for auxiliary application and catalyst fabrication. In 2015, Kuang et al.
reported the synthesis procedure for chiral CdS nanotubes composited to the MOF template for sensor
applications [271]. The composition of CdS into MOF is a routine research activity with the aim of
obtaining enhanced photocatalytic material. In 2012, Gao et al. reported the successful synthesis of
graphene CdS composite for photocatalytic activity; the composite formation was confirmed for uniform
distribution of CdS over graphene sheets through the solvothermal process, and the as-prepared
material unveiled enhanced visible-light-driven charge generation and separation sufficient for the
photocatalytic reaction [268].

CdS could be coupled with different MOFs to enhance the electrophysical property of the assembly.
Zhao et al. developed an efficient CdS/NH2-UiO-66 hybrid membrane for CO2 photocatalytic material
to alleviate the limitations of powder-form catalysts (i.e., light scattering, easy agglomeration, and tough
recovery) [272]. The carrier material for the hybrid membrane was chitosan: low cost, proper gas
permeability, and the presence of abundant amine getting along with carboxyl groups in chitosan
compound makes it a better candidate for membrane matrix of the hybrid material because gas
permeability and amine-, carboxyl- groups give it effective CO2 adsorption features [273]. The hybrid
membrane exhibited enhanced CO2 photoreduction with better selectivity than the initial pure
membrane components (i.e., CdS and NH2-UiO-66) under mild reaction conditions.

The photocatalytic reduction performance of this material exhibits 99% CO selective reduction of
CO2; this hybrid membrane’s MOF activity is exceptional compared to other ever reported research
findings [153,274–282]. In addition, the incorporation of another semiconductor to the hybrid membrane
increases photocatalytic photoinduced redox reaction by the prevalent facile exciton transfer with
prohibited charge recombination, which is due to the provision of synergistic reaction between the MOF
and semiconductor [137,283]. However, the ternary composite based on CdS theoretically possesses
artificial heterojunction, which will passivate the bulk-charge recombination subsequent to excitation
and simultaneous increase of photoelectron-generation, giving an efficient ternary composite MOF
capable of CO2 photocatalytic reduction to CO with evolution rate of 235 µmol·g−1

·h−1 and 85%
selectivity over H2 (41 µmol·g−1

·h−1). Composite MOF was constructed by incorporation of CdS and
molecular redox catalyst through UiO-bpy MOF to yield CdS/UiO-bpy/Co, with UiO-bpy used as a
linker for inorganic semiconductor and redox catalyst, as reported by Chen et al. [177].

Furthermore, CdS incorporation into MOFs with inherent surface area to void volume ratio
improves photolytic performance. In a report by Ding et al., the CdS/MIL-101(Cr) composite
photocatalyst was used as a visible-light-driven CO2 to CO convertor. The fabrication of this
composite MOF was achieved through (I) MIL-101(Cr) construction via the hydrothermal process and
(II) n-type semiconductor CdS encased within MIL-101(Cr) cavities via in-situ growth of the double
solvent route [176].
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4.7.3. Zr-Based Composite MOF

Zr-based MOF with the usual hexanuclear Zr cluster linked by terephthalates [284] remains
an attractive research field, owning high thermal resistance, chemical stability, and facile
functionalization [285], granting for adsorption [286,287], and catalytic applications [288].
The combination of this material to other inorganic metals or semiconductors will theoretically
improve the uptake and transformation of pollutants. In 2016, Baek et al. confirmed the activity
of Cu crystalline on selective hydrogenation of CO2 to fuel, and this property was obtained
by the encapsulation of Cu nanocrystals within Zr-based MOF [Cu⊂UiO-66]. This complex
catalyst exhibited 100% selective production of methanol and an 8-fold greater yield compared
to the benchmark catalyst (Cu/ZnO/Al2O3) [289]. The integration of conducting material and
broadened light harvester is an efficient way of boosting the photocatalytic activity of porous
Zr-based MOF. Meng et al. reported three-component Zr-based composite MOFs constituted
from oxygen-defective ZnO(O-ZnO)/rGO(reduced graphene oxide)/UiO-66-NH2 with Z-scheme
heterojunction via solvothermal operation, aiming to boost photocatalytic performance by
photogenerated electron-hole separation [165].

Defecting ZnO with oxygen encourages extended visible light optical absorption edge [290]; thus,
it is unfortunate that this oxygen defective semiconductor has limitations in effective charge separation,
and hence, fast photogenerated charge recombination will be prevalent. The electronic interaction
between both semiconductors (UiO-66-NH2 and O-ZnO) is attributable to the upgrade of visible-light
absorption spectrum range of the ternary composite MOF, hence the advanced photocatalytic activity
of the composite through the increased number of photogenerated electron/hole pairs. This ternary
Z-scheme composite MOF has superb CO2 photocatalytic conversion to CH3OH and HCOOH,
confirming that Z-scheme heterojunction inauguration plays important role for photolytic activity;
moreover, the presence of oxygen vacancy in the ternary heterojunction photocatalyst improves catalytic
performance (i.e., it is responsible for 2-fold CH3OH and 1.5-fold HCOOH reduction increment) [291].

Given that MOFs have the superb large porous surface area and tailorable morphology, they are still
an indispensable field of study for pollutant reduction, especially in pursuing improved performance
with an alliance with semiconducting material [292]. Quantum dots (QDs) are an astonishing material for
their broader absorption spectrum, long-lived electron generation-assimilation, endured photostability,
and large optical spectrum. Furthermore, their optical spectra adjustability via particle size alteration
ranks QDs at the first semiconductor division for incoming irradiation responsiveness [293–295]. In 2013,
Jin et al. developed a hybrid material of QDs and MOF for enhanced light harvesting, functionalization
of porphyrin-based MOF with CdSe/ZnS core/shell QDs for enhancement of energy transfer from
QDs to MOFs, and expanding the light absorption spectrum of visible light [296]. Given that CO2 is
a thermodynamically stable carbon molecule, extensive activation energy is a pre-requisite to effect
reduction [297]; numerous authors struggle to find a route for perovskite complex implementation in
photocatalytic reaction by tackling their imminent limitation (i.e., poor moisture condition resilience),
but perovskite’s shortcoming could be addressed via composting to MOFs [298,299]. Toward
elucidating an efficient inorganic halide perovskite CsPbBr3 QDs/UiO-66(NH2) heterojunction-type
nanocomposites MOF for photocatalytic CO2 conversion in non-aqueous media, CsPbBr3 QDs have
been constructed from Cs-oleate solution into PbBr2 solution at high temperature, with a few reagents
used in the synthesis process (i.e., Cs2CO3, PbBr2, octadecene, oleic acid, and oleylamine) [141].
On the other hand, UiO-66(NH2) has been fabricated from zirconium tetrachloride and 2-amino-1,
4-benzenedicarboxylic acid through the solvothermal process [285]. Conjugation of these two gives a
heterojunction [CsPbBr3 QDs/UiO-66(NH2)] nanocomposite; remarkably, the main particles in CsPbBr3

