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Gut microbiota analysis 
for prediction of clinical relapse 
in Crohn’s disease
Sylvie Buffet‑Bataillon 1, Guillaume Bouguen 2, François Fleury 1, Vincent Cattoir 3 & 
Yann Le Cunff 4*

The role of intestinal bacterial microbiota has been described as key in the pathophysiology of 
Crohn’s disease (CD). CD is characterized by frequent relapses after periods of remission which are not 
entirely understood. In this paper, we investigate whether the heterogeneity in microbiota profiles 
in CD patients could be a suitable predictor for these relapses. This prospective observational study 
involved 259 CD patients, in which 41 provided an additional total of 62 consecutive fecal samples, 
with an average interval of 25 weeks in between each of these samples. Fecal microbiota was analyzed 
by massive genomic sequencing through 16 S rRNA amplicon sampling. We found that our 259 CD 
patients could be split into three distinct subgroups of microbiota (G1, G2, G3). From G1 to G3, we 
noticed a progressive decrease in alpha diversity (p ≤ 0.0001) but no change in the fecal calprotectin 
(FC) level. Focusing on the 103 consecutive samples from 41 CD patients, we showed that the patients 
microbiota profiles were remarkably stable over time and associated with increasing symptom 
severity. Investigating further this microbiota/severity association revealed that the first signs of 
aggravation are (1) a loss of the main anti‑inflammatory Short‑Chain Fatty Acids (SCFAs) Roseburia, 
Eubacterium, Subdoligranumum, Ruminococcus (P < 0.05), (2) an increase in pro‑inflammatory 
pathogens Proteus, Finegoldia (P < 0.05) while (3) an increase of other minor SCFA producers such 
as Ezakiella, Anaerococcus, Megasphaera, Anaeroglobus, Fenollaria (P < 0.05). Further aggravation 
of clinical signs is significantly linked to the subsequent loss of these minor SCFAs species and to 
an increase in other proinflammatory Proteobacteria such as Klebsiella, Pseudomonas, Salmonella, 
Acinetobacter, Hafnia and proinflammatory Firmicutes such as Staphylococcus, Enterococcus, 
Streptococcus. (P < 0.05). To our knowledge, this is the first study (1) specifically identifying subgroups 
of microbiota profiles in CD patients, (2) relating these groups to the evolution of symptoms over time 
and (3) showing a two‑step process in CD symptoms’ worsening. This paves the way towards a better 
understanding of patient‑to‑patient heterogeneity, as well as providing early warning signals of future 
aggravation of the symptoms and eventually adapting empirically treatments.

Crohn’s disease (CD) is characterized by chronic inflammation of the gastrointestinal (GI) tract, which involves 
complex interactions between the host immune system, intestinal mucosa and gut  microbiota1. Numerous studies 
have found an imbalance in the gut microbiota of CD patients compared to non-CD controls with an overall loss 
of diversity, a depletion of firmicutes and an increase in  Proteobacteria2–4. The chronic, unpredictable nature of 
the disease and its debilitating effect on all aspects of life are major concerns for patients with CD with a broad 
diversity of  symptoms5,6. For instance, 21–47% of CD patients present in addition to digestive symptoms, systemic 
and extra-intestinal  manifestations7. Half of CD patients develop intestinal complications, such as strictures or 
fistulae, within 10 years of diagnosis and require surgery in the 20 years following the  diagnosis8,9. In a nutshell, 
it is well documented that CD displays a large heterogeneity of symptoms between patients—from mild to 
heavily impairing everyday life -, as well as in time with a relapsing–remitting dynamics that is also yet to be 
fully understood. It is also still unclear how such inter-patient heterogeneity in symptoms and CD evolution is 
associated with microbiota heterogeneity. In this paper, we harness a novel large longitudinal cohort of Crohn’s 
patients to unravel this relationship.
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We thus investigated (1) the heterogeneity of gut microbiota in CD patients, (2) for the first time the tempo-
ral evolution of the disease in order to link symptoms’ evolution and microbiota composition, and (3) the “key 
microbial signatures” during the transitions from one microbiota profile to another in order to pave the way 
towards personalized diagnosis and treatment of CD.

