
PLOS One | https://doi.org/10.1371/journal.pone.0325330 June 4, 2025 1 / 24

 

 OPEN ACCESS

Citation: Vo QD (2025) Gene editing therapy 
as a therapeutic approach for cardiovascular 
diseases in animal models: A scoping review. 
PLoS One 20(6): e0325330. https://doi.
org/10.1371/journal.pone.0325330

Editor: Chen Ling, Fudan University, CHINA

Received: February 14, 2025

Accepted: May 9, 2025

Published: June 4, 2025

Peer Review History: PLOS recognizes the 
benefits of transparency in the peer review 
process; therefore, we enable the publication 
of all of the content of peer review and 
author responses alongside final, published 
articles. The editorial history of this article is 
available here: https://doi.org/10.1371/journal.
pone.0325330

Copyright: © 2025 Quan Duy Vo. This is an 
open access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, 
and reproduction in any medium, provided the 
original author and source are credited.

RESEARCH ARTICLE

Gene editing therapy as a therapeutic approach 
for cardiovascular diseases in animal models:  
A scoping review

Quan Duy Vo 1,2*

1 Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 
Okayama University, Okayama Japan, 2 Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh, 
Viet Nam 

* dr.duyquan@gmail.com

Abstract 

Background

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, with 

hereditary genetic factors contributing substantially to disease burden. Current 

treatments, including lifestyle modifications, pharmacotherapy, and surgical interven-

tions, focus primarily on symptom management but fail to address underlying genetic 

causes, often resulting in disease progression or recurrence. Gene therapy has 

emerged as a transformative approach, offering a potential treatment. This review 

explores its efficacy and safety in animal models, identifying opportunities for future 

advancements.

Methods

This review investigated studies on gene editing interventions in animal models of 

CVDs, retrieved from PubMed, ScienceDirect, and Web of Science up to December 

2024.

Result

A total of 57 studies were included in this review. Mice (86%) were the predomi-

nant model, with CRISPR-Cas9 (53%) and AAV vectors (80%) as the most used 

tools. Key targets included PCSK9 (32%), LDLR (9%), and MYH6/7 (7%), achieving 

25–85% editing efficiency in liver/heart tissues. Base editors (ABE/CBE) showed 

superior safety, with <1% off-targets versus CRISPR-Cas9’s 2–5 off-targets per 

guide. Reported toxicity risks included liver injury (AAVs, 23%) and transient cytokine 

elevation (LNPs, 14%).
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Conclusion

Gene editing therapy shows great potential for treating CVDs, with high efficiency, 

strong therapeutic outcomes, and favorable safety in animal models. Continued inno-

vation and rigorous evaluation could transform cardiovascular treatment, benefiting 

patients with untreatable conditions.

Introduction

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, 
accounting for approximately 17.9 million deaths annually, which represents 32% of 
all global deaths [1]. In the United States alone, heart disease is responsible for about 
697,000 deaths each year, equating to one in every five deaths. The prevalence of 
CVDs increases with age, affecting 24.2% of adults aged 75 and over [2]. Despite 
remarkable progress in preventive measures and treatments, CVD prevalence con-
tinues to rise due to population aging and the increasing prevalence of associated 
risk factors such as hyperlipidemia, hypertension, and diabetes [3]. Importantly, a 
substantial proportion of CVD cases have a hereditary component, driven by genetic 
factors that predispose individuals to conditions like familial hypercholesterolemia, 
hypertrophic cardiomyopathy, and inherited arrhythmias [4,5]. Traditional therapeutic 
approaches for CVDs primarily focus on managing symptoms and mitigating risk fac-
tors. These include lifestyle modifications, pharmacotherapy to control blood pressure 
and cholesterol levels, and surgical interventions to address structural heart issues. 
While these strategies have proven beneficial, they often require lifelong adherence 
and may not address the underlying genetic causes of the disease [6].

Gene therapy has emerged as a transformative approach for addressing both 
inherited and acquired cardiovascular conditions [7]. By enabling precise modifica-
tions to the genetic basis of these diseases, gene therapy provides the potential to 
correct or mitigate genetic mutations responsible for cardiovascular disorders such as 
hypertrophic cardiomyopathy and familial hypercholesterolemia. Early therapies intro-
duced functional gene copies to restore normal function. However, these efforts faced 
significant challenges, including limited delivery efficiency and immune responses 
that hindered their effectiveness [8]. The advances in vector technology, particularly 
the development of adeno-associated viruses (AAVs), significantly improved the 
safety, specificity, and efficiency of gene delivery to cardiovascular tissues [9]. A piv-
otal advancement in the gene therapy landscape is the introduction of  CRISPR-Cas9 
(Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9). 
These technologies enable precise editing of specific genomic sequences, offering 
a groundbreaking approach to directly correct disease-causing mutations at their 
source and thereby address the underlying genetic causes of cardiovascular dis-
eases [10].

Fundamentally, gene editing distinguishes itself from conventional therapies 
through its target specificity and durability. Unlike traditional treatments that continu-
ously address symptoms without correcting the genetic causes, gene editing offers 
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a permanent, one-time correction of pathogenic genetic variants [11]. Given these considerable advancements, there is 
growing interest in translating gene editing technologies into viable therapeutic strategies for cardiovascular diseases. 
This review aims to evaluate the current landscape of gene editing applications in the treatment of cardiovascular dis-
eases using animal models. By synthesizing existing research, we seek to elucidate the therapeutic potential, efficacy, 
and safety of gene editing interventions in preclinical settings. Furthermore, this review will identify existing knowledge 
gaps and propose directions for future research, ultimately contributing to the advancement of gene-based therapies for 
cardiovascular diseases.