QDs/UiO-66(NH2) nanocomposites possess special interaction with other particles by employing
surface functionalization [300]. Given that electronegativity of the existing amino group in MOF
(UiO-66(NH2)) will strongly attract and interact with electropositive crystalline perovskite (CsPbBr3

QDs), this in-between chemical synergy is responsible for CsPbBr3 QDs/UiO-66(NH2) nano junction
hybrid structural integrity with enhanced electrochemical sensibility. The HOMO/LUMO of CsPbBr3
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QDs and UiO-66(NH2) were determined as 2/−0.89 and 1.25/−1.02 eV [301,302], affirming the charge
transfer from photoexcited exciton of CsPbBr3 QDs to UiO-66(NH2). This material showed a great
reduction capacity of CO2 to CO and CH4, as reported by Wan et al. [166].

4.7.4. Co-Based Composite MOF

Cobalt (Co), as an abundant element, tends to be doped with heteroatom carbon for a photolytic
reaction. Because of the highest porous surface area for gas penetration, additional catalytic cavity
creation due to porous carbon atom doping, and metal particles stably fixated on the carbon pattern,
interweaving Co with MOFs entails robust photoreduction activity [303,304]. Co metal is important in
directional charge transportation when coupled with suitable MOFs, selectively capturing and efficiently
photoreducing CO2 under visible-light irradiation for syngas generation. The incorporation of a single
Co atom into MOF encourages directional excited electron transfer from porphyrin (organic linker) to
the reaction site Co (metal cluster) by significantly decreasing electron-hole recombination [167].

The integration of metal ions (i.e., Co and Zn) into the porphyrin moieties encourages the electron
transfer and higher CO2 adsorption-reduction; syngas generation with this strategy is recommended
as an effective means of CO2 reduction to mitigate fuel crises [305]. A report from Zhao et al.
reported a MOF photocatalyst for CO2 photoreduction clustered with CoII with efficient adsorption
and conversion performance [156], naming it as the hexanuclear cobalt cluster-based MOF (Co6-MOF).
This photocatalyst with [Ru(bpy)3]Cl2·6H2O (Ru-Complex) PS affected higher CO2 reduction to CO
and H2. The opportunity of the modifiable electronic structure of Co asserts the possible integration
with MOFs, yielding better component-wise communication favoring CO2 reduction. An ultra-small
silver NP-doped Co-based MOF (Co-ZIF-9) via the photo-deposition route to yield Ag@Co-ZIF-9 has
achieved enhanced CO2 to CO conversion under visible light irradiation [306]. The photocatalytic
redox reaction has been conducted by treating 99% pure CO2 (1 bar) in a photoreactor pre-loaded
with this catalyst and Ru-complex. The doped amount of Ag NPs in Co-ZIF-9 were proven to have a
direct proportionality to the evolution rate of CO while decreasing the production of H2. Of all Ag NP
deposition, 7.13 wt.% is found to be optimum, improving the multi-photogenerated exciton injection
and separation for CO2 reduction sites.

Interestingly, the composite formation of Co with perovskite would show higher uptake and
metamorphotic performance. Recently, a composite photocatalytic catalyst has been developed by
a combination of perovskite and MOF, fabricated via direct deposition of ZIF (Zn/Co-based zeolitic
imidazolate framework) on the surface of CsPbBr3 quantum dots, for the attainment of a combined effect
for efficient CO2 photoreduction [178]. The as-prepared composite hybrid structured CsPbBr3@ZIF
possesses enhanced moisture resilience, CO2 adsorption, and charge separation-transmission.

In 2019, Wang et al. designed a congregated photocatalyst from template zeolitic imidazolate
framework-67 (ZIF-67) and Co3O4 of hollow multi-shelled structures (HoMSs) through sequential
templating approach (STA) to obtain improved catalytic performance by controlling structure and
facets (111) of the catalyst [157]. Given that periodically organized metal atom is filled in ZIF-67
(Co) [307], it is noteworthy that utilizing this MOF as a template results in a profound effect on the
overall catalytic activity. Since ZIF-67 is formerly constructed from regularly organized Co metal atom
(which has a topological resemblance to Co atom in Co3O4 of HoMSs) and organic ligand, this will
assist metal atoms sites and space to associate HoMSs, respectively. Taken together, these provide
better charge transfer and improved photocatalytic CO2 reduction performance.

Ultrathin MOFs offer an abundant surface area for photocatalytic reaction with declined diffusion
carrier length; this hollow architecture with thin-shell void inside is comparatively favorable for
photocatalytic reaction via the provision of the bountiful active site, compacted surface area, and better
charge-carrier density [214]. Such architecture could be designed as single- or multi-shell as appropriate
to advance performance and reaction conditions [308], and it is viable to assert that this hollow material
has a higher catalytic performance to the pristine MOFs [309,310]. In another study, Co-MOF-74
CO2 photocatalyst with double-layered-hollow-structured MOF was constructed from the reaction of
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ZIF-67 to its ligand (MOF-74), 2,5-dihydroxyterephthalic acid (H4DOBDC) via solvothermal route,
assisted co-catalyst AgNPs@MOF-74 (40 nm-sized Ag-NP incorporated to Co-MOF-74) [311]. Of note,
the morphology and structure of Co-MOF-74 have resemblance from the pristine ZIF-67 [312].

Although the standalone MOFs photocatalysts play significant role in CO2 reduction,
the incorporation of co-catalyst evidently increases the photolytic performance kinetically since the role
of co-catalyst is to reinforce CO2 photolytic process not only by effecting multi-photogenerated electron
production and transmission but also it being involved in halting overpotential to manifest the uniformly
controlled charge flow within the assembly [313–316]. As stipulated above, most heterogeneous
semiconductors have limited application for the photocatalytic reduction of pollutants due to
large bandgap affecting the light absorption spectrum range, while the incorporation of inorganic
semiconductor precursor into MOFs has a great impact on performance advancement [317]. Hong et al.
reported novel porous heterogeneous co-catalytic material from boron imidazolate framework (BIF-101)
crystalline with three-dimensional trinuclear cobalt nodal metal with excellent CO2 absorption and
reduction capacity, BIF-101, [Co1.5(OiPr)0.5(OH)0.5(H2O)(HB(mim)3)(NBDC)], where OiPr = isopropyl
alcohol [158]. The photoreduction of CO2 was accomplished by using BIF-101 in the solvent mixture,
Ru-complex PS, yielding 84.1% CO selectivity with H2 traces (Table 2). In addition, the stability of
BIF-101 against harsh conditions was analyzed and found to be resilient for wider tough reaction
conditions (2 < pH < 12).