Methods
Cohort of patients. A total of 259 patients with CD were included at the referral center Hospital University 
of Rennes (France) during a two-year period and provided informed consent for this observational, non-inter-
ventional study. Patients were informed to be included in a prospective research database (Rennes, approved by 
the Commission Nationale Informatique et Liberté (CNIL) No. 1412467) which allowed us to perform this study 
without additional consent as the data were retrieved from the standard follow-up of patients.

Inclusion criteria were CD patients diagnosed using standard endoscopic, histological or radiological cri-
teria, aged from 16 to 80 years old. Exclusion criteria were patients with ulcerative colitis, and/or with a stoma. 
Details regarding age, female sex, smoking, gastrointestinal surgery, Montreal classification for CD (A, B, L), fecal 
calprotectin (FC)(µg/g), treatment (Anti-TNF, Thiopurine-methotrexate (MTX), Antibiotics) were collected on 
the same day of fecal samples and are shown in Table 1.

Patient selection. A subgroup of 41 patients from the cohort had several temporal fecal samplings over 
the longitudinal study (n = 103 samples in total). The Harvey-Bradshaw Index (HBI) was assessed to describe 
the status of a patient at the time when the sample was taken. HBI thresholds were used to define three groups 
“Remission” (HBI < 5 with abdominal pain = 0 and complications = 0) (n = 42); “Mild-Moderate” (HBI = 5–8 with 
abdominal pain = 1 (mild) or 2 (moderate) and complications = 0) (n = 28); and “Severe” (HBI > 8 with abdomi-
nal pain = 3 and at least one complications) (n = 33)10.

Gut microbiota analysis. We used a standard procedure for fecal microbiota profiling using 16S rRNA-
based metagenomic sequencing and bioinformatic analysis. According to the International Human Microbiome 
Standards (IHMS), patients were asked to collect fecal samples immediately after defecation in a sterile container 
(from VWR).Then, the stool samples were stored up to 24 h at 4 °C. When received at the laboratory, all samples 
were manually homogenized and weighed into separate aliquots for storage at 80 °C until DNA extraction.

The extracted DNA was used for the assessment of the microbial populations using 16S rRNA gene sequence-
based microbiota analysis. DNA was extracted from the fecal specimens with the automated MagNA Pure 
system (Roche Diagnostics GmbH, Mannheim, Germany), using the MagNA Pure LC DNA Kit III (bacteria, 
fungi) (Roche) according to the manufacturer’s recommendations. Pre-isolation steps as mechanical lysis (30 s 
at 6000 rpm) on the MagNa Lyser Instrument, and heat lysis (10 min at + 65 °C and at 95 °C) were added to 
perform DNA isolations.

We followed the steps described in the Illumina 16S sample preparation guide to amplify the V3 and V4 
region, add Illumina sequencing adapters and dual index barcodes to the amplicon target.

Primers were designed according to the V3-V4 regions of bacteria (the upstream primer: PCR_341 F is 
5’-CCT ACG GGNGGC WGC AG-3’, and the downstream primer: PCR_785R is 5’-GAC TAC HVGGG TAT CTA 
ATC C-3’)11. The Illumina overhang adapter sequences used were as follows: Forward overhang: 5’ TCG TCG 
GCA GCG TCA GAT GTG TAT AAG AGA CAG-[PCR_341F]; Reverse overhang: 5’ GTC TCG TGG GCT CGG AGA 
TGT GTA TAA GAG ACAG-[PCR_785R].

Table 1.  Characteristics of the cohort (n = 259 patients/n = 41 patients). Montreal A (age at diagnosis): 
A1: < 16 years; A2: 17–40 years; and A3: > 40 years. Montreal L (disease location): L1 ileum; L2 colon; L3 
ileum–colon. Montreal B (disease behavior): B1 inflammatory; B2 structuring; B3 penetrating. Anti-TNF: 
infliximab, adalimumab, ustekinumab, vedolizumab. Thiopurines: azathioprine, 6-mercaptopurine. CD Crohn’s 
disease, MTX methotrexate.

