
RESEARCH ARTICLE

Android malware analysis in a nutshell

Iman AlmomaniID
1,2*, Mohanned Ahmed1, Walid El-ShafaiID

1,3

1 Security Engineering Lab, Computer Science Department, Prince Sultan University, Riyadh, KSA,

2 Computer Science Department, King Abdullah II School of Information Technology, The University of

Jordan, Amman, Jordan, 3 Electronics and Electrical Communication Engineering Department, Faculty of

Electronic Engineering, Menoufia University, Menouf, Egypt

* imomani@psu.edu.sa, i.momani@ju.edu.jo

Abstract

This paper offers a comprehensive analysis model for android malware. The model presents

the essential factors affecting the analysis results of android malware that are vision-based.

Current android malware analysis and solutions might consider one or some of these factors

while building their malware predictive systems. However, this paper comprehensively high-

lights these factors and their impacts through a deep empirical study. The study comprises

22 CNN (Convolutional Neural Network) algorithms, 21 of them are well-known, and one

proposed algorithm. Additionally, several types of files are considered before converting

them to images, and two benchmark android malware datasets are utilized. Finally, compre-

hensive evaluation metrics are measured to assess the produced predictive models from

the security and complexity perspectives. Consequently, guiding researchers and develop-

ers to plan and build efficient malware analysis systems that meet their requirements and

resources. The results reveal that some factors might significantly impact the performance

of the malware analysis solution. For example, from a security perspective, the accuracy,

F1-score, precision, and recall are improved by 131.29%, 236.44%, 192%, and 131.29%,

respectively, when changing one factor and fixing all other factors under study. Similar

results are observed in the case of complexity assessment, including testing time, CPU

usage, storage size, and pre-processing speed, proving the importance of the proposed

android malware analysis model.

Introduction

Malcious software (Malware) is any software built for unauthorized purposes and mala fide

aims. So, the malware affects the operating system performance and its running services due to

its harmful behavior. Currently, android malware is one of the most critical threats that can

encrypt or defect the operation of Android devices [1]. This is because Android malware appli-

cations (APKs) can steal or cipher sensitive data, show undesirable advertising, disrupt normal

functions, or control the users’ devices without their knowledge [2].

There are a lot of groups and categories of Android malware APKs, such as worms, botnet,

rootkits, ransomware, and Trojans [3]. These Android malware attacks can exploit metamor-

phic and polymorphic procedures to obfuscate traditional malware recognition and detection

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Almomani I, Ahmed M, El-Shafai W

(2022) Android malware analysis in a nutshell.

PLoS ONE 17(7): e0270647. https://doi.org/

10.1371/journal.pone.0270647

Editor: Sathishkumar V E, Hanyang University,

KOREA, REPUBLIC OF

Received: April 30, 2022

Accepted: June 14, 2022

Published: July 5, 2022

Copyright: © 2022 Almomani et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The datasets that

support the findings of this study are available

online. These datasets were derived from the

following resources available in the public

domains: 1. https://www.sec.tu-bs.de/�danarp/

drebin/download.html 2. https://www.

impactcybertrust.org/dataset_view?idDataset=

1275.

Funding: This research was carried out without any

financial support; however, the publication fee is

sponsored by the Prince Sultan University, Saudi

Arabia.

https://orcid.org/0000-0003-4639-516X
https://orcid.org/0000-0001-7509-2120
https://doi.org/10.1371/journal.pone.0270647
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270647&domain=pdf&date_stamp=2022-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270647&domain=pdf&date_stamp=2022-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270647&domain=pdf&date_stamp=2022-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270647&domain=pdf&date_stamp=2022-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270647&domain=pdf&date_stamp=2022-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270647&domain=pdf&date_stamp=2022-07-05
https://doi.org/10.1371/journal.pone.0270647
https://doi.org/10.1371/journal.pone.0270647
http://creativecommons.org/licenses/by/4.0/
https://www.sec.tu-bs.de/∼danarp/drebin/download.html
https://www.sec.tu-bs.de/∼danarp/drebin/download.html
https://www.impactcybertrust.org/dataset_view?idDataset=1275
https://www.impactcybertrust.org/dataset_view?idDataset=1275
https://www.impactcybertrust.org/dataset_view?idDataset=1275

algorithms. Moreover, the Android malware developers have a tendency to modify small sec-

tions of the developed and implemented source codes to create other malware alternatives and

threats that can evade the malware detection techniques [4]. Consequently, the identification

process of Android malware attacks from the same malware family becomes tremendously

challenging [5]. Therefore, efficient Android malware detection algorithms based on smart

artificial intelligence (AI) tools need to be developed and implemented to identify and recog-

nize the harmful effect of Android malware threats [6, 7].

Android malware detection and identification algorithms are categorized into four main

groups: static-based, dynamic-based, vision-based, or hybrid-based detection algorithms [8–

12]. In static-based identification algorithms, the Android malware APKs are analyzed without

executing them. So, these static-based algorithms depend on extracting some of the important

features from the suspected source codes to identify and recognize the Android malware fami-

lies. However, the main disadvantage of these static-based algorithms is that they are not

robust to code obfuscation, and they need more computation steps during the process of

extracting features [13, 14]. In dynamic-based identification algorithms, the traces and features

of the suspected source codes are examined and analyzed during their execution and running.

The critical disadvantage of these algorithms is that they are more time-consuming and require

additional storage resources [15].

On the other hand, in the hybrid-based identification algorithms, two or more types of

identification categories are simultaneously employed to efficiently detect the Android mal-

ware attacks. But this malware identification category needs more sequential steps, high

computational complexity, human intervention, and manual effort [16]. In vision-based mal-

ware identification algorithms, the Android malware APKs or their extracted features are con-

verted to visual 2D digital images before the classification and detection process. Therefore,

the main features of the Android malware APKs can be extracted and obtained by the unzip-

ping or decompilation processes [17, 18]. Then, the resulting 1D binary vectors of the

extracted features (i.e., Android manifest, SMALI, and Classes.dex) are transformed to 2D vec-

tors (grayscale images). In the last step, the resulting 2D grayscale images are forwarded to a

well-developed malware classifier such as Convolutional Neural Networks (CNN)-based mal-

ware classifiers to detect and classify the category and family of the analyzed Android malware

APKs.

Recently, Deep Learning (DL) and optimization algorithms are currently utilized and

exploited in mitigating Android malware threats [19–22]. Thus, DL networks such as CNN

algorithms are the most common AI and DL-based recognition & identification techniques

used to detect malware attacks from the input malware visual images [23–25]. Furthermore,

the CNN networks have the ability to efficiently distinguish various objects and aspects on the

input visual images using well-tuned learning biases and weights based on utilizing optimiza-

tion algorithms. Therefore, the CNN algorithms are the best choice for image classification

challenges and applications, such as classifying malware images [26–29]. Consequently, effi-

cient developed CNN algorithms can be used to automatically collect and obtain the rich and

valuable features from Android malware visual images. Then, these obtained features are used

to classify and identify the different families of Android malicious APKs.

Therefore, in our proposed work, without executing or running the Android APKs, we first

converted their binary data into 2D images. After that, we employed a well-developed CNN-

based Android malware detection algorithm to classify different categories of Android mal-

ware families from these 2D images. In addition, we tested and analyzed different 21 pre-

trained CNN algorithms to check their detection performance in identifying and recognizing

the Android malware classes from their visual images. Thus, the DL-based CNN algorithms

differ from traditional Machine Learning (ML) algorithms that accomplish feature

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 2 / 28

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0270647

representation with specific parameter configuration or particular assumptions. Therefore,

compared to conventional ML algorithms, the DL-based CNN algorithms can effectively dis-

cover complex patterns and obtain valuable features from multi-dimensional patterns like

visual images.

In Android malware analysis and detection systems, many parameters and factors need to

be considered that control the identification and recognition performance of the utilized mal-

ware classifiers. These parameters include (1) the analyzed Android dataset (balanced or

imbalanced), (2) the utilized evaluation metrics (i.e., security or complexity metrics), (3) the

type of malware analysis (static, dynamic, hybrid, or vision), and (4) the type of APK compo-

nents selected to be analyzed in the detection process (i.e., Full APK file, android manifest file,

SMALI file, or Classes.dex file).

So, this research is motivated by the importance of the area of android malware analysis

and detection solutions due to the increased risk of such types of attacks. In addition, there are

tremendous existing efforts utilizing vision-based algorithms to analyze and detect android

malware with high accuracy. The most critical issue in the previous related works is that they

only studied some parameters in their introduced malware detection systems. But, to achieve

high detection accuracy and efficient malware analysis, many factors must be investigated that

directly or indirectly affect the malware classification process.

As most current malware detection systems consider one or some factors while building

their malware predictive systems, this motivates us to offer a comprehensive analysis model

for Android malware. The model presents the essential factors affecting the analysis results of

vision-based Android malware. Consequently, we comprehensively highlighted these factors

and tested their impacts through a deep empirical study. The goal is to support researchers

and developers by providing a clear guide on planning and building efficient Malware analysis

systems that meet their requirements and available resources.

The significant contributions of our work are detailed as follows:

• Summarizing and comparing the most recent vision-based Android malware detection sys-

tems and the main factors studied by them.

• Proposing a nutshell vision-based model for efficiently detecting malware apps. This model

considers a comprehensive set of factors that might impact the efficiency of malware analysis

and detection solutions from the security and complexity perspectives. These factors include

the nature of the malware datasets, APK conversion process & format, CNN algorithms

used, and the evaluation metrics applied.

• Constructing a deep empirical study to implement all these factors and related parameters

and analyze their impacts by running more than 450 experiments within the same

environmen.

• Investigating the malware detection performance of different 22 CNN algorithms as part of

the empirical study on the two most common imbalanced Android malware datasets (DRE-

BIN and AMD). One of these CNN algorithms is developed from scratch for this research.