Regardless of being great photocatalytic CO2 conversion tools due to their uniformly organized
structure, large porous available surface area, better surface binding, and ample well-distributed metal
activation site, MOFs have low electrical conductivity. This imperfection hinders their standalone
application and is a critical challenge for CO2 reduction [318,319]. A modified catalyst on MOF’s
self-template, targeting photocatalytic CO2 reduction capacity enhancement, through appropriate PS
coupling with a photocatalyst containing metal with multiple redox states, renders excellent CO2

photoreduction by increasing the electrical conductivity, as noted by Xu et al. [160].
The electrical properties of MOF have been enhanced via incorporating Co and Te (considering their

different electronic configuration) through the tellurization method of precursor ZIF-67 (ZIF = zeolitic
imidazolate framework) to fabricate a half-metallic Co1.11Te2 (with a respective ratio of 1.11:2).
Furthermore, carbon coating of this material, Co1.11Te2⊂C, achieves enhanced BET surface area
(107 m2

·g−1) and CO2 photocatalytic reduction performance, and the photoreduction process of
this heterogeneous catalyst Co1.11Te2⊂C has been conducted using Ru-based PS, yielding 73.3% CO
selectivity over H2 within a short time (Table 2); this catalyst outperforms even the pristine precursor
material. The outer carbon on this catalyst has been found to be crucial for two reasons: (I) it
enhances the photogenerated electron transferability and ionic permeability, and (II) it provides implicit
half-metallic character for the heterogeneous catalyst [320].

Therefore, the suitable combination of Co and Te [321] on a MOF module would improve the
photocatalytic performance of the material not only by increasing conductivity in a minimized manner
of charge recombination but also by requiring little free energy for the formation of intermediate
substrates in the reduction process.

4.7.5. Graphene-Based Composite MOFs

The introduction of graphene material into a distinctive framework induces better electrical
conductivity and thermal property due to the employment of graphene nanofillers and nanosheets for
electronics industries [322,323]. Evidently, the incorporation of graphene nanosheet into the polymeric
matrix enhances not only the electronic-structure but also adjusts photothermal stability; moreover,
the inclusion of graphene in carbon nanotubes could facilely yield advanced electro-physic-thermal
properties [324,325]. This inspires researchers to design graphene material as standalone or along with
MOFs for photocatalysts, aiming to achieve better CO2 photolytic reduction activity. There are adverse
ways for graphene derivatives embodiment to MOFs, supposing the compatibility and band alignment
of the host. A 3D structured porous nanosheet composites material is constructed from graphitic
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carbon (g-C3N4) and carbon to yield (3D g-C3N4/C-NPs) material via pyrolysis and carbothermal
activation method [326]. 3D g-C3N4/C-NPs pore volume and the BET surface area have been measured
to be 5.825 cm3

·g−1 and 454.2 m2
·g−1, respectively.

Wang et al. examined the CO2 photocatalytic reduction performance of 3D g-C3N4/C-NPs
composite in the presence of water vapor under light illumination, yielding CO (229 µmol·g−1) and
CH4 (112 µmol·g−1) [326]. The obtained high reduction capacity of the as-synthesized composite
catalyst was attributed to its high gas reactant-product adsorption-sorption morphological virtue,
a huge area with enormous activation exposed catalytic site, efficient light-harvesting, and directional
transmission of photogenerated exciton with hindered charge recombination. Graphed aggregation
with amino-functionalized MOFs exhibited better CO2 photolytic performance, to demonstrate this
graphene-based MOF (NH2-rGO (5 wt.%)/Al-PMOF) for CO2 photocatalytic reduction; graphene
material possesses high mechanical and chemical stability, large available surface area, high electrical
and thermal conductivity, and incorporation into the MOF unlashes superior photolytic performance,
with BET surface area of 1180 m2

·g−1 assured to have complete selective CO2 reduction to formate
(HCOO−) potential [143].

5. MOFs-Photocatalytic Performance Enrichment

As formerly discussed, “the assembly of the central metal cluster and organic ligand as a basic
building block” is a component-wise definition of all MOFs. Besides the electro-physic-chemical
property of this individualistic comprising element, the compatible sensitizer inclusion and synergistic
interaction between them has an indisputable impact on the photocatalytic performance of the
bundle [327]. As mentioned above, MOFs are a division of porous polymeric material, which could
be fabricated in two- or three-dimensional frameworks by using one or more monomers through
step-growth or chain growth co-polymerization. Surface modification with metallic NP substantiates
the prevalence of additional active catalytic surface area, resulting in the advancement of CO2 uptake
capacity [328]. Therefore, targeting the obtainment of efficient communication between the nodal metal
and organic linker composition and morphological alteration of each component has been a subsistent
task. Accordingly, the comprehensive effect of cluster type and/or organic ligand modification on the
proper functioning with experimental findings and simulation has been presented afterward.

5.1. Organic Ligand Modification

The aromatic nature of organic linkers provides structural rigidity to MOF matrices and a longer
distance between the binding sites than the aliphatic linkers. Furthermore, these aromatic nature
ensures the functionalization of other moieties to boost photolytic activity as a heterogeneous catalyst.
Along with amine moiety incorporation to MOFs, metallic NPs embodiment too results in significant
improvement in photolytic activity. Along with amine moiety incorporation to MOFs, metallic NPs
embodiment too results in significant improvement on photolytic activity. Enlarged BET surface area
and enough electron-donating nitrogen sites are required to carry out proper metallic NPs inclusion
on MOFs surface [328]. Linkers are liable for solar irradiation harvest and provide photoinduced
excitons to the neighboring active catalytic central metal sites to promote adsorbed substrate activation.
To assist photon absorption and hot multi-electron injection, this material may be incorporated with
other units (organic or inorganic) [91]. An active hydrophobic crystalline MOF (MIL-125-NHCyp,
Cyp = cyclopentyl) has been proposed for efficient large-scale photocatalytic reduction of CO2 in humid
reaction condition without losing its structural integrity [329]. The photoreduction capacities of MOFs
based on MIL-125 with different functionalization on aniline in 2-amino-terephthalate were examined
for its performance. Three functional groups have been integrated with this base MOF (i.e., -NH2,
-NHMe, and -NHCyp). The combination, -NHCyp yield MIL-125-NHCyp, has a hydrophobic nature
rendered from the steric blocking effect of cyclopentyl group towards hydrogen bond, disallowing bond
formation. BET surface areas of MIL-125-NHCyp, MIL-125-NHMe, and MIL-125-NH2 before(after)
photocatalytic reaction have been measured as 510(503), 1047(1010), and 1473(1411) m2