CD patients [(n = 259)/(n = 41)]

Age (mean ± SD) 41 ± 15/45 ± 15

Female sex (%) 145 (56%)/20 (49%)

Smoking (%) 43 (25%)/9 (22%)

Gastrointestinal surgery 54 (21%)/14 (34%)

Montreal A (%) A1: 35 (19%)/4 (10%); A2: 124 (68%)/30 (77%); A3: 23 (13%)/5 (13%)

Montreal B (%) B1: 111 (62%)/23 (61%); B2: 39 (22%)/10 (26%); B3: 29 (16%)/5 (13%)

Montreal L (%) L1: 54 (29%)/10 (25%); L2: 31(17%)/7 (18%); L3: 99(54%)/23 (57%)

Fecal calprotectin (μg/g), median (IQR) 122.5 (31.75–529.75)/322 (72–531.5)

Anti-TNF (%) 154 (59%)/34 (83%)

Thiopurines (%) 126 (48%)/28 (68%)

MTX (%) 141 (54%)/8 (20%)
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Primers linked to adapters were used for PCR amplification; the PCR products were purified, quantified, 
and then normalized to form a sequencing library. These were sequenced by Illumina MiSeq as outlined in the 
Illumina 16S sample preparation guide.

The individual sequence reads obtained were filtered, trimmed and processed as described by Escudie and al. 
according to Find Rapidly OTUs with Galaxy Solution (FROGS)12. All reads were classified to the lowest possible 
taxonomic level (species or genus) using FROGS. The SILVA database used for taxonomic assignment was SILVA 
16S v132 A table of 16S rRNA Operational Taxonomic Units (OTUs) was then generated.

Statistical analysis. For the clustering of microbiota profiles, we performed the following procedure. First, 
the clr transform was applied to the OTU count table (patients in row, OTU labels in column) from the R phy-
loseq package (v1.32.0), similar to Tsilimigras et al.13. This table was then normalized to achieve a mean of 0 
and a standard deviation of 1 per column, akin to the first step of performing a Principal Component Analysis 
(PCA)14. The non-supervised clustering used is an Ascending Hierarchical Clustering, with a euclidean distance 
and the Ward aggregation method (sciPy Python package, v1.8.1)15. As we opted for a non-supervised approach, 
we did not use a train/test split, which would have been required if we had to train a model to predict the sever-
ity of the symptoms. The PCA analysis and the Silhouette computation to assess the number of clusters were 
performed in Python with the package scikit-learn (sklearn). The highest silhouette coefficient identified two 
distinct groups and the second highest identified three groups.

To assess alpha diversity, the Chao1 and Shannon diversity indices were used. To investigate whether dysbio-
sis could be linked to inflammation, we tested whether fecal calprotectin levels would vary between groups of 
microbiota, using a Kruskal–Wallis test. Then, to estimate the temporal evolution of dysbiosis, groups identified 
by hierarchical clustering were assessed with respect to symptoms’ severity using Fisher’s exact test. Finally, 
to identify the “key microbial signatures’’ in the dynamics of the disease, the differential abundance of species 
between patients was determined using DESeq2 and apglm packages with p-value adjusted for multiple testing 
using the Benjamini–Hochberg method (cut-off = adjusted p < 0.05). Since confounding factors may influence 
the fecal  microbiome7,16,17 and to feel confident in the relevant changes in bacterial groups observed in our study, 
we also quantified the influence of known factors as smoking and disease localization on the three groups of 
microbiota. Statistical analysis and data visualizations were performed using R (v.3.5.1) with multiple packages, 
including ‘phyloseq’ (v1.32.0), ‘philr’ (v1.14.0), ‘ggplot 2’ (v3.3.6), ‘grid’ (v4.1.3), ‘ape’ (v.4.1), ‘scales’ (v1.2.0), 
‘DESeq 2’ (v1.28.1) and ’apglm’ ( v1.1.16 from BiocManager v1.30.18).