• Avoiding the need for static or dynamic analysis for classifying Android malware attacks by

converting Android threats to visual images for easy and low-complex classification process

using CNN algorithms. Thus, we achieved low computational complexity and, at the same

time, obtained high detection accuracy.

• Studying the impact of different visual formats of Android malware APKs on the security

and complexity performance of malware detection algorithms.

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 3 / 28

https://doi.org/10.1371/journal.pone.0270647

• Analyzing highly imbalanced Android malware datasets containing unbalanced malware

classes to achieve proper detection performance.

• Report and analyze the experiments’ results whether the malware APKs were directly con-

verted to images or rich extracted features from the Android APKs were converted to visual

images.

• Performing a deep comparative analysis for the security and complexity metrics perfor-

mance of all tested scenarios composed in the proposed comprehensive vision-based model.

The structure of this work is as follows. Section Related Work summarizes and compares

the recent related studies. Section Proposed presents the proposed comprehensive android

malware analysis model. Section Analysis illustrates the model evaluation and results discus-

sions & analysis. Finally, Section Conclusions concludes the paper and offers some future

directions.

Related work

This section summarizes and compares the previous work related to image-based malware

detection algorithms and systems. Table 1 shows a summary and comparison in terms of type

of image conversion (and if the process used involves unzipping, de-compilation, or both),

used dataset(s), utilized CNN algorithms, performance evaluation measures considered such

as model/prepossessing complexity and security measures.

Various algorithms were introduced in the literature that use unzipping, de-compilation, or

both in the image conversion process. Regarding unzipping-related approaches [30], intro-

duced a byte-level malware classification method by using Markov technique in classes.dex-to-

image conversion and then using deep CNN for the classification. Moreover [31], proposed a

system to classify malware by converting non-intuitive features into images to extract features

using CNN and use the features in classical ML algorithms such as KNN to detect the malware

family. [32] implemented and introduced a color visualization method on classes.dex and

AndroidManifest.xml files in malware Android apps and classify the images using CNN-Res-

Net models. In [33] paper, classical machine algorithms such as Random Forest, K-nearest

Neighbors, Decision Tree, Bagging, AdaBoost, and Gradient Boost were used for classification

after constructing feature vectors from gray images, yielded from converting APK contents

such as classes.dex to images. [34] proposed an approach to enhance blockchain user security

by implementing RGB image visualization technique on three types of files in Android apps:

classes.dex, AndroidManifest.xml, and Certificate. Then, train different classification models

and apply a decision mechanism to detect malware versus benign. On the other hand, for de-

compilation techniques [35], introduced a method called AdMat which treats Android apps as

images by forming an adjacency matrix for each app and then feeding them to the CNN model

to classify an app to malware or benign. Additionally [36], combined Opcodes, API packages,

and API functions to construct RGB images and then use CNN for classification. [37] mapped

permissions to severity levels [38]to create images to be fed to the CNN model for malware

classification. Other methods such as [39] used network interactions as features to be con-

verted to images to be input for CNN.

Different datasets were used in the previous papers to test the models and systems. The

main ones were Drebin and AMD. Some of them used DREBIN alone, such as [31, 36], and

some of them used only AMD, such as [39]. However, most of them used a combination of

both [32, 33, 35, 37].

To evaluate the performance of the resulted predictive models, several metrics were used in

the literature. Common metrics were accuracy, precision, recall, and F1-score [30, 31, 34–36].

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 4 / 28

https://doi.org/10.1371/journal.pone.0270647

Other metrics were used such as error rate, specificity, sensitivity, MSE, and FPR [31, 32, 36,

37].

Even though different works have been introduced for malware detection analysis, none of

them studied the approach comprehensively in terms of the used image conversion methods,

Table 1. Summary of recent related vision-based Android malware detection systems.

Ref Type of Image Conversion Dataset(s) CNN Algorithms Performance Evaluation

Model/Preprocessing Complexity Measures Security Measures

[30] unzipping: DEX file to gray markov image • DREBIN • CNN-VGG16 None • Accuracy,

Precision

• Recall, F1-score

[31] unzipping: DEX \ resource \ manifest \ certificate

files to gray image

• DREBIN • CNN-SVM

• CNN-KNN

• CNN-RF

• VGG16

• RAM Usage

• Training Time

• Preprocessing Time

• Accuracy

• Precision, Recall

• Error Rate, MSE

[35] de-compilation: raw opcodes to image • DREBIN

• AMD

• CNN • Test Time

• Training Time

• Preprocessing Time

• Accuracy,

Precision

• Recall, F1-score

[32] unzipping: DEX \ AM files to gray /color image • DREBIN

• AMD

• CNN-ResNet • Preprocessing Time

• Training Time

• TP,TN,FN,FP

• Accuracy

[36] de-compilation: Opcodes \ API packages \ high level

risky API functions to RGB image

• DREBIN • CNN None • Accuracy

• TPR,FPR

• Precision,

F1-score

[37] de-compilation: Permisions to image • DREBIN

• AMD

• CNN • Training Time • Accuracy

• Sensitivity,

Specificity

• Precision,

F1-score

[33] unzipping: AM \ DEX\ Resource.ARSC to gray

image

• DREBIN

• AMD

• RF

• KNN

• DT

• Bagging

• AdaBoost

• Gradient Boost

• Test Time

• Training Time

• Preprocessing Time

• Accuracy

[39] network interactions to gray image • AMD • CNN • APK File Size • TP,TN,FN,FP

• Accuracy,

Precision

• Recall, F1-score

[34] unzipping: AM \ DEX \ Certificates to RGB images • DREBIN • VGG16 None • Accuracy,

Precision

• Recall, F1-score

Ours de-compilation & unzipping:

• APK,AM

• DEX, SMALI

• DAM to gray image

• DREBIN

• AMD

• 22 CNN

Models

• Training Time

• Testing Time

• RAM Usage

• Preprocessing Time

• File size of APK image DEX image, AM

image DAM image, SMALI image

• TP,TNR,FN,FP

• Accuracy

• Precision

• Recall

• F1-score

• TN,NPV,FPR,

FNR

• PPV,FDR,FOR,

MR

https://doi.org/10.1371/journal.pone.0270647.t001

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 5 / 28

https://doi.org/10.1371/journal.pone.0270647.t001
https://doi.org/10.1371/journal.pone.0270647

datasets, CNN models, and evaluation metrics. This can be clearly observed in the comparison

conducted among the related work and our proposed analysis model, as shown in Table 1. For

example, in terms of the employed CNN algorithms used, most of the related works examined

a few models such as VGG16, ResNet, and customized CNN algorithms such as in [30–32, 34–

37, 39]. Moreover, they did not take into consideration all different file formats of Android

malware samples. For instance, the authors in [30–34] focused on the unzipping prepossessing

without considering the impact of decompiling preprocessing for the Android malware APKs.

On the other hand, the authors in [35–37] only considered the decompiling preprocessing.

Additionally, few assessment metrics were used for performance evaluation and complexity &

security analysis of the examined CNN algorithms. For example, some of the related studies

used training time, prepossessing time, test time, APK file size, and RAM usage as complexity

parameters, such as in [30–32, 34–37, 39]. However, none of these related works introduced a

comprehensive analysis of all of these complexity metrics. Moreover, in terms of security mea-

sures used, the related works used various security metrics such as accuracy, precision, recall,

and F1-score, such as in [30–32, 34–37, 39]. But many other assessment metrics must be con-

sidered and analyzed. For instance, the authors in [31] considered other metrics such as error

rate and MSE, while the authors in [36] evaluated their suggested CNN algorithms using TPR

and FPR. However, most related studies did not present deep and comprehensive security

analyses such as the estimation of NPV, PPV, and FOR parameters that can provide more

insights.

Therefore, in this paper, we introduce a comprehensive model that profoundly investigates

the critical factors that might impact the performance of android malware analysis systems in

terms of efficiency, complexity, and security perspectives. Our proposed work covers different

APK file formats, and different scenarios of de-compilation & unzipping preprocessing to

extract more features from the android APKs such as AM, DEX, de-compiled AM, and

SMALI. Additionally, the proposed Android malware analysis model tests the performance of

different 22 CNN algorithms in terms of comprehensive security and complexity metrics to

deeply analyze their detection and computational efficiencies.

Proposed comprehensive Android malware analysis model

This section presents a nutshell model of building vision-based prediction models for Android

malware detection systems. As shown in Fig 1, primary factors should be considered as they

will affect the Android malware analysis and detection processes. These factors include:

• Type of conversion: This defines how the Android malware apk is analyzed. One option is to

keep it as is (compressed) and then convert it to an image. Another option is to decompile the

apk file first using different tools such as apktool (https://ibotpeaches.github.io/Apktool/).

This tool decompiles the apk to generate smali files and the Android Manifest (AM) file. Then

these files will be stacked and then converted to images. Additionally, the analysis system

could consider only unzipping the apk file and then converting the resulting AM file and

“classes.dex” (CD) files to images.

• Dataset Nature: The created or chosen Android malware dataset could severely impact the

analysis model and the resulted predictive models. This includes the type of malware apps

considered and their primary behavior, the number of families (classes), and whether the

dataset is balanced or not.

• CNN Algorithms: The type of CNN algorithm that will be used to build the predictive

model is vital to the performance of the malware detection systems. Therefore, this study has

examined most of the well-known CNN algorithms (all currently implemented by Keras

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 6 / 28

https://ibotpeaches.github.io/Apktool/
https://doi.org/10.1371/journal.pone.0270647

(https://keras.io/)) to provide a deep insight into the CNN algorithms’ impact on detecting

Android malware applications.

• Evaluation: The way the Android malware analysis and predictive models are evaluated is

critical to trade-off the system performance in terms of security and complexity. Therefore,

the evaluation metrics must be carefully selected based on the system’s needs and available

resources.