·g−1, respectively.
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In comparison, due to the N-alkyl functionalization, MIL-125-NHCyp shows extraordinary structural
and crystalline stability (for as long as 20 days) and photocatalytic performance of CO2 reduction
under humid, flexible acidic/alkali (1 < pH < 9) condition. Furthermore, the as-prepared module
retains its structural assembly intact for five redox cycles, as noted by Logan et al. [329].

TiO2 is a common semiconductor in solar irradiation harvesting; the incorporation into organic
ligand of MOF provides a combined effect of metal-linker functionalization attributable to multi-exciton
generation, additional active catalytic site, polarity, porous surface area, and aromatic/lipophilicity [330].
This, in turn, incites overall CO2 photocatalytic performance of catalytic matrix. Hybrid MOF
has been used for efficient CO2 to CH4 photoreduction obtained from structurally modified TiO2

anatase with phosphoesanoic acid (PHA) functionalization (TiO2-PHA) and furnished by porous
crystalline shell MOF (HKUST-1) onto growth via step-by-step self-assembly to yield rhombic elongated
architecture TiO2/HKUST-1 equipped with porous 349 m2

·g−1 surface-area-based N2 isotherms [331].
The heterogeneous photocatalytic reduction reaction has been carried out using as-synthesized
composite (0.3 g) and water electron donor under visible light irradiation. The enhanced performance
of this MOF composite is due to the excellent porous morphological behavior of HKUST-1 and efficient
photogenerated exciton transportation from TiO2-PHA to HKUST-1 and hole in a reverse way upon
irradiation; thereby the redox reaction takes place. Bandgaps of the precursor and composite MOF have
been calculated as 3.15, 2.70, and 2.90 eV for TiO2-PHA, HKUST-1, and TiO2/HKUST-1, respectively,
reflecting better photo-responsiveness of a hybrid than TiO2 under visible light incident irradiation.

Moreover, this hybrid exhibits enhanced photocatalytic CO2 to CH4 with trace CO conversion
(yield 1.05 µmol·g−1) compared to the pristine constituent (low formation rate of CH4 and trace formate).
Furthermore, this hybrid has been confirmed to be structurally intact for two rounds. The presence of
PHA functionalization in the hybrid MOF plays a significant role in boosting the photolytic performance
of the material by (I) effectively improving visible light photoactive TiO2 NPs from bare TiO2, (II)
promoting crystallinity and excited electron penetration to HKUST-1, and (III) owning apt intimate
connection-gap integration of hybridization (TiO2 and HKUST-1) to avoid agglomeration so as to
provide plenty of exposed catalytic active sites for CO2 intact reduction. The importance of this
functionalizing unit has further been confirmed by its absence in the composite (TiO2 + HKUST-1)
and results in negligible CO2 conversion. Amine functionalization of MOFs shows advanced CO2

adsorption-reduction capacity due to the porous topological texture and suitable binding energy for the
selective substrate. To elaborate, this is an abundant chemisorption site in MIL-101-Cr through grafting
different alkylamine—[i.e., ethylenediamine (EN), diethylenetriamine (DETA), and triethylenetetramine
(TETA)]—in the porous surface via post-synthetic modification (PSM) method, using the sulfonic group
on the organic linker as an anchor [171]. All the graft PSM, EN-modified material MOF shows excellent
photocatalytic activity and durability for room temperature CO2 chemisorption. MIL-101-Cr was
constructed from terephthalic acid and Cr(NO3)3·9H2O under diluted HF, while MIL-101-SO3H was
synthesized from 2-sulfoterephthalic acid and concentrated HCl via hydrothermal reaction condition
by Xie et al. [332].

Then, MIL-101-EN has been synthesized by the immersion of activated MIL-101-SO3H in
cyclohexane solution of EN by the same procedure, only with the substitution of EN with the respective
products denoted as MIL-101-DETA and MIL-101-TETA. N2 isotherm indicates that the precursors
MIL-101-Cr and MIL-101-SO3H have BET surface areas of 3126.5 and 1936.9 m2

·g−1, respectively.
Contrastively, the lower CO2 absorption capacity of MIL-101-DETA and MIL-101-TETA are attributed
to the drastic clogging of surface porosity by DETA and TETA, after the PSM. In the case of MIL-101-EN,
EN is introduced into the surface of the MOF in a regulated manner of pore occupancy, resulting in
improved photocurrent intensity and advanced long-lived electron transfer with prohibited charge
recombination for better chemisorption and reduction potential.

Therefore, the post-modification of EN-MOF has been confirmed to possess better CO2

chemisorption and selective (96.5%, CO) photoreduction compared to the pristine material and
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other alkylamine derivatives (Table 2) [333] due to its topological and morphological arrangement.
Furthermore, this material is durable for four consecutive reaction cycles.

The peculiar polyoxometalate (POM)-based metal-organic frameworks (POMOFs) [NNU-29] with
a hydrophobic ligand group modification are for efficient photocatalytic CO2 reduction performance,
having higher stability and negligible H2 evolution [172]. To fashion this heterogeneous POMOF,
reductive nodes of POMs have been examined for better bandgap potential for photolytic preferentiality
and Ru-based PS due to more negative CB of the PS (−1.31 V vs. NHE) and photoinduced exciton
easily migrating to the catalyst active site [334].