Ethics approval and consent to participate. The study was carried out in accordance with national 
guidelines and authority regulations for research. All experimental protocols were approved by a named institu-
tional review board and/or licensing ethics committee. Patients were informed to be included in a prospective 
research database (Rennes, Commission Nationale Informatique et Liberté (CNIL) No. 1412467) that allowed 
us to perform study without additional consent as the data were retrieved from the standard of care follow-up 
of patients.

Results
Characteristics of CD patients. The characteristics of the 259 patients and 41 patients with CD are sum-
marized in Table 1. More than 80% of the cohort displays inflammation in the lower part of the gut. Only two 
of the 259 patients (0.08%) received antibiotics (metronidazole or ciprofloxacin) within 90 days of microbiota 
analysis. As the data retrieved from the standard follow-up of patients, the timing between consecutive samples 
and the total number of samples collected differed between the 41 patients. Precisely, 26 patients had 2 samples, 
9 patients had 3 and 6 patients had 4. The median time interval between two samples was 15 weeks and the aver-
age time interval was 25 weeks.

Three distinct groups of microbiota profiles in CD patients. Of the 321 gut microbiota samples ana-
lyzed from 259 patients, our clustering method identified three groups of microbiota profiles (G1, G2 and G3) 
that significantly differed in terms of gut microbiota (Fig. 1A). Species diversity was found to decrease from G1 
to G2 and from G2 to G3, based on Chao1 and Shannon indexes (Fig. 1B) (Kruskal–Wallis test, p = 4.02e−13 and 
2.6e−15, respectively). The analysis of the gut microbiota showed significant changes in the proportion of the 
microbial phyla Proteobacteria between G1, G2 and G3 groups (Fig. 1C) (Fisher exact test, p < 0.05). No associa-
tion between confounding factors such as smoking or disease localization and the three groups of microbiota 
was found. Interestingly, while the three groups displayed a broad diversity of microbiota, they did not display 
significant differences in terms of calprotectin levels (Fig. 1D, Kruskal–Wallis test, p = 0.26).

Dynamics of fecal bacterial clustering in CD Patients over time. We then focused on the sub-
set of 41 patients with multiple microbiota samples (from 2 to 4 samples per individual), which represented 
103 samples overall. In Fig. 2A, we show a strong association between microbiota composition and symptoms 
severity (Fisher’s exact test, p = 3.46e−06): G3 was mainly associated to “Severe” CD cases [20/27 (74%)]; G2 to 
“Remission” CD cases [18/39 (46.1%)] as well as to “Mild-Moderate” CD cases [15/39 (38.5%)]; and finally, G1 to 
“Remission” CD cases [21/37 (56%)]. Figure 2B displays the three groups in the Principal Component Analysis 
(PCA) plan, that is, a 2D projection of the patients’ microbiota. One can notice that G2 is positioned between 
G1 and G3, in agreement with the increase of symptoms severity from G1 to G3. In Fig. 2C, we show the transi-
tions between groups from two successive medical appointments. No transitions from G1 to G3 and only two 
transitions from G3 to G1 were observed. Moreover, every observed improvement in terms of symptoms was 
associated with either a stability of the microbiota group or a transition either from G3 to G2 or from G2 to G1 
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(n = 15/15). As such, our results hint that the more common transitions from G1 to G2 or from G2 to G3 could 
be key indicators of the disease’s evolution over time.

Key microbial signatures to predict changes in CD symptoms over time. We then investigated in 
more detail the “key microbial signatures” i.e. the difference between G1, G2 and G3 microbiota profiles, as they 
result in different dynamics of the disease.