Materials and methods

This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines, ensuring a transparent and comprehensive synthesis of existing literature [12].

Eligibility criteria

The inclusion criteria encompassed original research articles that examined gene editing interventions, including 
 CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs), in animal mod-
els of CVDs. Eligible studies were required to report on therapeutic efficacy, safety, and outcomes. Articles were excluded 
if they were not original research (review articles, conference abstracts/posters), did not involve gene editing for therapeu-
tic purposes, or were published in languages other than English.

Search strategy

A systematic literature search was conducted across multiple databases, including PubMed, Embase, and Web of 
 Science, covering publications up to December 2024. The search strategy incorporated a combination of keywords and 
Medical Subject Headings (MeSH) terms related to gene editing (e.g., CRISPR, base editing, prime editing, zinc finger 
nucleases, and TALEN), cardiovascular diseases (e.g., heart disease and cardiomyopathy), and animal models (e.g., 
mouse, rat, pig, and non-human primates).

In addition to database searches, relevant studies were identified through manual reference screening, ensuring inclu-
sion of key publications that may not have been captured by the initial search strategy.

Data extraction

Data extraction was performed using a standardized form to collect key information from each study, including authorship, 
publication year, animal model species, sample size, gene editing technology, target genes, delivery methods, therapeutic 
efficacy, safety outcomes, and main findings.

Quality assessment

The methodological quality of the included studies was evaluated using the Animal Research: Reporting of In Vivo Exper-
iments (ARRIVE) guidelines, focusing on aspects such as study design, statistical analysis, and ethical considerations 
[13].

Result

Initially, a total of 995 articles were identified from three electronic databases. After removing 152 duplicates, 843 studies 
proceeded to title and abstract screening based on the predefined inclusion criteria. Following this screening process, 
201 articles were deemed eligible for full-text evaluation. However, a thorough review led to the exclusion of 144 studies, 
ultimately including 57 studies in this review (Fig 1).
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Overview of included studies

A total of 57 studies were included in this review, evaluating the role of gene editing in cardiovascular disease models. The 
majority of studies (86%, 43/50) used mice, reflecting their cost-effectiveness, genetic tractability, and well-characterized 
cardiovascular physiology. Larger animal models, such as non-human primates (NHPs, 7%) and pigs (5.2%), were primar-
ily employed for translational validation (Table 1).

CRISPR-Cas9 was the most prevalent gene editing method, used in 30 (53%) of studies. Its dominance is largely 
attributed to its high efficiency and broad versatility in genome editing applications. Base editors, including adenine base 
editors (ABEmax, ABE8e) and cytidine base editors (CBE such as BE3), accounted for 20% of the studies. These tools 
have gained increasing attention due to their ability to introduce precise single-nucleotide changes without generating 
double-strand breaks. Other systems were used less frequently, including meganucleases (2%) and RNA-targeting 
CRISPR variants like CRISPR-Cas13d (2%), typically applied in specialized contexts requiring high specificity or RNA-
level editing. A small number of studies also investigated alternative approaches such as CRISPR-Cas10 or gene silenc-
ing strategies like shRNA knockdown.

Among gene delivery methods, adeno-associated virus (AAV) vectors emerged as the predominant delivery system 
for in vivo gene editing, utilized in 80% of the included studies. Among these, AAV9 (40%) and AAV8 (25%) were the 
most frequently employed serotypes, primarily due to their strong tissue tropism for the liver and heart. Non-viral delivery 
approaches, particularly lipid nanoparticles (LNPs), were implemented in approximately 19% of studies, reflecting growing 
interest in transient and efficient gene transfer methods that avoid the risks associated with viral integration. Adenoviral 

Fig 1. Study flow-chart.

https://doi.org/10.1371/journal.pone.0325330.g001

https://doi.org/10.1371/journal.pone.0325330.g001


PLOS One | https://doi.org/10.1371/journal.pone.0325330 June 4, 2025 5 / 24

vectors were used in 9% of studies, although their application has diminished in recent years owing to immunogenicity 
concerns. Other delivery methods, including plasmid electroporation, microinjection (commonly for embryonic gene edit-
ing), and virus-like particles, were employed only in a limited number of cases. (Fig 2).

Gene selection and target organs

The most frequently edited gene was PCSK9 (32%, 18 studies), a key regulator of LDL cholesterol, reflecting its prom-
inence in hypercholesterolemia models. Beyond metabolic targets, several studies focused on genes implicated in 
cardiomyopathies and heart failure. MYH6 and MYH7, which encode cardiac myosin heavy chains and are frequently 
mutated in hypertrophic cardiomyopathy (HCM), were edited in 10% of studies to correct sarcomeric dysfunction. Other 
notable targets include PLN (phospholamban), involved in calcium handling abnormalities in dilated cardiomyopathy 
(DCM), and RBM20, a gene associated with RNA splicing defects in heart failure. In addition, muscle-related disorders 
were also addressed, with DMD (dystrophin) targeted in 6% of studies aiming to restore protein expression in Duchenne 
muscular dystrophy-associated cardiomyopathy. The distribution of these gene-editing efforts reflected organ-specific 
priorities, with the liver and heart being the primary targets, consistent with the physiological relevance of the genes 
involved.