The selection of apt functionalization material for the matrices results in the enhancement
of environmental substrate adsorption and instant conversion. During the incorporation of
the functional material, which increases the electro-physic-chemical structure of the framework,
synergistic communication between the assembly components play a fundamental role in
reduction performance. Sourced from a large bandgap of the Zr6 Oxo cluster, visible-light
sensitivity is low, thus the functionalization of the organic linker improves photocatalytic activity.
Conjugated amine-functionalization of Zr-based MOFs has confirmed to emerge visible light
region active photocatalyst, as reported by Sun et al. [150]. The synthesis of functionalized MOF
([Zr6O4(OH)4(L)6]·8DMF, denoted as Zr-SDCA-NH2), is influenced by integrating H2L1 (H2SDCA-NH2)
in the Zr-framework. The as-prepared photocatalyst has better CO2 uptake capacities of 83.8 and
35.2 cm3

·g−1 at 273 and 298 K, respectively. It was noted that the direct proportionality of CO2

entropy in accordance with temperature influences absorption capacity. The solvothermal method
has been used for the construction of octahedral single-crystal Zr-SDCA-NH2 with fcu topological
Zr-SDCA-NH2 because the planar molecule H2SDCA-NH2 has a better degree of conjugation and
increased light absorption spectrum range (Figure 8a). Due to higher BET surface area, improved
physic-chemical stability, and electronic structure, the as-prepared photocatalyst exhibits enhanced
substrate photocatalytic performance under sacrificial agent and solution with specified reaction
condition producing a formate (HCOO−) with a formation rate of 96.2 µml·h−1

·mmol−1 (Table 2),
which outperforms other Zr-based MOFs performance in the same reaction condition. This CO2

reduction outperformance is attributed to the amine-functionalization of the ligand. To examine the
effect of the amine-functional group on catalytic activity, the amine-free ligands (H2SDCA) have been
used, and the overall light absorption scope is deteriorated (λ = 440 nm). This could be due to the
absence of chromophoric amine-functionalized ligand to own enhanced light absorption performance.
Having 2.27 eV bandgap, the HOMO and LUMO of Zr-SDCA-NH2 were measured to be 1.83 and
−0.44 V (vs. NHE) because of more negative CB than the reduction potential of CO2 to formate (i.e.,
−0.28 V vs. NHE), affirming indeed that this MOF is a candidate for CO2 photoreduction process.
Furthermore, the LUMO of ligand H2SDCA-NH2 is −0.58 V vs. NHE. This more negative LUMO
value implies not only the possible photoexcited electron transfer from the ligand to Zr6 Oxo cluster
(due to Lewis acidity of ZrIV), but also that the organic linker by itself could potentially photo-reduce
CO2, minding the facilitation of photocatalytic performance via dual organic ligand activity entailed
from the amine functionalization. Moreover, the photoreactor ingredients affecting the CO2 photolytic
conversion were investigated (Figure 8b), demonstrating that without a full set of reaction conditions,
the photoreduction mechanism was doomed.
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2018, The Royal Society of Chemistry.

The same ZrIV nodal metal has been scrutinized for efficient photocatalytic CO2 reduction through
amine functionalization by tunning electronic property [335]. The improved photoelectronic and
structural properties of MOF by controlling the composition of (UiO(Zr)-NDI) were fabricated from the
NDI-based linker and ZrIV oxide-based cluster. The functionalization of NDI increases the photocatalytic
performance of the assembly. Replacement of the NDI linker from outside, inside, and core with
amine-moiety has a tremendous effect on the photoinduced charge transfer and photocatalytic
performance of modified MOF. Moreover, this geometry optimization could even be achieved by
replacing the Zr-metal-in M6O8 core of the UiO framework by Ti, Th, or Ce. This substitution accounts
for the optical bandgap and suitable band edge alignment to boost the photocatalytic performance
of the MOF. Employing a functionalization group to the organic ligand framework has shown a
marvelous enhancement on overall photocatalytic activity and endurance due to the provision of
extra porous surface area and electronic assimilation. Aside from the apropos morphological structure
for vicinity substrate adsorption and charge separation of functional group, the extent of synergistic
communication with the central metal influences its (moiety) selection and design.

5.2. Central Metal Site Modification

To date, MOFs have drawn the attention of researchers towards environmental
remediation, owning enhanced adsorption, abundant active site, various structural adaptabilities,
and recyclability [336]. The most common factors affecting the catalytic selective catalysis performance
of a given MOF catalyst are structural-coordination, reaction condition, central nodal metal variety [337].
Therefore, the residence of OMSs is used for catalytic activity improvement [338,339]. Atomically
scattered photocatalysts containing anchored single metal atoms and/or mononuclear metal complex
have been confirmed to be robust to the catalytic activity of the assembly [340].

Doping the central catalytic site of MOFs dispatches the adsorbed substrate activation and
transformation instantly upon exciton arrival. The performance of the doped metal cluster activity is
greatly influenced by the band alignment, compelling electronic configuration, and dopant activity;
therefore, some researches have focused on designing an effective route to nodal metal doping [185].
A stable and photoactive composite MOF of Ru-doped Zr-based MOF (UiO-66) via a templating route
to embody Ru-NP onto ZrO2 NP of MOF yields efficient peculiar morphological heterogeneous catalyst
for photocatalytic reduction of CO2 to methanol under visible light illumination, as described by Lippi
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et al. [341]. The crystallinity nature of as-synthesized MOF is due to precise careful manipulation of
metal-oxide and organic components of MOF having better selective substrate reduction performance.

Central metal clusters are responsible for direct substrate activation, implying that the activity of
the nodal metal significantly affects the photolytic performance. Auspicious bimetallic centered MOF
(Ni-Co-MOF) for photolytic reduction scheme has been synthesized via microwave-assisted aqueous
solution using a BDC linker (benzene-1,4-dicarboxylic acid) for efficient CO2 catalytic fixation through
CO2-epoxide cycloaddition (with epichlorohydrin) [342].

Given that water is the solvent for the catalyst synthesis, this process is categorized as
environmentally friendly. The as-prepared MOF with 50.8 m2

·g−1 BET surface area and 0.183
cm3
·g−1 pore volume has higher adsorption, selectivity (>99%), and catalytic conversion (96%)

performance compared to monometallic analogs (Ni-MOF and Co-MOF). Coordinatively distributed
unsaturation of Ni2+ and Co2+ metal ions on the surface of MOF gives rise to great synergistic
intimacy of bi-functionalization assortment. Procedurally, Ni-Co-MOF catalyst effects epoxide and
CO2 simultaneous activation prior to reaction, thereby lowering the energy barrier of reaction for
ignition. Both Ni and Co metal act like Lewis acid sites affecting charge transfer to attack O− of epoxide
ring and subsequently affecting the adsorbed CO2 to form carbonate complex followed by ring closure.
Kurisingal et al. prescribed that Ni-Co-MOF had better reusability (six subsequent rounds) without
obvious alteration of morphological and catalytic performance for CO2 cycloaddition compared to
ZIF-8 or Cu3(BTC)2 (due to the absence of coordination in respective structure and existence of clogged
active site) [343].