Figure 2D shows that the first sign of aggravation (transition from G1 to G2) is threefold: (1) a decrease of the 
main anti-inflammatory microorganisms belonging to the main SCFA-producing bacteria (Roseburia, Eubac-
terium, Subdoligranumum, Ruminococcus) (p < 0.05), (2) an increase in pro-inflammatory pathogens (Proteus, 
Finegoldia) (p < 0.05) and (3) an increase of minor SCFA producers (Ezakiella, Anaerococcus, Megasphaera, 
Anaeroglobus, Fenollaria) (p < 0.05). Further aggravation of clinical signs (transition from G2 to G3) (Fig. 2E) is 
significantly linked (1) to a deeper loss of the minor SCFA-producing bacteria (p < 0.05) and (2) to an increase 
in other pro-inflammatory Proteobacteria (such as Klebsiella, Pseudomonas, Salmonella, Acinetobacter, Hafnia) 
and pro-inflammatory Firmicutes (such as Staphylococcus, Enterococcus, Streptococcus) (p < 0.05).

Discussion
In this study, we focused on characterizing the microbiota heterogeneity in CD patients in order to better under-
stand the clinical evolution of the disease, rather than the traditional comparison between CD and controls 
or between CD and other  IBDs18–25. We also took advantage of longitudinal information. Indeed, it has been 
shown that longitudinal profiling of multi-omics datasets even from smaller cohorts have higher performance 
and information richness than larger cohorts without longitudinal profiling. This has been demonstrated in 
other complex diseases such as diabetes and  obesity26,27. Finally, we decided to take advantage of non-supervised 
clustering techniques of microbiota in order to shed light on inter-patient heterogeneity, as advocated in recent 
reviews concerning microbiota  analysis14,28,29.

We showed that CD is characterized by three groups of microbiota profiles, G1 being akin to normobiosis in 
terms of species diversity while G2 and G3 display some form of dysbiosis. In agreement with others, dysbiosis 
was characterized by a marked reduction in bacteria belonging to the SCFA-producing bacteria of the phylum 
Firmicutes and an increased presence of the phylum  Proteobacteria19,22,30–33.

Figure 1.  Gut microbiota from 259 CD patients (n = 321 samples). (A) Ascending hierarchical classification 
(AHC) of the 321gut microbiota : three distinct groups (G1, G2, G3) are identified, depicted in blue, red and 
green, respectively. (B) A decreasing Shannon index and Chao1 index is observed from G1 to G3 (p = 2.6e−15 
and 4.02e−13 respectively). (C) Global composition of gut microbiota at the phyla level in G1, G2 and G3. (D) 
Association between the three groups of gut microbiota G1, G2 and G3 and Calprotectin levels in CD patients: 
Calprotectin levels are not significantly different between G1, G2 and G3, despite differences in degree of 
dysbiosis.
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Figure 2.  Gut microbiota from 41 CD patients (n = 103 several consecutive samples). (A) Association between 
the groups of gut microbiota G1, G2 and G3 and severity of the symptoms in CD patients. From the groups 
G1 to G3, an increase in symptoms severity is observed (p = 3.46e−6). (B) Projection of the three groups of gut 
microbiota G1, G2 and G3 with principal component analysis (PCA): G1, G2 and G3 are represented by three 
different colors. (C) Transition of the three groups of gut microbiota G1, G2 and G3 between two consecutive 
samples: overall, CD patients remain in the same group over time. (D) Significant (p < 0.05) log-fold changes 
in the abundances of bacterial species in G2 compared to G1. Positive log-fold change points out an increase 
in abundance in G2 compared to G1, while negative log-fold change points out a reduction in abundance. (E) 
Significant (p < 0.05) log-fold changes in the abundances of bacterial species in G3 compared to G2. Positive log-
fold change points out an increase in abundance in G3 compared to G2, while negative log-fold change points 
out a reduction in abundance.
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In terms of markers of dysbiosis, FC is considered as the standard non-invasive marker for assessing disease 
activity in CD and has been shown to have clinical utility especially in monitoring disease activity, relapse, 
response to therapy and patient-reported outcomes in patients with  CD34–36. Thus, we tried to find an association 
between FC and dysbiosis. As previously described in another  study37, and in agreement with a recent  study38, 
we showed no link between the severity of dysbiosis and FC levels.