Gene editing efficiency

Gene editing efficiency – defined as the proportion of cells or alleles successfully edited – varied across studies depend-
ing on the editing tool and delivery method. Table 1 summarizes these efficiencies alongside each study’s target gene, 
editing platform, and delivery strategy, with values representing the maximum in vivo editing achieved.

CRISPR-Cas9 generally produced high editing efficiencies, particularly in liver targets, with indel rates com-
monly ranging from 40% to 85%, and in some cases reaching up to ~95%. For instance, liver editing efficiencies 
reached 67% in PCSK9 [14], while cardiac editing, such as MYH6 inactivation, achieved up to 72% [15]. Base 
editors (ABE/CBE) showed moderate but therapeutically relevant DNA editing rates (typically 15–70%), with some 
studies reporting up to 63% efficiency [16]. RNA editing efficiencies were even higher, reaching up to 99,2% in 
SCN5a correction [17].

Delivery methods also played a critical role. AAVs yielded high and stable editing in liver and heart tissues, though 
efficiency was dose-dependent, requiring doses between 1 × 1011 and 1 × 1013 vg/kg. LNPs, while offering rapid hepatocyte 
uptake and detectable editing within 48 hours, typically provided transient expression (Table 2).

Therapeutic outcomes

Despite varying editing efficiencies, all studies reported beneficial therapeutic outcomes in their respective disease mod-
els. In hyperlipidemia studies, targeting genes such as PCSK9, LDLR, and ANGPTL3 consistently resulted in significant 
reductions in serum cholesterol levels [14,18,19,27]. In cardiomyopathy models (both hypertrophic and dilated), gene 

Table 1. Distribution of animal models.

Species/Strain Frequency Percentage (%) Notes

Mice 49 86% Most common: C57BL/6, LDLR ⁻ / ⁻ , ApoE ⁻ /⁻
Rats 2 3.5% Sprague-Dawley (1), MYL4-E11K (1)

Hamsters 2 3.5% LDLR ⁻ / ⁻ model

Rabbits 2 3.5% LDLR ⁻ /⁻ (1), APOC3-KO (1)

Pigs 3 5.2% Domestic pigs, Yucatan mini-pigs

Non-Human Primates (NHPs) 4 7% Cynomolgus macaques (3), Rhesus (1)

https://doi.org/10.1371/journal.pone.0325330.t001

https://doi.org/10.1371/journal.pone.0325330.t001
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editing led to improved cardiac function, such as increased ejection fraction or reduced myocardial fibrosis, translating to 
better heart performance [20,21,26]. In the Duchenne muscular dystrophy models, reintroducing dystrophin via gene edit-
ing improved muscle strength and function [22,37,67]. Arrhythmia models (Long QT syndrome [17], atrial fibrillation [24], 
catecholaminergic polymorphic VT [64]) presented correction of electrical abnormalities, evidenced by normalized ECG 
parameters or fewer arrhythmic episodes.

Metabolic disease models like hereditary tyrosinemia type I showed restoration of metabolic function and survival [25]. 
Likewise, the transthyretin amyloidosis model demonstrated reduced pathogenic TTR protein deposition [32]. Importantly, 
many of these therapeutic benefits were the direct result of the gene editing event – for example, base editing of PCSK9 
in primates led to durable cholesterol lowering, and editing ANGPTL3 in mice halved triglyceride levels, highlighting the 
potential clinical impact [14,31].

Notably, even modest editing levels were effective in some disease models; for example, ~ 5–6% dystrophin resto-
ration in Duchenne muscular dystrophy was sufficient to produce functional benefit [22]. These findings underscore 
that therapeutic impact is not always directly proportional to editing efficiency, especially in models with low correction 
thresholds.

Recent findings by Feng et al. (2024) identified MST1R as a novel gene associated with Tetralogy of Fallot, demon-
strating that its loss impairs cardiomyocyte differentiation and contractile function. These results highlight MST1R as a 
promising therapeutic target for gene editing-based treatment of congenital heart disease [71] (Table 3).

Safety and off-target effects

Gene editing therapies showed a favorable safety profile in animal models. Many studies used genome-wide analyses 
to assess off-target effects, with at least 13 reporting no detectable off-target edits, particularly when high-fidelity or base 
editors were used. Base editing demonstrated superior precision – for example, no off-target mutations or chromosomal 
translocations were observed in a humanized PCSK9 model, in contrast to low-frequency off-target events and structural 
variants with standard CRISPR-Cas9 [18].

Among studies reporting off-target analyses (30 studies), detected edits were typically rare and located in  non-coding 
regions, with no cases severe enough to negate therapeutic benefits. GUIDE-seq identified 2–5 off-target sites per guide 
in Cas9 systems [18], and AAV integration at cut sites was noted in up to 30% of cases [48]. Base editors had < 1% 
 off-target activity, with occasional bystander edits reported [62].

Fig 2. Gene editing system employed in the included studies.

https://doi.org/10.1371/journal.pone.0325330.g002

https://doi.org/10.1371/journal.pone.0325330.g002
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Table 2. Gene editing efficiency.