Therefore, this novel, cheap, and feasible bimetallic MOF could be a potential tool for CO2

fixation. Obviously, in the CO2 photocatalytic reduction phenomenon of Zr-based MOF performance,
photogenerated electron lifetime plays a significant role. To prolong electrons’ lifetime, the prerequisite
energy used to transfer hot excitons from organic linkers to the cluster-based band should be
minimum, which, in turn, boosts charge-separation [344]. The prerequisite energy for exciton
transfer is termed as energy of ligand to metal charge-transfer (∆ELMCT), and the research on the
improvement of UiO-66(Zr) MOF photocatalytic activity has attempted semi- or complete-replacement
of Zr4+ (d0) by Ti4+ (d0) due to the substitution resulting in lower ∆ELMCT [345,346]. Moreover,
the fabrication of MOFs with triple metallic ions would have expanded electron transmission and
activation with intact photothermal repression by precluding overpotential. Wang et al. established
an isostructural stable MOFs for efficient CO2 photocatalytic reduction. Three heterogeneous
monometallic photolytic catalysts were designed along with single nodal transition-metal center
(CuII, CoII, and NiII): MOF-Cu ((Cu3(TCA)2(dpe)3(H2O)3)n), MOF-Co ((Co3(TCA)2(dpe)3(H2O)6)n),
and MOF-Ni ((Ni3(TCA)2(dpe)3(H2O)6)n) [173].

These three n-type semiconductors have been tested for CO2 photocatalytic reduction operation:
MOF-Cu, MOF-Co, and MOF-Ni have LUMO values of −1.08, −1.14, and −0.94 V (vs. NHE),
respectively, and HOMO values of 0.69, 0.88, and 0.56 eV (vs. NHE), respectively. Bandgaps of
MOF-Cu, MOF-Co, and MOF-Ni have been measured to be 1.77, 2.02, and 1.50 eV, respectively.
The CO2 adsorption capacity of MOF-Cu, MOF-Co, and MOF-Ni has been measured to be 34, 40.35,
and 38.87 cm3

·g−1, respectively. Photocatalytic conversion of CO2 has been carried out by feeding pure
CO2 (1 atm and 298 K) in a solvent mixture to the photoreactor pre-loaded with the respective catalyst
and [Ru(bpy)3]Cl2·6H2O/[Ru(bpy)3]2+ PS with TIPA (triisopropanolamine) as sacrificial agent under
visible light irradiation. In the same redox reaction condition, these three monometallic MOFs show
different yields and selectivities of CO2 reduction to CO and H2; for instance, the CO2 reduction by
MOF-Ni yields CO and H2 of 22.3 and 0.5 µmol, respectively, while in the case MOF-Cu, the yield of CO
declined to 1.7 µmol and H2 yield increased to 5.8 µmol. Contrastively, MOF-Ni possesses 98% selective
CO evolution (Table 2), indicating the outstanding catalytic performance of the Ni-based monometallic
MOF. The reason for this would be better photoinduced exciton charge separation and transmission
achieved by not only its lower bandgap (for better incident irradiation harvest and provision of a
long-lived electron with retarded charge recombination) but also higher CO2 binding energy.
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5.3. PS

Articulation of MOFs as an efficient way of pollutant reduction tool is stemmed from their solar
energy utilization for activation energy. Despite the generous tailorable physic-chemical structure of
MOFs for CO2 adsorption, their solar sensibility and conductivity face barriers. Ultimately, designing
MOFs with lower bandgap and larger solar absorption spectrum (visible light) is a common target
for experimentation. To date, some MOFs barely possess the ability to collect visible light; thus,
it is beneficial to advance their solar sensibility by incorporation of PS for further broadening the
absorption spectrum. PSs are semiconducting materials designed to assist light irradiation harvest
and for exciton provision to the active metal cluster through organic ligand. Therefore, electronic
structure (more negative CB, or LUMO) and suitable physical morphology appoints critical effects
on the photocatalytic heterostructure performance. Lan et al. reported a 2D MOF from monolayer
of MOLsfor PS of photocatalytic CO2 reduction; this monolayer 2D material was constructed from
Hf12-Ru, based on Hf12 as a secondary building unit (SBUs) and driven by dicarboxylate ligands
[Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) [180].

Both monolayer MOF [Hf12-Ru-Re and M(bpy)(CO3)X Hf12-Ru-Mn] and MOLs’ own [Ru(bpy)3]2+

PS and M(bpy)(CO3)X catalyst for photocatalytic reduction enhancement have been achieved by
PSM of carboxylate exchange reaction between Hf12-Ru MOL with M(bpy)(CO3)X (M/X = Re/Cl and
Mn/Br, respectively) moieties. It has been confirmed that the numerous photogenerated electrons
from [Ru(bpy)3]2+ are transmitted to M(bpy)(CO3)X. The photocatalytic reduction performance of
as-synthesized MOF is obtained by exposing CO2 to a catalyst and in TEOA under visible light
illumination. From these two, Hf12-Ru-Re outperforms the photo-driven CO2 reduction, rooted in
suitable proximity between MOL scaffolding to the capping, which will facile the electron transfer rate,
and, in turn, the photocatalytic reduction reaction of CO2.

6. Conclusion and Outlook

In recent years, direct CCS techniques have been devised for pollutant remediation; however,
eco-friendliness and accessibility of this route entail obstructions. In particular, sorbent corrosiveness
and intensive regeneration energy prerequisites remain inexplicable, which stimulates the pursuit
of other methods. Thereafter, MOFs evolved: in the assembly of the organic linker and metal
cluster, this porous material has the potentiality to adsorb CO2 in the environment followed by
subsequent photoreduction, mimicking the natural green-plant-photosynthesis carbon cycle process.
The mechanism of MOFs CO2 photocatalytic reduction is generically externalized into three major
subdivisions: (I) CO2 adsorption, (II) solar energy collection, and (III) photogenerated exciton generation
and conveyance to the metal cluster to execute adsorbed substrate activation and product formation,
and desorption of the product thereon. Affordable and environmentally friendly MOFs are manifested
with outstanding electro-physic-chemical architecture and design flexibility. Hot effluent gas stream
of huge gas- and/or coal-fired power plants contains various components coincidental with CO2

(commonly SOx, NOx, and H2O); thus, purification used to be a necessary task for effective choosy
trapping in traditional chemisorption. These MOFs are carefully engineered to attain unique inner
void-side binding strength range in addition to abundant porous topological texture. This material
could be designed in 1D, 2D, or 3D structure, depending on the controlled particle-growth, distribution,
and membrane assimilation; moreover, the design of the hollow-cylindrical structure of MOFs has
been reported, which has favorable adsorption capacity due to the availability of ample porous
surface area. Higher CO2 sensibility and adsorption of a given MOF inflicts significantly enhanced
photocatalytic performance.