We therefore focused on microbiota as a putative marker for CD symptom severity. To our knowledge, our 
study is the first to link a progressive change of microbiota in CD to a worsening of the CD symptoms. The 
results of the PCA confirmed the idea of a progression of the disease from G1 to G3 and the first axis of vari-
ability might very well be considered as a novel informative “score” for the severity of the disease that is worth 
computing in medical studies.

It is well established that dysbiosis is key to CD. Here we found that there were “key signatures’’ of symp-
toms’ worsening. The first transition from G1 to G2 that triggers symptoms severity is characterized by the 
loss of the main anti-inflammatory SCFA producers (Roseburia, Eubacterium, Subdoligranumum, Ruminococ-
cus) and increased pro-inflammatory bacteria such as Proteus and Finegoldia. These findings are in accordance 
with Neumann et al. and Zhang et al.39,40. Neumann et al. showed for the first time Finegoldia as an inducer of 
inflammation due to the interaction with human  neutrophils39. Proteus has been recently shown to be a key 
factor in predicting disease  relapse40. The depletion of SCFA-producing bacteria is interesting in the context of 
these symptoms-microbiota interaction and the natural history of CD. Indeed, it has been shown that SCFAs 
promote anti-inflammatory T and B cell responses as well as an anti-inflammatory phenotype of intestinal 
 macrophages41–46. Finally, previous studies also showed that SCFAs/butyrate have inhibitory effects on inflam-
matory response, contributing to intestinal homeostasis and cancer  protection47–51.

Then, the second transition from G2 to G3, associated to a further worsening of the symptoms’ severity, is 
characterized by the increase of others pro-inflammatory bacteria (Klebsiella, Pseudomonas, Salmonella, Aci-
netobacter, Hafnia, Staphylococcus, Enterococcus, Streptococcus). With Quantitative Microbiome Profiling, in 
agreement with our study, Vieira-Silva et al. have also identified the same genera Enterococcus, Escherichia, 
Fusobacterium, Streptococcus, and Veillonella as biomarkers for clinical  severity52. Precisely, Fusobacterium and 
Veillonella were associated in patients with higher gastrointestinal inflammation. Enterococcus was particularly 
linked to biliary obstruction severity.

The challenge remains to understand whether existing or future treatments might be able to stop or reverse 
dysbiosis progression, improving the prognosis and changing the natural history of CD. We believe that the 
knowledge of the sequence in microbiota changes we identified in this paper might provide further insight into 
personalized fecal microbiota transplantation (FMT) by providing a step-by-step remediation process. Indeed, 
in a very recent study, (FMT) was effective to maintain remission in CD  patients53. This link between microbiota 
and CD symptoms also strengthens the growing efforts regarding pre- and probiotic therapies. More specifically, 
our results suggest that SCFA production is associated with a restoration of intestinal homeostasis and sustained 
remission in CD patients. So far, probiotic treatments have not shown a significant effect in inducing or maintain-
ing remission of active or quiescent CD, or in preventing relapse of CD after surgically-induced  remission54,55. 
However, probiotics evaluated in these studies were not SCFA-producing bacteria.

Interestingly, a recent study provided proof-of-concept evidence for the therapeutic potential of SCFAs-
producing bacteria in CD. In CD patients, treatment with a mix of 6 SCFAs-producers (Butyricicoccus pulli-
caecorum 25-3T, Faecalibacterium prausnitzii, Roseburia hominis, Roseburia inulinivorans, Anaerostipescaccae, 
and Eubacterium hallii) improved butyrate production, colonization capacity in mucus and lumen-associated 
CD microbiota as well as epithelial barrier  integrity56. Such approaches may efficiently complement anti-TNFα 
therapy for reconstituting a healthy microbiome.

Conclusions
The purpose of the study was to better understand disease history, heterogeneity and to show the potential for 
machine learning to assist clinicians with personalized CD  treatment57. Our study confirms that unsupervised 
machine learning approaches are suited to characterize the gut dysbiosis and shows the association between 
this dysbiosis and symptom severity. Dysbiosis degree should be assessed along CD history to optimize CD 
management.

Data availability
The datasets analysed during the current study are publicly available: https:// doi. org/ 10. 57745/ CMF9FC.
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