Study Target Gene Gene Editing Tool Delivery Method Editing Efficiency

Alba Carreras, 2019 [18] PCSK9 Cas9, BE3 AdV 10–35% (Cas9/BE3)

Alexandra C. Chadwick, 2018 [19] ANGPTL3 BE3 AdV 35% (liver, day 7)

Andreas C. Chai, 2023 [20] MYH7 ABEmax-VRQR Dual AAV9 35% (DNA), 12.9–26.7% (RNA)

Bin Li, 2021 [21] XIRP1 Overexpression AAV9 N/A (functional rescue only)

Camilo Breton, 2020 [14] PCSK9 Meganuclease AAV8 67% (mice), 15–43% (NHPs)

Chengzu Long, 2016 [22] DMD SpCas9 AAV9 25.5% (TA muscle), 70% (heart)

Daniel Reichart, 2023 [15] MYH6 ABE8e Dual AAV9 81% (cDNA), 16% (gDNA)

F Ann Ran, 2015 [23] PCSK9 SaCas9 AAV8 >40% indels (liver)

Handan Hu, 2022 [24] MYL4 Overexpression AAV9 N/A (protein restored)

Hao Yin, 2017 [25] PCSK9 e-sgRNA + Cas9 mRNA LNP 83% (Pcsk9), > 40% (Fah)

Hengzhi Du, 2024 [26] CRT CRISPR-Cas9 AAV9 63.3% (DNA), 88% (RNA)

Huan Zhao, 2020 [27] LDLR CRISPR-Cas9 AAV8 6.7% HDR, 25% indels

Jaydev Dave, 2022 [28] PLN SaCas9 AAV9 72% (LV inactivation)

Jessie R. Davis, 2022 [29] PCSK9/ANGPTL3 ABE8e AAV8/AAV9 44–61% (liver)

Jiacheng Li, 2022 [30] Meis1/Hoxb13 CasRx AAV9 65.2% (Meis1), 83.6% (Hoxb13)

Jing Gong, 2020 [31] PCSK9/ANGPTL3 CRISPR-Cas9 LipoMSN 24.8% (Pcsk9), 7.2% (Angptl3)

Jonathan D. Finn, 2018 [32] TTR SpyCas9 LNP ~70% (liver)

Jonathan M. Levy, 2020 [33] NPC1 ABEmax/CBE3.9max Dual AAV 38% (liver, ABE), 21% (CBE)

Kelsey E. Jarrett, 2017 [34] LDLR/ApoB SpyCas9 AAV8 54.3% (Ldlr), 74.1% (Apob)

Kelsey E. Jarrett, 2019 [35] LDLR SaCas9 AAV8 31.9% (males), 33.1% (females)

Kiran Musunuru, 2021 [16] PCSK9 ABE8.8 LNP 63–66% (hepatocytes)

Lei Huang, 2017 [36] ApoE/LDLR CRISPR-Cas9 Electroporation N/A (knockout confirmed)

Li Xu, 2019 [37] DMD Cas10 AAVrh.74 11.1% (cardiomyocytes)

Lili Wang, 2021 [38] PCSK9 Meganuclease AAV8/AAV3B 9.5–64.4% (liver)

Lingmin Zhang, 2019 [39] PCSK9 CRISPR/Cas9 Gal-LGCP 60% (liver)

Lisa N. Kasiewic, 2023 [40] LDLR ABE8.8 GalNAc-LNP 61% (liver)

Luzi Yang, 2024 [41] CaMKIIδ Adenine Base Editor AAV9 >90% reduction 
 transgene-positive cells (liver)

Luzi Yang, 2024 [42] LMNA Adenine Base Editor Dual AAV system 20% at bystander site
~8% at the  disease-causing site

Man Qi, 2024 [17] SCN5a ABEmax Dual AAV9 43.04% (DNA), 99.2% (RNA)

Marco De Giorgi, 2021 [43] ApoA1 SaCas9 Dual AAV8 54% (indels), 7.8% (HDR)

Markus Grosch, 2022 [44] RBM20 ABE AAVMYO 21.4% (DNA), 71% (RNA)

Mengmeng Guo 2020 [45] ApoC3 CRISPR/Cas9 zygote 
microinjection

Not report

Min Qiu, 2021 [46] ANGPTL3 SpCas9 LNP 38.5% (liver)

Ping Yang, 2024 [47] MYH6 Cas13d AAV9 27.1–32% (RNA knockdown)

Qian Li, 2021 [48] PCSK9 SaCas9 AAV8 25–45% (liver)

Qiang Cheng, 2020 [49] PCSK9/PTEN Cas9 mRNA/RNP LNP ~60% (Pcsk9), 14% (PTEN)

Qiurong Ding, 2014 [50] PCSK9 SpCas9 AdV 50% (liver)

Richard G. Lee, 2023 [51] PCSK9 ABE8.8m LNP 46–70% (liver)

Rui Lu, 2018 [52] LDLR CRISPR-Cas9 Microinjection N/A (knockout confirmed)

Samagya Banskota, 2022 [53] PCSK9 ABEmax VLPs 63% (hepatocytes)

Shijie Liu, 2021 [54] Sav shRNA AAV9 N/A (functional rescue)

Shuhong Ma, 2021 [55] MYH6 ABEmax-NG Microinjection/AAV9 62.5% (embryos), 25.3% (AAV9)

(Continued)
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Toxicity assessments revealed no significant adverse effects. Histological analyses of major organs showed no abnor-
mal inflammation or damage, and liver enzyme levels and immune markers remained within normal ranges. No long-term 
malignancies or severe outcomes were reported (Table 4).