The main flow of our proposed model is illustrated in Fig 2. The first phase in the proposed

nutshell model is the selection of the benchmarked android applications (apks) datasets that

are heavily utilized in vision-based malware analysis systems. Therefore, both DREBIN [40]

and AMD [41] have been selected. The reason behind choosing two different datasets is to

show the impact of only changing the nature of the dataset that the system is analyzing and

testing on the performance of the overall detection process. After that, the model processes

these apks in different ways of conversions: (1) apk is kept compressed as is, (2) apk is decom-

piled using Apktool to produce android decompiled manifest file (DAM), and Smali files, and

(3) apk is unzipped to generate android manifest (AM) file and Dex files. Then, the image con-

version phase is started by converting all features resulting from the above files into images.

These visual malware images are obtained by converting the extracted features’ binaries to

8-bit vectors and then converted to 2D grayscale images. For more details and explanations for

the byte-to-image conversion process, it can be checked in [23, 26].

The final phase is applying 22 CNN models for training and testing the predictive models

and then evaluating their performances using a comprehensive set of assessment metrics

related to complexity such as time, CPU & storage utilization for both the per-processing and

model execution phases. Additionally, 16 security-related metrics are also measured.

Fig 1. The high-level description of the in-detail processes in the proposed comprehensive model.

https://doi.org/10.1371/journal.pone.0270647.g001

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 7 / 28

https://keras.io/
https://doi.org/10.1371/journal.pone.0270647.g001
https://doi.org/10.1371/journal.pone.0270647

Fig 2. The flow of the proposed comprehensive model.

https://doi.org/10.1371/journal.pone.0270647.g002

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 8 / 28

https://doi.org/10.1371/journal.pone.0270647.g002
https://doi.org/10.1371/journal.pone.0270647

21 pre-trained CNN algorithms (VGG16, ResNet50, VGG19, DenseNet121, Dense-

Net169, DenseNet201, EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3,

EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7, InceptionResNetV2, Incep-

tionV3, MobileNet, MobileNetV2, MobileNetV3Large, MobileNetV3Small, and Xception)

[42–44] are examined. These pretrained CNN algorithms are developed in Python and

implemented in Keras and TensorFlow libraries [45–47]. Additionally, another CNN algo-

rithms is developed from scratch in this research. This algorithm has different layers, as

shown in Fig 3.

It consists of several sequential stages. The first stage is the processing of the input visual

malware images through the input layer and the Batch-Normalization (BN) layer that normal-

izes the visual images by re-scaling and re-centering processes. The BN layer is also introduced

in the proposed algorithm to stabilize the CNN network. Then, in the second stage, the super-

lative and furthermost effective features are extracted and accumulated through several 2D

convolutional layers (Conv2D), containing the same padding and stride by one. The weights

of each utilized Conv2D are initialized with an orthogonal matrix.

The number of employed filters in the Conv2D layers are 8, 16, 32, 64, 64, 256, respectively.

Also, the Conv2D layers are interspersed with pooling layers called MaxPooling that selecting

the most significant pixel values in a four-pixel space. So, the MaxPooling layers are character-

ized by reducing the computational burden of the proposed neural CNN network. After that,

the GlobalAveragePooling2D is introduced to gather the most common features during the

training process.

In the last stage, which is the decision-making, classification & detection stage, the spatial

data is primarily converted to one-dimensional data by the flatten later. Next, three sequential

fully connected layers (Dense) are utilized, each one of the first two Dense layers consists of

1024 nodes (neurons) whilst the last Dense layer consists of a number of nodes that equal the

number of classified classes (eight malware classes in our proposed work). In addition, in the

proposed CNN algorithm, we used the Dropout layer to prevent the overfitting problem. Fur-

thermore, the Rectified Linear Unit (ReLU) is also utilized in all Conv2D and Dense layers

as an activation function. But the ReLU is used in the last SoftMax layer to make the classifica-

tion decision. Table 2 presents the specifications of all employed layers in the proposed CNN

algorithm.

Fig 3. Proposed scratch CNN algorithm.

https://doi.org/10.1371/journal.pone.0270647.g003

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 9 / 28

https://doi.org/10.1371/journal.pone.0270647.g003
https://doi.org/10.1371/journal.pone.0270647

Model evaluation and results analysis

This section describes and discusses the security and complexity analysis for the proposed

comprehensive model. So, the in-detail analysis and testing of the employed 22 CNN algo-

rithms are introduced in terms of different evaluation metrics. The simulation specifications

of all examined CNN algorithms in the proposed comprehensive vision-based android mal-

ware detection model is summarized in Table 3.

Two imbalanced android datasets (DREBIN [40] and AMD [41]) are examined in the simu-

lation analysis. Each one of these datasets contains eight android malware classes. The names

and numbers of android malware APKs of the examined DREBIN and AMD datasets are pre-

sented in Table 4.

Table 2. Specifications of the CNN layers in the proposed scratch algorithm.

Layer (type) Output shape Parameters

batch_normalization (Batch Normalization) (None, 224, 224, 3) 12

conv2d (Conv2D) (None, 224, 224, 8) 224

conv2d_1 (Conv2D) (None, 224, 224, 16) 1168

max_pooling2d (MaxPooling2D) (None, 112, 112, 16) 0

conv2d_2 (Conv2D) (None, 112, 112, 32) 4640

max_pooling2d_1 (MaxPooling 2D) (None, 56, 56, 32) 0

conv2d_3 (Conv2D) (None, 56, 56, 64) 18496

conv2d_4 (Conv2D) (None, 56, 56, 64) 36928

max_pooling2d_2 (MaxPooling 2D) (None, 28, 28, 64) 0

conv2d_5 (Conv2D) (None, 28, 28, 256) 147712

max_pooling2d_3 (MaxPooling 2D) (None, 14, 14, 256) 0

dropout (Dropout) (None, 14, 14, 256) 0

global_average_pooling2d (GlobalAveragePooling2D) (None, 256) 0

flatten (Flatten) (None, 256) 0

dense (Dense) (None, 1024) 263168

dropout_1 (Dropout) (None, 1024) 0

dense_1 (Dense) (None, 1024) 1049600

dropout_2 (Dropout) (None, 1024) 0

dense_2 (Dense) (None, 10) 10250

Total params: 1,532,198, Trainable params: 1,532,192, and Non-trainable params: 6

https://doi.org/10.1371/journal.pone.0270647.t002

Table 3. Simulation specifications of the examined CNN algorithms in the proposed comprehensive model.

Variable Value

Programming language Python

Software libraries Keras and TensorFlow

Training/Validation/Testing ratio 64/16/10 (%)

Rate of the learning process 0.0001

Optimization algorithm Adam optimizer

Regularization algorithm L2 regularizer

Decay rate of the regularization algorithm 0.001

Number of epochs 128

Minimum batch size 64

Loss function Categorical cross-entropy function

https://doi.org/10.1371/journal.pone.0270647.t003

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 10 / 28

https://doi.org/10.1371/journal.pone.0270647.t002
https://doi.org/10.1371/journal.pone.0270647.t003
https://doi.org/10.1371/journal.pone.0270647

Assessment metrics

Different classification metrics have used to examine the security analysis of the studied CNN

algorithms. The mathematical expressions of these evaluation metrics are given as follows:

Accuracy ¼
TN þ TP

TN þ FPþ TPþ FN
ð1Þ

Recall ¼
TP

TPþ FN
ð2Þ

Precision ðPPVÞ ¼
TP

FPþ TP
ð3Þ

F1-Score ¼
2TP

2TPþ FN þ FP
ð4Þ

TNR ¼
TN

FPþ TN
ð5Þ

NPV ¼
TN

FN þ TN
ð6Þ

FPR ¼
FP

FP þ TN
ð7Þ

FNR ¼
FN

FN þ TP
ð8Þ

FDR ¼
FP

FPþ TP
ð9Þ

FOR ¼
FN

FN þ TN
ð10Þ

Misclassification rate ðMRÞ ¼
FPþ FN

TN þ FP þ TP þ FN
ð11Þ

Table 4. Description of the examined android malware datasets.

DREBIN AMD

Class Name No. of APKs Class Name No. of APKs

FakeInst 925 Dowgin 3385

DroidKungFu 667 FakeInst 2172

Plankton 625 Mecor 1820

Opfake 613 Youmi 1301

GinMaster 339 Fusob 1277

BaseBridge 330 Kuguo 1199

Iconosys 152 BankBot 648

Kmin 147 Jisut 560

https://doi.org/10.1371/journal.pone.0270647.t004

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 11 / 28

https://doi.org/10.1371/journal.pone.0270647.t004
https://doi.org/10.1371/journal.pone.0270647

where FP (false positive), FN (false negative), TP (true positive), and TN (true negative) are cal-

culated by the obtained confusion matrix of the tested CNN algorithm. Where, PPV: positive

predictive value, TNR: true negative rate, NPV: negative predictive value, FPR: false positive

rate, FNR: false negative rate, TPR: true positive rate, FDR: false discovery rate, and FOR: false

omission rate.

Security analysis

To assess the security of the proposed comprehensive model, we carried out extensive simula-

tion experiments based on different vision-based scenarios. So, the examined 22 CNN algo-

rithms, including the proposed one, are tested on five vision-based formats, which are: (1)

direction conversion of an APK file to a visual image, (2) conversion of Android Manifest

(AM) file extracted from the unzipping process to a visual image, (3) conversion of AM file

extracted from the decompilation (DAM) process to a visual image, (4) conversion of Classes.

dex (CD) file extracted from the unzipping process to a visual image, and (5) conversion of

SMALI file extracted from the decompilation process to a visual image. All the above-men-

tioned security-related metrics are calculated. For simplicity in presenting and comparing the

results, the accuracy, precision, recall, and F1-Score metrics are highlighted in each tested

CNN algorithm for the five studied vision-based scenarios on two different android malware

datasets (DREBIN & AMD), as shown in Tables 5 and 6.