Moreover, the electronic structure of the MOFs imparts bias on the reduction scope, and the
existence of densely OMS and LBS promotes CO2 activation. Upon irradiation, the semiconducting unit
of the assembly is responsible for effecting hot photogenerated multi-electron injection from the VB,
then transmission to the catalytic central metal site in the porous part followed by triggering substrate
activation. Solar radiation is abundant; however, classically, it is diffusive with a visible photon density



Polymers 2019, 11, 2090 35 of 54

of ~1 photon per nm2 per ms, which constricts the maximum photogenerated exciton rate to be not more
than ~1 ms−1 on PS sole molecule. The fact that most reduction reactions need multiple electrons—for
example, CO and CH4 evolution reaction, respectively, requires two and eight electrons (Table 1)—and
if only one chromophore is installed for photoelectron provision, then apparent side reactions occur
during enough electron arrival downtime, which considerably reduces the photocatalytic efficiency of
the material. Furthermore, better charge transmission ability of the semiconductor from the exciton site
(LUMO) to the catalytic center is an important issue. When the electrons are excited from the VB and
head to the CB and ready to depart, leaving a hole behind, if the bandgap energy and incident activation
solar energy are unfit, then charge recombination is ensured due to the instant excitation-relaxation
phenomenon. Ratifying higher charge collection capacitated material with apt photoelectron-hole
separation favors the photoinduced photocatalytic redox reaction.

Bandgap energy of the junction transistor plays an important role in photon utilization during
irradiation; the truncated distance between the VB and CB is committal for smaller activation energy
to be used for exciton generation. There are many semiconductors accessible for utilization, but
their HOMO-LUMO gap is not suitable for photocatalytic reduction employment (for example,
titanium-oxide, TiO2). Although TiO2 is a cost-effective semiconductor, larger bandgap possession and
prevalent charge recombination impede its wider applicability for photocatalytic pollutant reduction,
especially if approached as a standalone photocatalyst. Therefore, doping with other metal ions
is considered as a countermeasure for bandgap minimization of those semiconductors. Usually,
doping a semiconductor with trivalent impurities (such as boron, gallium, and aluminum) results
in electron deficiency in the VB, which will act as p-type (acceptor), while if dopant is pentavalent
impurities (such as phosphorous), there will be excess electron on the VB, resulting in n-type (donor)
semiconductor. Despite their higher electronic sensibility, inorganic semiconductors have lower
porosity, entailing smaller CO2 adsorption ability. On the other hand, unlike their porous physical
structure, the semiconducting feature of MOFs is poor, and the improvement of electronic property
typically improves robustness metamorphotic performance.

Fortunately, viable incorporation of those inorganic semiconductors with MOFs authenticates
the electro-photophysical property of the heterostructure enhancement, characterized for provision
of long-lived electron for substrate activation and improved uptake amount. As mentioned above,
it seems customary to construct MOFs with 1D, 2D, and 3D structures; however, the integrated
semiconductors could be in 0D (NPs), but the effect depends on the uniform dispersion of NPs onto
the template.

Composite MOFs outperform the pristine precursor in both adsorption and activation
photocatalytic activities because of the concomitant effects of the large-area porous framework
and electronic nature of the semiconductor. It is worth noting that the implantation of material to the
network improves not only the photoelectronic property but also the gas uptake volume. Ironically,
component-compatibility issues are a momentous factor in selecting a material for hybrid formation;
band alignment, irradiation responsiveness, lower bandgap, photothermal resilience, proper pore
occupancy, better surface area to porous volume ratio, higher CO2 affinity, and central metal activity
are mentionable aspects. Smooth synergistic interaction between the constituents in the congregated
material is necessary for efficient catalytic activity.

Furthermore, the alteration of the nodal metal and organic linker with advanced in-between
communication has been asserted to achieve a robust photoreduction process. Central metal could
be reinforced/replaced with/by other metal ions, believed to increase the photoelectronic property
of the original assembly. Likewise, the inclusion of some metal into the organic ligand will raise
the conductivity with passivated charge-hole recombination and adsorption capacity of the strand.
The integration of PSs to templet MOFs has been confirmed to be functional in nurturing photon
harvest and hot electron injection to the central nodal metal; this n-type semiconductor needs to be
protonated from the sacrificial agent upon exciton deportation for decomposition repression and
proper-continual operation. In addition, a legitimate assortment of proton donor and semiconductor
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eventually intensifies the electro-substrate activation route of the compiled heterogeneous photocatalyst
in CO2 photoreduction.

Contemplating MOFs as a proficient candidate for photocatalytic CO2 reduction, they practically
withstand hostile reaction conditions (i.e., humidity, alkalinity, acidity, and heat), which results in
expanded appositeness propensity. Frontier MOFs are designed to operate in harsh conditions and have
been shown to exhibit intact endurance with lower transformation rate, while others have extraordinary
conversion ability, but fragile due to severe condition in-hospitability paves the way for future research.
Parallel to the photocatalytic performance of MOFs, replenishment is also a fundamental aspect that
needs to be considered to preclude accessibility setbacks; thus, achieving eco-friendly chemical and
photothermal accommodation is not a trivial task for MOFs design-fabrication and installation.

We believe MOFs are efficient tools to mitigate environmental GHG contamination by CO2

removal; hence, the discovery of feasible and affordable MOFs should be swift, indicating that these
photocatalysts need to be constructed in more photo-sensible and reaction condition resilience mode.
Composite MOFs are far more efficient in CO2 photoreduction than solo raw MOFs. Material selection
is an important factor; MOFs should be designed from great CO2-philic porous organic linker to obtain
selective substrate adsorption, and this linker needs to be visible-light-sensitive to inject electron to the
central metal. Accordingly, exciton collection and substrate activation are central metals’ responsibility,
thereby creating higher synergy. It is noteworthy that considering previsouly mentioned features
of the organic linker and central metal materials during design have a paramount effect. Apart
from building unit selection, fabrication process and installation also significantly affect the catalytic
activity. Although there are various MOFs construction processes (such as solvothermal, hydrothermal,
and microwave-assisted), process selection depends on the compatibility of the constituent material.
Solvothermal and hydrothermal processes are the same, except that the organic solvents are used for
solvothermal, while water is used for the hydrothermal process since the chemical reactions in both
methods occur in aqueous solution with relatively low temperature (compared to microwave-assisted).
We believe that a hydrothermal synthesis method should be the first priority because water is safe to
work with and is readily available. More importantly, by this method, it is plausible to control the
composition of a crystal during crystalline MOFs’ fabrication. For seeking proper MOFs performance,
rating the reaction condition parameters should be carefully devised and controlled upon laboratory
simulation. More research needs to be done to fashion MOFs from synergistically harmonious material,
for both solo and composite photocatalyst service.