Randomization and blinding

Attention to bias reduction in study design was variable. Randomization of animals into treatment versus control groups 
was reported in 16 out of 57 studies (28%). Blinding of investigators to group allocation during outcome assessment was 

Study Target Gene Gene Editing Tool Delivery Method Editing Efficiency

Shuo Wu, 2024 [56] MYBPC3 Base editing Dual AAV9 5-10% mutation correction (heart)
38%–100% protein recovery

Simon Lebek, 2023 [57] CaMKIIδ ABE8e-SpRY Dual AAV9 7.5–8.4% (DNA), 46–85.7% 
(RNA)

Simon Lebek, 2023 [58] CaMKIIδ ABE8e-SpCas9-NG Microinjection N/A (phenotypic rescue)

Simon Lebek, 2024 [59] CAMK2D ABE8e MyoAAV2A 36.2–37% (DNA), 83.2% (RNA)

Suya Wang, 2020 [60] TAZ Gene replacement AAV9 N/A (protein restored)

Takahiko Nishiyama, 2022 [61] RBM20 ABEmax-VRQR-SpCas9 AAV9 19% (DNA), 66% (RNA)

Tanja Rothgangl, 2021 [62] PCSK9 ABEmax LNP 58% (mice), 35–40% (NHPs)

Xiao Wang, 2017 [63] PCSK9 CRISPR-Cas9 Adenovirus 40-70 indels (liver)

Xiaolu Pan, 2018 [64] RYR2 SaCas9 AAV9 11.3% (DNA), 21.1% (RNA)

Xin Guo, 2017 [65] LDLR CRISPR-Cas9 Microinjection N/A (knockout confirmed)

Yiwen Zha, 2021 [66] APOC3 CRISPR-Cas9 Microinjection N/A (knockout confirmed)

Yu Zhang, 2020 [67] DMD CRISPR-Cas9 Dual AAV 50–100% (tissue-dependent)

Yuanbojiao Zuo, 2023 [68] ANGPTL3 CRISPR-Cas9 Dual AAV9 63.3% (DNA), 88% (RNA)

Zhanzhao Liu, 2025 [69] CAMK2d Adenine Base Editors AAV9 Not mention

Zhiquan Liu, 2021 [70] PCSK9/TYR/MSTN SpaCas9 AAV8 16.6% (Pcsk9), 40–78% (zygotes)

https://doi.org/10.1371/journal.pone.0325330.t002

Table 3. Gene targets and therapeutic outcomes.

Gene Associated Disease Editing Strategy Efficiency Range

ANGPTL3 Hypertriglyceridemia CRISPR-KO, ABE 40–75% (DNA/RNA)

APOC3 Hyperlipidemia CRISPR-KO 50% (Protein)

CAMK2D Heart Failure ABE 7.5–85.7% (RNA/DNA)

DMD Duchenne Muscular Dystrophy Exon Skipping, Frame Restoration 5–50% (Protein)

LDLR Atherosclerosis, Hyperlipidemia CRISPR-HDR, NHEJ, Base Editing 30–70% (DNA)

MYH6/7 Hypertrophic Cardiomyopathy (HCM) ABE, CRISPR Correction 20–80% (RNA/DNA)

NPC1 Niemann-Pick Type C ABE, CBE 21–38% (DNA)

PCSK9 Hypercholesterolemia CRISPR-KO, ABE, Meganuclease 25–85% (DNA/RNA)

PLN Cardiomyopathy/Arrhythmia CRISPR-KO 72% (DNA)

RBM20 Dilated Cardiomyopathy (DCM) ABE 19–71% (RNA/DNA)

RYR2 CPVT (Arrhythmia) CRISPR-KO 11–21% (DNA/RNA)

SCN5A Long QT Syndrome ABE 43–99% (RNA/DNA)

TAZ Barth Syndrome Gene Replacement ~70% (Protein)

TTN Dilated Cardiomyopathy Splicing Rescue (via RBM20 editing) 50% (RNA)

TTR Amyloidosis CRISPR-KO ~70% (DNA)

https://doi.org/10.1371/journal.pone.0325330.t003

Table 2. (Continued)

https://doi.org/10.1371/journal.pone.0325330.t002
https://doi.org/10.1371/journal.pone.0325330.t003
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reported in 20 studies (35%). Notably, 10 studies (17.5%) explicitly stated that they implemented both randomization and 
blinding in their experimental design. Many studies neither mentioned nor clarified these measures, indicating a need for 
improved methodological rigor in preclinical gene therapy research.

More detailed information about the included studies is provided in Table S1, Supplemental Materials.

Discussion

The development of gene editing systems

Gene editing technologies have evolved significantly over recent decades, progressing from early tools such as zinc-finger 
nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), which induce double-strand breaks (DSBs) 
at specific genomic loci, to more advanced and precise systems (Fig 3).

Zinc finger nucleases (ZFNs) employ engineered zinc finger domains that recognize DNA triplets and are coupled to 
FokI nucleases [72]. TALENs, on the other hand, utilize transcription activator-like effector proteins, each recognizing a 
single nucleotide, also linked to FokI nucleases [73,74]. This one-to-one recognition allows for more straightforward and 
precise targeting compared to ZFNs [75,76]. However, these methods were complex to design and required extensive 
protein engineering, limiting their widespread application [77].

The introduction of the CRISPR-Cas9 system has revolutionized gene editing by providing a more accessible, efficient, 
and versatile approach. CRISPR-Cas9, originally discovered as an adaptive immune mechanism in bacteria, was repur-
posed in 2012–2013 as a programmable gene editing system [78]. This platform employs a single-guide RNA (sgRNA) to 
direct the Cas9 nuclease precisely to complementary DNA sequences, thereby generating site-specific DSBs, followed by 
repair primarily via non-homologous end joining (NHEJ) or homology-directed repair (HDR) [79]. NHEJ often introduces 
disruptive insertions or deletions, useful for gene knockout studies like PCSK9 deletion for cholesterol reduction [18]. HDR 
enables precise mutation correction when a repair template is available, though it remains inefficient in vivo and is limited 
to dividing cells [80]. A critical consideration in CRISPR-Cas9 design is the requirement for a protospacer adjacent motif 
(PAM) near the target sequence, which can also contribute to off-target activity [81].