Tables 5 and 6 present the performance of all predictive models generated based on the

DREBIN and AMD datasets from security perspectives. The results revealed that the proposed

CNN algorithm achieves superior detection efficacy for the assessed security parameters com-

pared to the other conventional CNN algorithms. Furthermore, it is demonstrated for the two

examined android malware datasets that the DAM vision-based format introduces the best

security performance for the proposed CNN algorithm and almost all tested CNN algorithms

compared to other examined vision-based formats.

Moreover, Tables 5 and 6 show that the achievement of high detection efficacy depends on

the proper selection of the CNN algorithm and the appropriate choice of utilized vision-based

format. So, for example, in some tested cases, the DAM vision-based format is not the best

vision-based scenario for some examined CNN algorithms. Therefore, based on the security

target of the android malware analysis system, it can select the appropriate CNN model and

vision-based format.

22 CNN models were implemented and applied on the two datasets. To simplify the presen-

tation of the simulation results, we introduce only the confusion matrices and the accuracy &

loss curves of the best-performed CNN model for the two investigated android malware data-

sets. Fig 4 presents the acquired confusion matrices of the proposed CNN algorithm for the

two tested AMD and DREBIN android malware datasets for the best DAM image format. The

security performance evaluation in terms of accuracy, recall, precision, and F1-Score can be

estimated from these confusion matrices. It is demonstrated that the proposed CNN algorithm

gives low false detection and low misclassification rate for the eight examined malware classes

in both datasets. Fig 5 introduces the obtained accuracy & loss curves of the proposed CNN

algorithm for the two tested AMD and DREBIN android malware datasets for the best DAM

image format. The achieved results confirm that the proposed CNN algorithm provides the

highest detection accuracy and the lowest detection loss compared to the other examined

CNN algorithms, as also clarified in Tables 5 and 6.

Table 7 shows the highest increase in the performance achieved among the different predic-

tive models in terms of accuracy, F1-Score, precision, and recall. The comparison was con-

ducted to show how various factors can affect the performance of the resulting predictive

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 12 / 28

https://doi.org/10.1371/journal.pone.0270647

Table 5. Security performance of models on DREBIN dataset.

Model Metric APK AM CD DAM SMALI

Ours Accuracy(%) 88.77 93.73 94.52 95.82 90.86

F1-Score(%) 88.75 93.75 94.52 95.78 91.0

Precision(%) 88.95 93.9 94.64 95.95 91.56

Recall(%) 88.77 93.73 94.52 95.82 90.86

VGG16 Accuracy(%) 84.33 93.99 93.21 92.95 89.03

F1-Score(%) 84.15 93.86 93.35 92.84 88.64

Precision(%) 85.05 94.01 93.9 93.13 89.57

Recall(%) 84.33 93.99 93.21 92.95 89.03

ResNet50 Accuracy(%) 86.68 94.78 92.69 95.56 90.6

F1-Score(%) 86.63 94.74 92.72 95.53 90.66

Precision(%) 86.92 94.95 92.95 95.71 91.03

Recall(%) 86.68 94.78 92.69 95.56 90.6

VGG19 Accuracy(%) 83.55 93.99 94.52 92.95 89.82

F1-Score(%) 83.48 94.0 94.61 92.85 89.69

Precision(%) 83.92 94.28 94.99 93.27 89.8

Recall(%) 83.55 93.99 94.52 92.95 89.82

DenseNet121 Accuracy(%) 79.37 89.82 93.21 93.21 85.64

F1-Score(%) 79.05 89.98 93.26 93.17 85.59

Precision(%) 80.41 90.6 93.48 93.64 86.5

Recall(%) 79.37 89.82 93.21 93.21 85.64

DenseNet169 Accuracy(%) 84.07 91.38 91.91 91.38 87.47

F1-Score(%) 83.86 91.38 92.06 91.28 87.31

Precision(%) 84.5 91.58 92.76 91.59 87.94

Recall(%) 84.07 91.38 91.91 91.38 87.47

DenseNet201 Accuracy(%) 84.33 88.25 92.69 92.69 88.77

F1-Score(%) 83.96 87.95 92.81 92.56 88.79

Precision(%) 84.91 88.68 93.18 92.63 89.04

Recall(%) 84.33 88.25 92.69 92.69 88.77

EfficientNetB0 Accuracy(%) 83.55 93.47 91.91 92.17 88.51

F1-Score(%) 83.38 93.46 91.95 92.12 88.41

Precision(%) 83.84 93.69 92.24 92.44 88.62

Recall(%) 83.55 93.47 91.91 92.17 88.51

EfficientNetB1 Accuracy(%) 86.68 92.95 92.43 93.47 88.77

F1-Score(%) 86.61 92.86 92.43 93.39 88.63

Precision(%) 86.87 93.24 92.65 93.79 88.95

Recall(%) 86.68 92.95 92.43 93.47 88.77

EfficientNetB2 Accuracy(%) 84.33 86.95 92.17 92.43 89.56

F1-Score(%) 84.18 86.87 92.17 92.32 89.39

Precision(%) 84.64 87.33 92.34 92.59 89.94

Recall(%) 84.33 86.95 92.17 92.43 89.56

EfficientNetB3 Accuracy(%) 86.16 92.43 92.95 93.47 90.08

F1-Score(%) 86.03 92.43 92.97 93.31 89.97

Precision(%) 86.25 92.57 93.08 93.78 90.45

Recall(%) 86.16 92.43 92.95 93.47 90.08

(Continued)

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 13 / 28

https://doi.org/10.1371/journal.pone.0270647

Table 5. (Continued)

Model Metric APK AM CD DAM SMALI

EfficientNetB4 Accuracy(%) 87.73 91.38 93.21 93.21 91.64

F1-Score(%) 87.66 91.32 93.25 93.2 91.52

Precision(%) 87.9 91.9 93.62 93.37 91.89

Recall(%) 87.73 91.38 93.21 93.21 91.64

EfficientNetB5 Accuracy(%) 84.6 91.91 91.64 92.43 89.82

F1-Score(%) 84.39 91.83 91.63 92.26 89.68

Precision(%) 84.89 92.17 91.79 93.0 90.41

Recall(%) 84.6 91.91 91.64 92.43 89.82

EfficientNetB6 Accuracy(%) 84.6 86.68 92.17 91.12 85.64

F1-Score(%) 84.38 86.69 92.2 90.66 85.59

Precision(%) 84.64 87.22 92.31 91.79 85.9

Recall(%) 84.6 86.68 92.17 91.12 85.64

EfficientNetB7 Accuracy(%) 83.29 89.82 90.86 90.6 89.3

F1-Score(%) 83.12 89.64 90.88 90.05 89.31

Precision(%) 83.5 90.26 91.1 90.94 89.87

Recall(%) 83.29 89.82 90.86 90.6 89.3

InceptionResNetV2 Accuracy(%) 38.38 50.39 68.15 50.39 55.09

F1-Score(%) 26.38 46.34 65.87 43.16 48.45

Precision(%) 30.46 51.58 68.9 39.08 55.55

Recall(%) 38.38 50.39 68.15 50.39 55.09

InceptionV3 Accuracy(%) 69.97 86.95 91.64 90.08 85.12

F1-Score(%) 69.41 86.55 91.73 89.93 85.01

Precision(%) 71.24 86.98 92.01 90.62 86.6

Recall(%) 69.97 86.95 91.64 90.08 85.12

MobileNet Accuracy(%) 75.2 93.99 91.38 90.08 79.9

F1-Score(%) 75.1 93.98 91.45 89.97 79.55

Precision(%) 76.79 94.1 91.65 90.41 80.59

Recall(%) 75.2 93.99 91.38 90.08 79.9

MobileNetV2 Accuracy(%) 80.16 91.38 89.82 90.08 82.25

F1-Score(%) 79.99 91.27 89.9 90.0 81.49

Precision(%) 81.5 91.34 90.63 90.31 82.24

Recall(%) 80.16 91.38 89.82 90.08 82.25

MobileNetV3Large Accuracy(%) 83.03 94.26 93.21 93.21 89.82

F1-Score(%) 82.75 94.25 93.2 93.19 89.67

Precision(%) 83.51 94.51 93.32 93.57 89.85

Recall(%) 83.03 94.26 93.21 93.21 89.82

MobileNetV3Small Accuracy(%) 81.98 93.21 93.21 92.95 90.08

F1-Score(%) 81.62 93.1 93.2 92.92 90.03

Precision(%) 81.85 93.42 93.23 93.07 90.78

Recall(%) 81.98 93.21 93.21 92.95 90.08

Xception Accuracy(%) 70.23 89.3 91.38 90.86 82.25

F1-Score(%) 68.59 89.27 91.32 90.87 82.02

Precision(%) 68.47 89.54 91.61 91.1 83.31

Recall(%) 70.23 89.3 91.38 90.86 82.25

https://doi.org/10.1371/journal.pone.0270647.t005

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 14 / 28

https://doi.org/10.1371/journal.pone.0270647.t005
https://doi.org/10.1371/journal.pone.0270647

Table 6. Security performance of models on AMD dataset.