In this review, standalone and composite (two- or three-component) MOFs that work better for
CO2 photoreduction to renewable hydrocarbon were considered. In each section, we specified the pros
and cons of novel innovations. We provided a tabulated data of common MOFs with respective organic
linker/cluster and photolytic performance under specified conditions (Table 2). Although the yields
were not provided in some of the original work, the persuasive calculation was done for contrastive
argument. Moreover, the respective selectivity could be determined by using the given formula.
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Abbreviations/Acronyms

TCPP = tetrakis(4-carboxyphenyl)porphyrine
BH-(mim)3− = boron imidazolate
bpy = 2,2′-bipyridine
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dpe = 1,2-di(4-pyridyl)ethylene
bpydc = 2,2′-bipyridine-5,5′-dicarboxylate
cptpy = (4′-(4-carboxyphenyl) -terpyridine)
DHBDC = 2,5-dihydroxybenzene-1,4-dicarboxylic acid
BDC = benzene-1,4-dicarboxylic acid
H4DOBDC = 2,5-dioxide-1,4-benzenedicarboxylate
THPP = 5,10,15,20-tetrakis(3,4,5-trihydroxyphenyl) porphyrin
BA = butanedioic Acid
IA = isobutyric Acid
TCBPE = tetrabenzoatetraphenylethylene
ptcda = perylene-3,4,9,10-tetracarboxylic dianhydride
NTB = 4,4′,4”-nitrilotribenzoic acid
NBDC = 2-nitro-1,4-benzenedicarboxylic acid
BPDC = 4,4′-biphenyldicarboxylic acid
TIPA = triisopropanolamine
ATA = 2-aminoterephthalic acid
HCHC = hexakis (4-carboxyphenyl) hexabenzocoronene
HCBB = hexakis(4′-carboxy[1,1′-biphenyl]-4-yl) benzene
TAA = thioacetamide
TCA = 4,4′,4”-nitrilotribenzoic acid ligands
dcbpy = 2,2′-bipyridine-5,5′-dicarboxylic acid
HAD = adenine
TPA = terephthalic acid
BTC = 1,3,5-benzenetricarboxylat
2-mIM = 2-methylimidazole
L = 4,4′-((((perfluoropropane-2,2-diyl)bis(4,1-phenylene))bis(oxy))bis(methylene))dibenzoate anion
H2L1 = 2,2′-diamino-4,4′-stilbenedicarboxylic acid
H2L = 4,4′-(anthracene-9,10-diylbis(ethyne-2,1-diyl))dibenzoic acid
H3L = Ru-L metalloligand
H4L = 2-amino-1, 4-benzenedicarboxylic acid (BDC-NH2)
H2BTTA = 2,5-di(1H-1,2,4,-trazol-1-yl)terephthalic acid
NDI = naphthalenediimide
H2SDCA = 4,4′-stilbenedicarboxylic acid
MeCN = acetonitrile
H2O = water
TEOA = triethanolamine
TIPA = triisopropanolamine
MeOH = metahnol
NaHCO3 aqu. = sodium bicarbonate aqueous
BET = Brunauer-Emmett-Teller
TGA = thermogravimetric analysis
TEOA = triethanolamine
TIPA = triisopropanolamine
EN = ethylenediamine
DETA = diethylenetriamine
TETA = triethylenetetramine
ZrPP-1-Co = [Zr2(THPP-Co)]n
ZIF-8 = Zn(MeIM)2
ZIF-67 = Co(MeIM)2
UiO-66 = [Zr6O4(OH)4(BDC)6]
UiO-67 = [Zr6O4(OH)4(BPDC)6]
UiO-bpy = Zr6(µ3-O)4(µ3-OH)4(µ1-OH)(H2O)-(bpydc)5(HCO2)
Ir-CP Y = [Ir(ppy)2(dcbpy)]2[OH]
HKUST-1 = [Cu3(btc)2(H2O)3]
Hf12-Ru = Hf12(µ3-O)8(µ3-OH)8(µ2-OH)6(TFA)6(L-Ru)6
L-Ru = bis(2,2′-bipyridine)[5,5′-di(4-carboxyl-phenyl)-2,2′-bipyridine]ruthenium(II) dichloride
BIF-20 = Zn2(BH(MeIM)3)2(OBB)
FJI-H14 = [Cu(BTTA)H2O]n·6H2O
TCPP-Co = tetrakis(4-carboxyphenyl)porphyrin-Co
PCN-222 = Zr6(µ3-OH)8(OH)8-(TCPP)2
PCN-136 =(Zr6(µ3-O)4(µ3-OH)4(OH)6(H2O)6(HCHC)
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pbz-MOF-1 = (Zr6(µ3-O)6(µ3-OH)2(Ac)5(OH)(H2O)(HCBB))
NH2-UiO-66 = [Zr6O4(OH)4(NH2-BDC)6
MOF-525(Fe) = Zr6O4(OH)8(TCPP-Fe)2
MOF-525 = Zr6O4(OH)8(TCPP)2
MOF-525-Co = Zr6O4(OH)8(TCPP-Co)2
MOF-525(Fe) = Zr6O4(OH)8(TCPP-Fe)2
NH2-MIL-88B(Fe) = Fe3O(solvent)3Cl(NH2-BDC)3(solvent)m
NH2-MIL-101(Fe) = Fe3F(H2O)2O(NH2-BDC)3
MOF-253 = [Al(OH)(bpydc)]
MOF-74-Co = [Co2(dobdc)]
MOF-5 = [Zn4O(BDC)3]
MIL-101 = Cr3F(H2O)2O(BDC)3·nH2O (n ~ 25)
MIL-101(Fe) = Fe3F(H2O)2O(BDC)3
MAF-X27-OH = [Co2(µ-OH)2(bbta)]
MAF-X27-Cl = [Co2(µ-Cl)2(bbta)]
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