To overcome the limitations of CRISPR-Cas9, derivative technologies like base editing were developed. Base editors 
combine catalytically impaired Cas enzymes with nucleotide-modifying enzymes to enable precise single-base conver-
sions without inducing double-strand breaks [82]. The main types – cytosine base editors (CBEs) and adenine base 

Table 4. Toxicity profiles.

Gene Editing 
Tool

Delivery Method Key Toxicity Risks Incidence Notable Genes

Base Editors 
(CBE/ABE)

AAV vectors or 
lipid nanoparticles 
(mRNA + gRNA)

Minimal off-target edits (DNA or RNA base changes); occa-
sional transient hepatotoxicity (mild ALT/AST elevations); 
mild immune activation (e.g., cytokines)

~30% 
studies

PCSK9, ANGPTL3, LDLR, LMNA, 
MYBPC3, MYH6, MYH7, RBM20, 
SCN5A, DNMT1, NPC1, CAMK2D

CRISPR-Cas9 
(DNA nuclease)

AAV vectors (most 
common); also Cas9 
RNP or mRNA (e.g., 
zygote injection)

Off-target indel mutations; on-target large deletions/
rearrangements; liver injury (elevated ALT/AST); immune 
responses (transient cytokine release); AAV vector genome 
integration at cut sites

~40% 
studies

PCSK9, LDLR, ANGPTL3, APOB, 
APOA1, APOE, APOC3, CRT, 
DMD, PLN, PTEN, RYR2, TTR, 
TYR

CRISPR-Cas10 AAV vectors Mild immune response to vector (e.g., low anti-AAV immu-
nity); no significant off-target mutations or organ damage 
observed

1 study DMD

CRISPR-Cas13 
(RNA targeting)

Viral vectors (e.g., 
AAV) or plasmid 
delivery

Collateral RNA cleavage (off-target transcript degradation) 
– generally minimal with optimized Cas13; no overt organ 
toxicity reported in vivo

50% 
studies

MYH6, MEIS1, HOXB13, MHRT

Meganucleases 
(e.g., I-CreI 
variants)

AAV vectors (e.g., 
AAV8)

Off-target cleavage at unintended sites; liver enzyme 
elevations (transient liver injury); immune responses 
(anti-capsid or anti-nuclease T-cell response)

2 studies PCSK9

https://doi.org/10.1371/journal.pone.0325330.t004

https://doi.org/10.1371/journal.pone.0325330.t004
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editors (ABEs) – are especially useful for correcting point mutations in monogenic diseases such as hypertrophic cardio-
myopathy (HCM). For instance, Reichart et al. (2023) used ABEs to correct the MYH7 R403Q mutation in an HCM mouse 
model with over 70% efficiency in cardiomyocytes and minimal side effects [83]. Base editing can also introduce prema-
ture stop codons to inactivate genes like PCSK9 [16]. However, these editors are limited to specific transitions (mainly 
A → G or C → T), and may cause “bystander editing”, wherein unintended nearby bases within the editing window are 
modified, requires careful guide RNA design and thorough validation [15]. Their large size (~5–6 kb) also complicates in 
vivo delivery, often requiring dual-vector systems [84].

Beyond conventional DNA editing, recent advances in CRISPR-based technologies have expanded to include RNA 
and epigenome editing, offering powerful tools to modulate gene expression without inducing permanent changes to the 
genome [85]. These systems typically use catalytically inactive Cas13 (dCas13) fused to enzymatic domains such as 
ADAR2 or APOBEC for A-to-I or C-to-U editing, guided by crRNAs. Additionally, RNA methylation can be modulated by 
fusing dCas13 with methyltransferases (e.g., METTL3/METTL14) or demethylases (e.g., ALKBH5) to target m6A modifica-
tions [86]. RNA editing systems offer transient and reversible modulation of gene expression, reducing the risk of perma-
nent off-target genetic alterations. This property makes RNA-targeted approaches especially suitable for therapeutic or 
research applications where temporary gene regulation is preferred [87]. Despite these advantages, several challenges 
remain. Off-target activity, particularly in systems with broad sequence tolerance, continues to pose a challenge. Editing 
efficiency is also influenced by the sequence and structural context of the target RNA. Furthermore, efficient delivery of 
these editing components into primary cells and tissues, particularly in vivo, remains a significant technical hurdle [88].

Fig 3. Milestones of genome editing technology.

https://doi.org/10.1371/journal.pone.0325330.g003

https://doi.org/10.1371/journal.pone.0325330.g003
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Epigenome editing offers a promising approach by using catalytically inactive Cas9 (dCas9) fused to epigenetic mod-
ifiers like transcriptional activators (e.g., VP64, p300) or repressors (e.g., KRAB) to modulate gene expression without 
altering the DNA sequence [89]. This method enables reversible and tunable control through targeted histone or DNA 
methylation changes. Transient promoter methylation, known as the “hit-and-run” approach, has demonstrated durable 
therapeutic effects [90]. While it avoids risks linked to DSBs, off-target gene modulation remains a concern, necessitat-
ing stringent specificity testing. Furthermore, the delivery of large fusion proteins requires optimized vectors, often using 
dual-vector systems akin to those in base editing [58]. Epigenome editing shows potential for silencing harmful genes or 
activating protective pathways, especially in cardiovascular disease models [91] (Fig 4).