Model Metric APK AM CD DAM SMALI

Ours Accuracy(%) 89.02 93.94 95.15 97.49 92.09

F1-Score(%) 88.69 93.77 95.17 97.48 92.19

Precision(%) 88.81 94.18 95.25 97.51 93.0

Recall(%) 89.02 93.94 95.15 97.49 92.09

VGG16 Accuracy(%) 83.86 92.24 93.45 91.02 90.64

F1-Score(%) 83.23 92.22 93.36 90.93 90.41

Precision(%) 83.42 92.2 93.37 91.14 90.66

Recall(%) 83.86 92.24 93.45 91.02 90.64

ResNet50 Accuracy(%) 85.96 92.72 94.66 93.77 91.53

F1-Score(%) 85.58 92.61 94.64 93.61 91.48

Precision(%) 85.89 92.66 94.66 93.77 91.46

Recall(%) 85.96 92.72 94.66 93.77 91.53

VGG19 Accuracy(%) 85.79 92.81 93.78 90.21 89.99

F1-Score(%) 85.35 92.7 93.78 90.12 89.66

Precision(%) 85.5 92.69 93.8 90.14 89.67

Recall(%) 85.79 92.81 93.78 90.21 89.99

DenseNet121 Accuracy(%) 80.71 90.78 93.45 91.59 89.1

F1-Score(%) 80.14 90.48 93.4 91.4 89.08

Precision(%) 80.64 90.56 93.45 91.37 89.35

Recall(%) 80.71 90.78 93.45 91.59 89.1

DenseNet169 Accuracy(%) 81.03 90.38 93.45 90.53 89.43

F1-Score(%) 80.21 89.78 93.34 90.27 89.36

Precision(%) 80.69 90.05 93.41 90.25 89.39

Recall(%) 81.03 90.38 93.45 90.53 89.43

DenseNet201 Accuracy(%) 84.99 88.44 93.13 90.78 90.15

F1-Score(%) 84.56 87.55 93.05 90.6 90.1

Precision(%) 84.55 88.51 93.08 90.58 90.1

Recall(%) 84.99 88.44 93.13 90.78 90.15

EfficientNetB0 Accuracy(%) 85.96 90.7 93.61 87.86 88.86

F1-Score(%) 85.63 90.32 93.55 86.74 88.48

Precision(%) 85.94 90.37 93.56 88.24 88.53

Recall(%) 85.96 90.7 93.61 87.86 88.86

EfficientNetB1 Accuracy(%) 87.17 91.35 93.53 89.16 89.18

F1-Score(%) 86.86 91.11 93.54 88.51 89.31

Precision(%) 87.1 91.09 93.56 88.97 89.95

Recall(%) 87.17 91.35 93.53 89.16 89.18

EfficientNetB2 Accuracy(%) 84.5 89.98 92.64 91.1 88.78

F1-Score(%) 83.98 89.76 92.59 90.7 88.47

Precision(%) 84.09 89.76 92.62 90.88 89.0

Recall(%) 84.5 89.98 92.64 91.1 88.78

EfficientNetB3 Accuracy(%) 85.39 91.27 93.45 91.83 88.86

F1-Score(%) 84.59 90.98 93.47 91.61 88.71

Precision(%) 85.41 91.06 93.51 91.64 88.66

Recall(%) 85.39 91.27 93.45 91.83 88.86

(Continued)

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 15 / 28

https://doi.org/10.1371/journal.pone.0270647

Table 6. (Continued)

Model Metric APK AM CD DAM SMALI

EfficientNetB4 Accuracy(%) 87.81 89.17 93.37 91.02 89.91

F1-Score(%) 87.45 88.47 93.29 90.62 89.88

Precision(%) 87.55 88.99 93.34 90.75 90.07

Recall(%) 87.81 89.17 93.37 91.02 89.91

EfficientNetB5 Accuracy(%) 85.55 89.25 93.86 90.13 89.1

F1-Score(%) 84.72 88.79 93.79 89.89 88.89

Precision(%) 85.45 88.84 93.78 89.94 88.83

Recall(%) 85.55 89.25 93.86 90.13 89.1

EfficientNetB6 Accuracy(%) 87.25 88.12 92.89 91.18 86.76

F1-Score(%) 86.65 87.74 92.83 91.22 86.73

Precision(%) 87.46 87.66 92.82 91.33 87.67

Recall(%) 87.25 88.12 92.89 91.18 86.76

EfficientNetB7 Accuracy(%) 86.6 91.59 93.69 91.75 88.62

F1-Score(%) 85.96 91.34 93.62 91.46 88.47

Precision(%) 86.29 91.33 93.67 91.67 88.58

Recall(%) 86.6 91.59 93.69 91.75 88.62

InceptionResNetV2 Accuracy(%) 47.78 64.51 71.95 47.09 54.8

F1-Score(%) 36.97 58.54 72.15 40.7 46.95

Precision(%) 54.67 58.44 75.97 50.22 44.31

Recall(%) 47.78 64.51 71.95 47.09 54.8

InceptionV3 Accuracy(%) 65.86 86.5 92.64 89.08 81.68

F1-Score(%) 64.39 85.98 92.57 88.59 80.69

Precision(%) 73.89 86.16 92.67 88.55 80.74

Recall(%) 65.86 86.5 92.64 89.08 81.68

MobileNet Accuracy(%) 79.58 90.22 91.35 88.92 82.41

F1-Score(%) 78.27 90.12 91.33 88.17 81.64

Precision(%) 78.52 90.07 91.37 88.71 81.7

Recall(%) 79.58 90.22 91.35 88.92 82.41

MobileNetV2 Accuracy(%) 79.58 89.01 90.22 89.16 82.0

F1-Score(%) 78.59 88.57 90.25 88.81 81.97

Precision(%) 78.57 88.85 90.51 88.78 83.08

Recall(%) 79.58 89.01 90.22 89.16 82.0

MobileNetV3Large Accuracy(%) 85.39 91.03 93.53 92.72 90.4

F1-Score(%) 85.04 90.97 93.56 92.44 90.38

Precision(%) 85.04 90.94 93.62 92.74 90.41

Recall(%) 85.39 91.03 93.53 92.72 90.4

MobileNetV3Small Accuracy(%) 85.15 91.11 93.69 91.67 89.91

F1-Score(%) 84.77 91.03 93.69 91.61 89.79

Precision(%) 85.01 91.0 93.75 91.59 89.87

Recall(%) 85.15 91.11 93.69 91.67 89.91

Xception Accuracy(%) 76.27 89.57 90.22 90.29 83.29

F1-Score(%) 75.52 89.24 90.28 90.04 82.96

Precision(%) 75.85 89.45 90.38 89.95 83.0

Recall(%) 76.27 89.57 90.22 90.29 83.29

https://doi.org/10.1371/journal.pone.0270647.t006

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 16 / 28

https://doi.org/10.1371/journal.pone.0270647.t006
https://doi.org/10.1371/journal.pone.0270647

models in case of (a) only changing the type of conversion while keeping the same dataset and

the applied CNN algorithm, (b) keeping the same conversion type and dataset while changing

the applied CNN algorithm (c) keeping the type of conversion and applied CNN algorithm

while changing the dataset itself. For example, the accuracy improvement reached 52.80%

when CD type is used instead of the whole APK utilizing InceptionResNetV2 algorithm and

AMD dataset. On the other hand, the accuracy improved by 107% when DAM type was used

by our proposed algorithm (scratch) in comparison to the InceptionResNetV2 algorithm. The

Fig 4. Confusion matrix of the proposed CNN algorithm (DAM format).

https://doi.org/10.1371/journal.pone.0270647.g004

Fig 5. DREBIN VS AMD in terms of best model acc-loss chart.

https://doi.org/10.1371/journal.pone.0270647.g005

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 17 / 28

https://doi.org/10.1371/journal.pone.0270647.g004
https://doi.org/10.1371/journal.pone.0270647.g005
https://doi.org/10.1371/journal.pone.0270647

rest of the most significant F1-score, precision, and recall improvements have reached 95.16%,

71.44%, and 52.8%, respectively, when different conversion types were considered while apply-

ing the same CNN algorithm. Additionally, within the same conversion type, applying differ-

ent CNN algorithms introduced 139.91% of F1-score improvement in the case of DAM type,

109.88% precision improvement in the case of SMALI type, and 107.04% in the case of DAM

type.

Similar behaviors were observed when DREBIN dataset was used. When applying the same

CNN algorithm but considering different conversion types, the accuracy, F1-Score, precision,

and recall have been improved by 77.55%, 149.71%, 126.16%, and 77.55%, respectively. How-

ever, the highest increase in the performance reached 131.29%, 236.44%, 192.00%, and

131.29% in terms of accuracy, F1-Score, precision and recall, respectively, when APK format

was used and different CNN algorithms were applied.

The performance was also affected when the dataset itself was changed. For example, the

amount of improvement in the accuracy, F1-Score, precision, and recall was higher when the

DREBIN dataset was used, whether by changing the conversion type or the applied CNN algo-

rithm, as also shown in Table 7.

About the above comparisons and discussion, we can emphasize the impact of different fac-

tors on the performance of the android malware analysis systems. These factors need to be

carefully addressed by the developers of the malware detection system to build predictive mod-

els that meet their needs.

In the following section, another way of assessing the malware analysis systems in terms of

complexity. The developers can balance both the security and complexity measures when

building their systems.

Complexity analysis

In addition to the security evaluation of the proposed comprehensive android malware analy-

sis and predictive model, we have measured the complexity concerning the models’ execution

and pre-processing phases. The models’ execution cost was calculated based on the model

computational test time and CPU usage. Therefore, the complexity of all examined CNN algo-

rithms, including our proposed algorithm, was measured when the two different android mal-

ware datasets were utilized, as shown in Tables 8 and 9. The experiments’ outcomes reveal that

(a) in the case of the DREBIN dataset, the test time was higher when APK as a whole was con-

verted to an image, especially in our proposed CNN algorithm, VGG16, ResNet50, Dense-

Net121, DenseNet169, and EfficientNetB0, (b) there was variation among the models in

regards to testing time even after using the same conversion type, (c) CPU usage in case of

APK was less or close to the other types’ CPU usages in almost all CNN algorithms. In general,

the CPU usage values were close in all algorithms for all conversion types, (d) overall, the test

time was higher in DREBIN in comparison to AMD in all applied CNN algorithms, (e) fewer

variations among the test time in the case of using AMD dataset in comparison to DREBIN

with the highest value observed in EfficientNetB7, (f) CPU usage values were close for all

Table 7. Comparative analysis: Percentage of the highest improved performance among different CNN models per metric and dataset type.