Therapeutic outcomes

Among the included studies, CRISPR-Cas9 was the most frequently employed gene editing platform, predominantly 
targeting hyperlipidemia-related genes such as PCSK9, LDLR, and ANGPTL3. While CRISPR-Cas9 offers high efficiency 
and versatility, its reliance on homology-directed repair (HDR) limits its precision, with reported HDR efficiencies as low 
as 6.7% for LDLR editing [27]. As an alternative, base editors enable single-nucleotide conversions without inducing 
 double-strand breaks, offering greater precision and reduced risk of off-target effects. In the study by Grosch et al. (2022), 
base editing systems achieved high editing efficiencies ranging from 70% to 87% [44]. However, their application is 
restricted to specific types of point mutations and may be less effective in larger animal models. For example, Rothgangl 
et al. (2021) observed editing efficiencies of 35–40% in macaques, compared to 58% in mice [92]. Less commonly used 

Fig 4. Gene and epigenome editing strategies. ZFNs, TALENs, and CRISPR-Cas9 create double-stranded breaks repaired by non-homologous 
end joining or homology-directed repair. Prime editing uses a Cas9 nickase and reverse transcriptase to introduce precise edits without double-strand 
breaks. Base editors convert specific nucleotides (e.g., C to T, A to G) using deaminase enzymes. Epigenome editing uses dCas9 fused to effector 
domains to modulate gene expression without changing the DNA sequence.

https://doi.org/10.1371/journal.pone.0325330.g004

https://doi.org/10.1371/journal.pone.0325330.g004
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platforms, such as CRISPR-CasRx and CRISPR-Cas10, were also reported, highlighting the expanding versatility of 
CRISPR-based technologies [30,39]. The choice of gene editing tool is determined by various factors, such as the specific 
target gene selection, the intended therapeutic objective, the type of delivery vector, and the characteristics of the animal 
experimental model. This highlights the importance of adopting context-specific strategies to ensure optimal outcomes.

Target gene selection

Gene therapy targets the organ where the disease-driving gene is predominantly expressed or has its pathological effect. 
In cardiovascular gene editing, the fundamental strategic decision involves whether to direct the gene editing machinery to 
the heart itself or to a peripheral organ such as the liver to achieve the intended therapeutic outcome.

The liver plays a central role in the production of lipoproteins and enzymes that influence numerous cardiovascular risk 
factors. Key genes such as PCSK9, ANGPTL3, and TTR are highly expressed in hepatocytes and contribute to systemic 
blood traits (cholesterol levels, circulating proteins) that have direct effects on cardiovascular health [93]. In a notable 
example, Richard G Lee et al (2023) employed single LNP-based infusion of the base editor VERVE-101 in non-human 
primates resulted in an 83% reduction in circulating PCSK9 protein and a ~ 69% decrease in LDL-C, with effects lasting 
over a year [51]. Similarly, first in vivo CRISPR clinical trial targeted TTR using lipid nanoparticles (LNPs) to deliver Cas9 
to the liver, resulting in an 87% reduction in circulating mutant TTR protein [94]. These examples illustrate a clear ratio-
nale: when the pathogenic factor originates from the liver, hepatic editing can confer systemic cardiovascular benefits. 
Moreover, the liver is an accessible and efficient target for gene delivery due to its high perfusion and natural uptake of 
LNPs and AAV8 vectors, making it particularly suitable for treating metabolic cardiovascular diseases such as hyperlipid-
emia and amyloidosis through intravenous administration [95].

In contrast, disorders originating within cardiac tissue, such as inherited cardiomyopathies or arrhythmogenic condi-
tions, require direct gene editing within cardiomyocytes or related cardiac cells [96]. For example, correcting pathogenic 
mutations like those in the MYH6 gene associated with hypertrophic cardiomyopathy necessitates efficient delivery of 
gene editing agents specifically to cardiac muscle cells, enabling restoration of normal myocardial function [47]. However, 
cardiac-targeted gene editing presents distinct delivery challenges when compared to hepatic gene editing. Conventional 
systemic administration of vectors, such AAVs or LNPs, typically results in predominant hepatic accumulation [97,98]. 
In addition, the complex, multicellular architecture of cardiac tissue, combined with the low efficiency of HDR in largely 
post-mitotic cardiomyocytes, presents significant barriers to effective genome editing in the heart [99]. Consequently, effi-
cient myocardial delivery often necessitates the use of specialized approaches, including cardiotropic vector engineering, 
high-dose systemic administration, or direct intracardiac injection [100].

Therapeutic objectives

Gene editing strategies in cardiovascular disease differ significantly between rare monogenic disorders and common poly-
genic conditions in terms of urgency, feasibility, and translational path.