Comparative Analysis Metrics Accuracy(%) F1-Score(%) Precision(%) Recall(%)

AMD-Conversions 52.80 95.16 71.44 52.80

AMD-Algorithms 107.04 139.91 109.88 107.04

DERBIN-Conversions 77.55 149.71 126.16 77.55

DERBIN-Algorithms 131.29 236.44 192.00 131.29

https://doi.org/10.1371/journal.pone.0270647.t007

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 18 / 28

https://doi.org/10.1371/journal.pone.0270647.t007
https://doi.org/10.1371/journal.pone.0270647

Table 8. Complexity performance of models on DREBIN dataset.

Model Metric APK AM CD DAM SMALI

Ours Avg. Test Time(ms) 6.43 0.53 0.54 0.54 0.54

Avg. CPU Usage(GB) 0.0094 0.0104 0.0107 0.0113 0.0113

VGG16 Avg. Test Time(ms) 11.98 1.54 1.45 1.45 1.47

Avg. CPU Usage(GB) 0.0096 0.0105 0.0108 0.0115 0.0115

ResNet50 Avg. Test Time(ms) 4.07 2.79 2.67 4.18 2.68

Avg. CPU Usage(GB) 0.0096 0.0107 0.011 0.0109 0.0116

VGG19 Avg. Test Time(ms) 1.66 1.67 1.67 1.66 1.68

Avg. CPU Usage(GB) 0.0097 0.0108 0.0111 0.0109 0.0118

DenseNet121 Avg. Test Time(ms) 7.74 4.39 4.3 4.24 4.23

Avg. CPU Usage(GB) 0.0097 0.0104 0.0106 0.0111 0.0112

DenseNet169 Avg. Test Time(ms) 7.15 5.67 5.67 5.79 5.78

Avg. CPU Usage(GB) 0.0099 0.0104 0.0106 0.0109 0.0114

DenseNet201 Avg. Test Time(ms) 8.5 7.91 6.99 6.96 7.0

Avg. CPU Usage(GB) 0.0101 0.0105 0.0107 0.011 0.0113

EfficientNetB0 Avg. Test Time(ms) 5.29 3.18 5.01 3.2 3.22

Avg. CPU Usage(GB) 0.01 0.0103 0.0107 0.011 0.0115

EfficientNetB1 Avg. Test Time(ms) 4.76 5.77 4.44 4.48 4.54

Avg. CPU Usage(GB) 0.0099 0.0104 0.0107 0.0111 0.0114

EfficientNetB2 Avg. Test Time(ms) 5.62 5.28 4.5 6.08 4.5

Avg. CPU Usage(GB) 0.01 0.0104 0.0108 0.011 0.0115

EfficientNetB3 Avg. Test Time(ms) 7.58 5.13 5.23 5.22 5.32

Avg. CPU Usage(GB) 0.01 0.0104 0.0107 0.011 0.0114

EfficientNetB4 Avg. Test Time(ms) 8.88 6.46 6.6 6.55 6.47

Avg. CPU Usage(GB) 0.01 0.0105 0.0107 0.0111 0.0114

EfficientNetB5 Avg. Test Time(ms) 9.78 8.02 8.09 8.12 8.13

Avg. CPU Usage(GB) 0.0101 0.0105 0.0108 0.011 0.0115

EfficientNetB6 Avg. Test Time(ms) 11.73 10.87 9.64 9.65 9.66

Avg. CPU Usage(GB) 0.0103 0.0105 0.0109 0.0111 0.0114

EfficientNetB7 Avg. Test Time(ms) 15.02 13.73 12.15 12.17 12.14

Avg. CPU Usage(GB) 0.0104 0.0106 0.011 0.0113 0.0115

InceptionResNetV2 Avg. Test Time(ms) 9.88 9.08 7.61 7.75 7.9

Avg. CPU Usage(GB) 0.0106 0.0107 0.0111 0.0114 0.0116

InceptionV3 Avg. Test Time(ms) 6.87 4.43 3.14 3.14 3.1

Avg. CPU Usage(GB) 0.0103 0.0106 0.0111 0.0116 0.0118

MobileNet Avg. Test Time(ms) 1.92 1.29 1.3 4.16 1.28

Avg. CPU Usage(GB) 0.0105 0.0107 0.0113 0.0114 0.0119

MobileNetV2 Avg. Test Time(ms) 2.37 1.91 1.93 1.98 1.92

Avg. CPU Usage(GB) 0.0104 0.0108 0.0114 0.0113 0.0121

MobileNetV3Large Avg. Test Time(ms) 3.52 3.67 4.56 2.53 2.54

Avg. CPU Usage(GB) 0.0105 0.0106 0.011 0.0115 0.0117

MobileNetV3Small Avg. Test Time(ms) 3.79 2.02 2.08 2.05 2.11

Avg. CPU Usage(GB) 0.0104 0.0107 0.011 0.0116 0.0118

Xception Avg. Test Time(ms) 4.41 3.61 2.55 2.53 2.53

Avg. CPU Usage(GB) 0.0105 0.0106 0.0112 0.0112 0.0119

https://doi.org/10.1371/journal.pone.0270647.t008

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 19 / 28

https://doi.org/10.1371/journal.pone.0270647.t008
https://doi.org/10.1371/journal.pone.0270647

Table 9. Complexity performance of models on AMD dataset.

Model Metric APK AM CD DAM SMALI

Ours Avg. Test Time(ms) 0.42 0.4 0.31 0.41 0.31

Avg. CPU Usage(GB) 0.0039 0.004 0.0045 0.0045 0.0049

VGG16 Avg. Test Time(ms) 2.44 2.44 1.19 2.4 1.19

Avg. CPU Usage(GB) 0.004 0.0041 0.0046 0.0047 0.0051

ResNet50 Avg. Test Time(ms) 1.73 1.74 1.52 1.73 1.57

Avg. CPU Usage(GB) 0.0042 0.0042 0.0048 0.0048 0.0052

VGG19 Avg. Test Time(ms) 1.38 1.39 1.4 1.39 1.39

Avg. CPU Usage(GB) 0.0043 0.0044 0.0049 0.0049 0.0054

DenseNet121 Avg. Test Time(ms) 2.63 2.7 2.15 3.82 2.16

Avg. CPU Usage(GB) 0.0038 0.0045 0.0039 0.004 0.0041

DenseNet169 Avg. Test Time(ms) 3.04 3.88 2.82 3.05 2.86

Avg. CPU Usage(GB) 0.0038 0.0038 0.0041 0.0041 0.0042

DenseNet201 Avg. Test Time(ms) 3.67 3.66 4.36 3.7 3.46

Avg. CPU Usage(GB) 0.0039 0.004 0.0039 0.004 0.0041

EfficientNetB0 Avg. Test Time(ms) 1.81 1.85 1.64 1.87 1.68

Avg. CPU Usage(GB) 0.0037 0.0038 0.004 0.0041 0.0042

EfficientNetB1 Avg. Test Time(ms) 2.31 2.28 2.22 2.29 2.25

Avg. CPU Usage(GB) 0.0039 0.004 0.0039 0.0042 0.0043

EfficientNetB2 Avg. Test Time(ms) 2.45 2.44 2.3 2.43 2.26

Avg. CPU Usage(GB) 0.004 0.0038 0.004 0.0044 0.0045

EfficientNetB3 Avg. Test Time(ms) 3.01 3.0 2.73 3.02 4.01

Avg. CPU Usage(GB) 0.0038 0.004 0.0042 0.004 0.0041

EfficientNetB4 Avg. Test Time(ms) 3.64 3.66 4.46 3.68 3.47

Avg. CPU Usage(GB) 0.0038 0.0041 0.0039 0.0041 0.0042

EfficientNetB5 Avg. Test Time(ms) 4.65 4.65 4.37 5.8 4.38

Avg. CPU Usage(GB) 0.0039 0.0038 0.004 0.004 0.0041

EfficientNetB6 Avg. Test Time(ms) 5.63 6.63 5.36 5.69 5.36

Avg. CPU Usage(GB) 0.0038 0.0038 0.0039 0.0041 0.0042

EfficientNetB7 Avg. Test Time(ms) 8.06 7.08 6.79 7.16 6.8

Avg. CPU Usage(GB) 0.0038 0.0039 0.004 0.004 0.0041

InceptionResNetV2 Avg. Test Time(ms) 4.18 4.22 3.89 4.17 3.92

Avg. CPU Usage(GB) 0.0038 0.004 0.0042 0.0042 0.0043

InceptionV3 Avg. Test Time(ms) 1.89 1.85 1.56 1.89 1.57

Avg. CPU Usage(GB) 0.0039 0.0042 0.0043 0.0041 0.0044

MobileNet Avg. Test Time(ms) 0.79 0.78 0.7 0.79 0.71

Avg. CPU Usage(GB) 0.0041 0.0043 0.0044 0.0042 0.0045

MobileNetV2 Avg. Test Time(ms) 1.05 1.06 2.22 1.06 0.98

Avg. CPU Usage(GB) 0.0042 0.0039 0.004 0.0044 0.0047

MobileNetV3Large Avg. Test Time(ms) 1.35 1.37 1.21 1.36 2.64

Avg. CPU Usage(GB) 0.0044 0.004 0.0041 0.0045 0.0041

MobileNetV3Small Avg. Test Time(ms) 1.05 1.07 0.93 1.06 0.94

Avg. CPU Usage(GB) 0.0045 0.0042 0.0042 0.0047 0.0042

Xception Avg. Test Time(ms) 2.84 1.91 1.58 1.9 1.59

Avg. CPU Usage(GB) 0.0038 0.0043 0.0044 0.0048 0.0044

https://doi.org/10.1371/journal.pone.0270647.t009

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 20 / 28

https://doi.org/10.1371/journal.pone.0270647.t009
https://doi.org/10.1371/journal.pone.0270647

conversion types and applied CNN algorithms in the case of using the AMD dataset, (g) our

proposed CNN algorithm achieved lower testing time and CPU usage compared to other

transfer learning CNN algorithms for the two tested datasets.

As discussed in the propose work section, the CNN algorithm is developed from scratch,

and it is not a pre-trained CNN algorithm. Thus, as clarified in Table 2 (last row), our pro-

posed CNN algorithm used a small number of trainable/non-trainable parameters compared

to other pre-trained CNN algorithms. Therefore, it introduced a lower execution time.

Furthermore, the complexity of the pre-processing phases was measured in terms of (a) the

speed of decompiling and unzipping processes for both the two tested android malware data-

sets, and (b) the size of the obtained visual images for all types of conversion considered in this

research. Fig 6 demonstrates, in terms of histograms, the speed of decompiling and unzipping

processes for the DREBIN and AMD datasets.

Fig 6. DREBIN VS AMD in terms of speed of decompiling and unzipping processes.

https://doi.org/10.1371/journal.pone.0270647.g006

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 21 / 28

https://doi.org/10.1371/journal.pone.0270647.g006
https://doi.org/10.1371/journal.pone.0270647

The histogram distributions show the number of samples (y-axis) unzipped or decom-

piled as the time elapsed (x-axis). The general observation is that the unzipping process is

faster than the decompiling for the two examined android malware datasets. This can be

witnessed by counting the number of samples that can be unzipped by time. For example,

in the case of the DREBIN dataset, more than 4000 apps took less than 0.005 seconds to be

unzipped. In contrast, most apps (around 3000) took 2 to 3 seconds to be decompiled. AMD

dataset apps took less time to unzip and decompile. For example, around 10000 apps took

less than 0.01 seconds to be unzipped. In comparison, about 7000 apps took less than 3 sec-

onds to be decompiled.

Similar outcomes are observed in the case of using the AMD dataset. However, overall, the

unzipping and decompilation processes were faster in DREBIN than in the AMD dataset; this

is due to the nature of the android apps included in this dataset.

Moreover, Figs 7–9 show the histogram distribution of the files size of the resulted images

from the different types of conversations for the two datasets. Fig 7 presents the files size com-

parison between the DREBIN and AMD datasets of the produced APK images. It can be

noticed that files size was much larger when the AMD dataset was used.

The files size comparisons between the DREBIN and AMD datasets in the case of AM/

DAM images and CD/SMALI images are shown in Figs 8 and 9, respectively. The obtained

results declare that the APK images have the largest files size compared to the other images

resulting from other files types for both datasets. However, AM/DAM images are the smallest

among them. Moreover, for all types of files and produced images, AMD was higher in size

than DREBIN. Again this is due to the nature of the android apps included in this dataset.

Conclusions and future work

Android is the leading operating system worldwide, with around 70% market share. Conse-

quently, attracting different security attackers to produce threatening malware apps that serve

their bad intentions. On the other hand, security professionals are highly motivated to build

efficient and smart android malware analysis and detection systems. These systems could be

built based on vision-based approaches where the android apps or some of their components

are converted to images. In this context, CNN algorithms are one of the best choices to gener-

ate vision-based predictive solutions.

The main shortcoming of the current related works is the focus on some factors when

developing their malware analysis solutions, limiting the selection of best factors and practices

that meet the target performance within the available resources.

Therefore, this study aims to provide a nutshell model for analyzing android malware apps

that facilitates achieving high performance while respecting the system’s constraints. Further-

more, this research studied intensely the main factors that might significantly influence the

performance of detecting android malware from security and complexity perspectives.

This study started by conducting a deep comparison among recent related works in the

area of vision-based android malware analysis to check the primary factors considered by

them and their ways of assessing them. Then we have built a comprehensive malware analy-

sis model that captures essential aspects, processes, and practices that need to be considered

to ensure the efficient building of malware detection systems. This model provides a thor-

ough vision to developers on what to choose and why based on the systems’ needs and

resources.

The primary factors that are included in our proposed model are: the type of conversions

that decide on which features will be converted to images and how, dataset nature that depends

on the kind of android malware apps included in the dataset, CNN algorithms that will be

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 22 / 28

https://doi.org/10.1371/journal.pone.0270647

used to build the malware predictive solution, and most importantly the evaluation process

that comprehensively assesses the performance of the malware analysis system in terms of

complexity and security.

A deep empirical study has been conducted to evaluate the proposed model. The results

reveal that the chosen factors and processes can significantly impact the performance of the

analysis model, whether in terms of the security metrics such as accuracy, F1-score, precision,

recall, or the complexity metrics such as test time, CPU usage, storage size, and pre-processing

speed.

Fig 7. DREBIN VS AMD in terms of file size of APK images.

https://doi.org/10.1371/journal.pone.0270647.g007

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 23 / 28

https://doi.org/10.1371/journal.pone.0270647.g007
https://doi.org/10.1371/journal.pone.0270647

As a result, the proposed model will effectively direct the developers of malware analysis

systems on which factors to adopt based on their requirements and the chosen factors’

impacts. Therefore, the researchers and developers can benefit from our model to trade off

these factors to ensure building malware analysis systems that meet their goals.

For future work, other comprehensive models could be proposed for android malware anal-

ysis systems that are not vision-based. Additionally, we could introduce nutshell analysis mod-

els for different types of malware to other kinds of operating systems. Furthermore, we intend

to study the effect of using variable byte sizes and different image sizes for the visual features of

the Android malware applications. Moreover, a deep analysis of different misclassification and

obfuscation classification scenarios can be investigated.

Fig 8. DREBIN VS AMD in terms of file size of AM/DAM images.

https://doi.org/10.1371/journal.pone.0270647.g008

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 24 / 28

https://doi.org/10.1371/journal.pone.0270647.g008
https://doi.org/10.1371/journal.pone.0270647

Appendix A

S1 and S2 Tables illustrate the security performance of different CNN algorithms utilizing

DREBIN and AMD datasets, respectively. As mentioned before, these metrics were not

included in the analysis section for simplicity in presenting the results and highlighting the

main evaluation metrics in regards to the detection performance.

Supporting information

S1 Table. Security performance of models on DREBIN dataset based on other metrics.

(PDF)

Fig 9. DREBIN VS AMD in terms of file size of CD/SMALI images.

https://doi.org/10.1371/journal.pone.0270647.g009

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 25 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270647.s001
https://doi.org/10.1371/journal.pone.0270647.g009
https://doi.org/10.1371/journal.pone.0270647

S2 Table. Security performance of models on AMD dataset based on other metrics.

(PDF)

Acknowledgments

The authors would like to acknowledge the support of the Security Engineering Lab (SEL) at

Prince Sultan University. Moreover, this research was done during the author Iman Almoma-

ni’s sabbatical year 2021/2022 from the University of Jordan, Amman–Jordan.

Author Contributions

Conceptualization: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Data curation: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Formal analysis: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Funding acquisition: Iman Almomani.

Investigation: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Methodology: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Project administration: Iman Almomani.

Resources: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Software: Mohanned Ahmed, Walid El-Shafai.

Supervision: Iman Almomani.

Validation: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Visualization: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Writing – original draft: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

Writing – review & editing: Iman Almomani, Mohanned Ahmed, Walid El-Shafai.

References
1. Singh J, Singh J. A survey on machine learning-based malware detection in executable files. Journal of

Systems Architecture. 2021; 112:101861. https://doi.org/10.1016/j.sysarc.2020.101861

2. Suresh P, Logeswaran K, Keerthika P, Devi RM, Sentamilselvan K, Kamalam G, et al. Contemporary

survey on effectiveness of machine and deep learning techniques for cyber security. 2022; p. 177–200.

3. Arslan RS. AndroAnalyzer: android malicious software detection based on deep learning. PeerJ Com-

puter Science. 2021; 7:e533. https://doi.org/10.7717/peerj-cs.533 PMID: 34084934

4. Naseer M, Rusdi JF, Shanono NM, Salam S, Muslim ZB, Abu NA, et al. Malware Detection: Issues and

Challenges. In: Journal of Physics: Conference Series. vol. 1807. IOP Publishing; 2021. p. 012011.

5. Ding Y, Zhang X, Hu J, Xu W. Android malware detection method based on bytecode image. Journal of

Ambient Intelligence and Humanized Computing. 2020; p. 1–10.

6. Wang W, Zhao M, Wang J. Effective android malware detection with a hybrid model based on deep

autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Com-

puting. 2019; 10(8):3035–3043. https://doi.org/10.1007/s12652-018-0803-6

7. Selvaganapathy S, Sadasivam S, Ravi V. A review on android malware: Attacks, countermeasures and

challenges ahead. Journal of Cyber Security and Mobility. 2021; p. 177–230.

8. Sugunan K, Gireesh Kumar T, Dhanya K. Static and dynamic analysis for android malware detection.

2018; p. 147–155.

9. Almomani I, Khayer A. Android applications scanning: The guide. In: 2019 International Conference on

Computer and Information Sciences (ICCIS). IEEE; 2019. p. 1–5.

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 26 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270647.s002
https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/10.7717/peerj-cs.533
http://www.ncbi.nlm.nih.gov/pubmed/34084934
https://doi.org/10.1007/s12652-018-0803-6
https://doi.org/10.1371/journal.pone.0270647

10. Lu T, Du Y, Ouyang L, Chen Q, Wang X. Android malware detection based on a hybrid deep learning

model. Security and Communication Networks. 2020; 2020. https://doi.org/10.1155/2020/8863617

11. Mercaldo F, Santone A. Deep learning for image-based mobile malware detection. Journal of Computer

Virology and Hacking Techniques. 2020; 16(2):157–171. https://doi.org/10.1007/s11416-019-00346-7

12. Acharya V, Ravi V, Mohammad N. EfficientNet-based Convolutional Neural Networks for Malware Clas-

sification. In: 2021 12th International Conference on Computing Communication and Networking Tech-

nologies (ICCCNT). IEEE; 2021. p. 1–6.

13. Taheri R, Ghahramani M, Javidan R, Shojafar M, Pooranian Z, Conti M. Similarity-based Android mal-

ware detection using Hamming distance of static binary features. Future Generation Computer Sys-

tems. 2020; 105:230–247. https://doi.org/10.1016/j.future.2019.11.034

14. Al Khayer A, Almomani I, Elkawlak K. ASAF: Android static analysis framework. In: 2020 First Interna-

tional Conference of Smart Systems and Emerging Technologies (SMARTTECH). IEEE; 2020. p. 197–

202.

15. Feng P, Ma J, Sun C, Xu X, Ma Y. A novel dynamic Android malware detection system with ensemble

learning. IEEE Access. 2018; 6:30996–31011. https://doi.org/10.1109/ACCESS.2018.2844349

16. Gaurav A, Gupta BB, Panigrahi PK. A comprehensive survey on machine learning approaches for mal-

ware detection in IoT-based enterprise information system. Enterprise Information Systems. 2022; p.

1–25. https://doi.org/10.1080/17517575.2021.2023764

17. Kumar S, Janet B. DTMIC: Deep transfer learning for malware image classification. Journal of Informa-

tion Security and Applications. 2022; 64:103063. https://doi.org/10.1016/j.jisa.2021.103063

18. Kim JY, Cho SB. Obfuscated Malware Detection Using Deep Generative Model based on Global/Local

Features. Computers & Security. 2022; 112:102501. https://doi.org/10.1016/j.cose.2021.102501

19. Bello I, Chiroma H, Abdullahi UA, Gital AY, Jauro F, Khan A, et al. Detecting ransomware attacks using

intelligent algorithms: Recent development and next direction from deep learning and big data perspec-

tives. Journal of Ambient Intelligence and Humanized Computing. 2021; 12(9):8699–8717. https://doi.

org/10.1007/s12652-020-02630-7

20. Qaddoura R, Al-Zoubi M, Faris H, Almomani I, et al. A multi-layer classification approach for intrusion

detection in iot networks based on deep learning. Sensors. 2021; 21(9):2987. https://doi.org/10.3390/

s21092987 PMID: 33923180

21. Almomani I, Qaddoura R, Habib M, Alsoghyer S, Al Khayer A, Aljarah I, et al. Android ransomware

detection based on a hybrid evolutionary approach in the context of highly imbalanced data. IEEE

Access. 2021; 9:57674–57691. https://doi.org/10.1109/ACCESS.2021.3071450

22. Ahmed AA, Jabbar WA, Sadiq AS, Patel H. Deep learning-based classification model for botnet attack

detection. Journal of Ambient Intelligence and Humanized Computing. 2020; p. 1–10.

23. Almomani I, Alkhayer A, El-Shafai W. An Automated Vision-Based Deep Learning Model for Efficient

Detection of Android Malware Attacks. IEEE Access. 2022;.

24. Sriram S, Vinayakumar R, Sowmya V, Alazab M, Soman K. Multi-scale learning based malware variant

detection using spatial pyramid pooling network. In: IEEE INFOCOM 2020-IEEE Conference on Com-

puter Communications Workshops (INFOCOM WKSHPS). IEEE; 2020. p. 740–745.

25. Ganesan S, Ravi V, Krichen M, Sowmya V, Alroobaea R, Soman K. Robust malware detection using

residual attention network. In: 2021 IEEE International Conference on Consumer Electronics (ICCE).

IEEE; 2021. p. 1–6.

26. El-Shafai W, Almomani I, AlKhayer A. Visualized malware multi-classification framework using fine-

tuned CNN-based transfer learning models. Applied Sciences. 2021; 11(14):6446. https://doi.org/10.

3390/app11146446

27. Yadav P, Menon N, Ravi V, Vishvanathan S, Pham TD. EfficientNet Convolutional Neural Networks-

based Android Malware Detection. Computers & Security. 2022; p. 102622. https://doi.org/10.1016/j.

cose.2022.102622

28. Venkatraman S, Alazab M, Vinayakumar R. A hybrid deep learning image-based analysis for effective

malware detection. Journal of Information Security and Applications. 2019; 47:377–389. https://doi.org/

10.1016/j.jisa.2019.06.006

29. Yadav P, Menon N, Ravi V, Vishvanathan S, Pham TD. A two-stage deep learning framework for

image-based android malware detection and variant classification. Computational Intelligence;.

30. Yuan B, Wang J, Liu D, Guo W, Wu P, Bao X. Byte-level malware classification based on markov

images and deep learning. Computers & Security. 2020; 92:101740. https://doi.org/10.1016/j.cose.

2020.101740

31. Singh J, Thakur D, Ali F, Gera T, Kwak KS. Deep feature extraction and classification of android mal-

ware images. Sensors. 2020; 20(24):7013. https://doi.org/10.3390/s20247013 PMID: 33302430

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 27 / 28

https://doi.org/10.1155/2020/8863617
https://doi.org/10.1007/s11416-019-00346-7
https://doi.org/10.1016/j.future.2019.11.034
https://doi.org/10.1109/ACCESS.2018.2844349
https://doi.org/10.1080/17517575.2021.2023764
https://doi.org/10.1016/j.jisa.2021.103063
https://doi.org/10.1016/j.cose.2021.102501
https://doi.org/10.1007/s12652-020-02630-7
https://doi.org/10.1007/s12652-020-02630-7
https://doi.org/10.3390/s21092987
https://doi.org/10.3390/s21092987
http://www.ncbi.nlm.nih.gov/pubmed/33923180
https://doi.org/10.1109/ACCESS.2021.3071450
https://doi.org/10.3390/app11146446
https://doi.org/10.3390/app11146446
https://doi.org/10.1016/j.cose.2022.102622
https://doi.org/10.1016/j.cose.2022.102622
https://doi.org/10.1016/j.jisa.2019.06.006
https://doi.org/10.1016/j.jisa.2019.06.006
https://doi.org/10.1016/j.cose.2020.101740
https://doi.org/10.1016/j.cose.2020.101740
https://doi.org/10.3390/s20247013
http://www.ncbi.nlm.nih.gov/pubmed/33302430
https://doi.org/10.1371/journal.pone.0270647

32. Zhang H, Qin J, Zhang B, Yan H, Guo J, Gao F. A Multi-class Detection System for Android Malicious

Apps Based on Color Image Features. In: International Conference on Security and Privacy in New

Computing Environments. Springer; 2020. p. 186–206.

33. Ünver HM, Bakour K. Android malware detection based on image-based features and machine learning

techniques. SN Applied Sciences. 2020; 2(7):1–15.

34. Li X, Zhao Z, Tang Y, Zhang J, Wu C, Li Y. An Android Malicious Application Detection Method with

Decision Mechanism in the Operating Environment of Blockchain. Security and Communication Net-

works. 2022; 2022.

35. Vu LN, Jung S. AdMat: A CNN-on-matrix approach to Android malware detection and classification.

IEEE Access. 2021; 9:39680–39694. https://doi.org/10.1109/ACCESS.2021.3063748

36. Zhao Yl, Qian Q. Android malware identification through visual exploration of disassembly files. Interna-

tional Journal of Network Security. 2018; 20(6):1061–1073.

37. D’Angelo G, Palmieri F, Robustelli A. A federated approach to Android malware classification through

Perm-Maps. Cluster Computing. 2022; p. 1–14.

38. Almomani IM, Al Khayer A. A comprehensive analysis of the android permissions system. IEEE Access.

2020; 8:216671–216688. https://doi.org/10.1109/ACCESS.2020.3041432

39. Sihag V, Choudhary G, Vardhan M, Singh P, Seo JT. PICAndro: Packet InspeCtion-Based Android Mal-

ware Detection. Security and Communication Networks. 2021; 2021. https://doi.org/10.1155/2021/

9099476

40. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C. Drebin: Effective and explainable

detection of android malware in your pocket. In: Ndss. vol. 14; 2014. p. 23–26.

41. Li Y, Jang J, Hu X, Ou X. Android malware clustering through malicious payload mining. In: International

symposium on research in attacks, intrusions, and defenses. Springer; 2017. p. 192–214.

42. Brownlee J. Deep learning with Python: develop deep learning models on Theano and TensorFlow

using Keras. 2016;.

43. Hodnett M, Wiley JF. R Deep Learning Essentials: A step-by-step guide to building deep learning mod-

els using TensorFlow, Keras, and MXNet. 2018;.

44. Vasilev I, Slater D, Spacagna G, Roelants P, Zocca V. Python Deep Learning: Exploring deep learning

techniques and neural network architectures with Pytorch, Keras, and TensorFlow. 2019;.

45. Joseph FJJ, Nonsiri S, Monsakul A. Keras and TensorFlow: A hands-on experience. 2021; p. 85–111.

46. Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and

techniques to build intelligent systems. 2019;.

47. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. {TensorFlow}: A System for {Large-Scale}

Machine Learning. In: 12th USENIX symposium on operating systems design and implementation

(OSDI 16); 2016. p. 265–283.

PLOS ONE Android malware analysis in a nutshell

PLOS ONE | https://doi.org/10.1371/journal.pone.0270647 July 5, 2022 28 / 28

https://doi.org/10.1109/ACCESS.2021.3063748
https://doi.org/10.1109/ACCESS.2020.3041432
https://doi.org/10.1155/2021/9099476
https://doi.org/10.1155/2021/9099476
https://doi.org/10.1371/journal.pone.0270647