Rare diseases (monogenic), such as hypertrophic cardiomyopathy (e.g., MYBPC3, MYH7 mutations), dilated cardio-
myopathy (LMNA, RBM20), or inherited arrhythmias (KCNQ1, RYR2), are often caused by single, well-characterized 
mutations [101]. Gene editing offers high curative potential by directly correcting or silencing the causative variant. Proof-
of-concept studies in animal models and patient-derived cells have shown promising results, such as ABE-mediated 
correction of the MYH7 R403Q mutation preventing HCM in mice [20]. By definition, rare diseases affect a small number 
of patients; however, they are often prioritized within orphan disease frameworks. Such frameworks can facilitate faster 
clinical translation owing to the significant unmet medical needs and a regulatory environment typically more accommo-
dating of potential risks, particularly as patients with life-threatening rare diseases may be willing to accept higher risks for 
potential therapeutic benefits [94]. This initial success has provided important evidence supporting the safety and efficacy 
of gene editing approaches, thereby facilitating their potential application to a broader range of indications. However, a 
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major challenge in applying gene editing to rare diseases lies in the requirement for mutation-specific designs, which 
raises concerns regarding cost-effectiveness and scalability. Although certain recurrent mutations occur in specific pop-
ulations and may support broader therapeutic applications, many mutations are unique to individual families, limiting the 
generalizability of treatment strategies [102]. Approaches such as targeting shared exons, allele knockouts, or editing 
mutation “hotspots” are being explored to improve scalability [103].

In contrast, common cardiovascular diseases – such as atherosclerosis, hypertension, and heart failure – are influ-
enced by multiple genes and environmental factors, making direct editing of all contributors unfeasible [104]. Instead, 
editing efforts focus on single genes with outsized effects. PCSK9, for example, is a validated target; individuals with loss-
of-function variants exhibit low LDL levels and reduced cardiovascular risk [105]. Similarly, LPA and ANGPTL3 are being 
explored for lipid lowering in high-risk patients [106,107]. In the context of common diseases, gene editing must demon-
strate clear advantages – such as the potential for a one-time curative treatment – while maintaining an exceptional safety 
profile, particularly since these interventions may be administered to individuals who are otherwise relatively healthy. 
Widespread implementation necessitates robust safety data, long-term monitoring, and the development of cost-effective 
delivery systems [108]. Although these approaches are inherently complex, they hold the potential for substantial public 
health benefits if key challenges related to safety and scalability can be addressed. Future directions in the field include 
targeting somatic mutations, such as TET2 in clonal hematopoiesis of indeterminate potential (CHIP), or introducing pro-
tective genetic variants, such as APOE2, for disease prevention [109,110]. However, these strategies remain in the early 
stages of research and development.

Delivery vector

Effective delivery of gene editing payloads is a critical determinant of therapeutic success, as the ability to reach target 
cells and tissues directly impacts editing efficiency and clinical translation. The selection of gene delivery vectors is stra-
tegically guided by several key factors, including the target tissue, the size of the genetic cargo, and the desired duration 
of gene editor expression. Currently, three main platforms dominate in vivo delivery strategies: adeno-associated viruses 
(AAVs), adenoviral vectors (AdVs), and lipid nanoparticles (LNPs), each offering distinct advantages and limitations.

AAVs remain the most widely used vectors for cardiovascular gene editing due to their high transduction efficiency and 
tissue-specific tropism. AAVs enable sustained transgene expression, which is particularly beneficial in post-mitotic tissues 
like cardiac muscle. Various serotypes exhibit distinct targeting profiles: AAV1 and AAV6 efficiently transduce skeletal 
muscle, AAV5 targets airway epithelia and the CNS [97], AAV8 is hepatotropic [111], and AAV9 is notable for its ability 
to cross the vascular endothelium and transduce cardiomyocytes, skeletal muscle, and neurons [112,113]. However, 
AAVs are limited by a small packaging capacity (~4.7 kb), restricting the delivery of large editors like full-length Cas9 or 
base editing systems [114]. Strategies such as dual-AAV delivery or the use of compact Cas variants address this issue. 
Immune responses pose a significant barrier to AAV-based therapies, primarily due to the high prevalence of pre-existing 
neutralizing antibodies against common AAV serotypes [115]. To overcome these challenges, engineered capsids (e.g., 
AAV.MYO, MyoAAV2) and surface modifications (e.g., Gal–TAT peptides) have been developed to improve cardiomyo-
cyte specificity, reduce off-target transduction, and enhance overall editing efficiency while minimizing immunogenicity 
[116,117]. Recent advances have also explored the use of melittin analogs to enhance endosomal escape and transgene 
expression; notably, the insertion of the p5RHH peptide into the AAV capsid significantly improved transduction efficiency 
in vitro and in vivo, including in rAAV-resistant cells and liver tissue, highlighting a promising approach to further optimize 
AAV-mediated delivery [118].

AdVs were used in 3 included studies for CRISPR-Cas9 delivery, achieving high editing efficiency [18,19,50]. AdVs 
are characterized by their high cargo capacity – up to ~30 kb in helper-dependent (“gutless”) variants – allowing for 
delivery of large genome editors or entire HDR toolkits within a single vector [119,120]. AdVs also transduce a broad 
range of dividing and non-dividing cells and do not integrate into the host genome, thereby reducing the risk of insertional 
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mutagenesis. However, their pronounced immunogenicity severely limits their clinical application for in vivo gene editing. 
 First-generation AdVs have been associated with acute immune responses and hepatotoxicity, and most adults carry 
pre-existing anti-AdV immunity [121]. Strategies to reduce immunogenicity – such as using rare serotypes or capsid 
shielding – have had limited success [122]. Consequently, AdVs have seen niche use primarily in large-animal models or 
preclinical studies where transient, high expression and large cargo delivery are essential.

LNPs have emerged as a leading non-viral delivery platform, particularly for liver-directed gene editing. LNPs encap-
sulate mRNA or ribonucleoprotein (RNP) complexes and are naturally directed to the liver due to interactions with serum 
proteins. This property has been exploited for editing liver-specific genes like PCSK9 and ANGPTL3 [123]. Musunuru et 
al. (2021) demonstrated that a single LNP dose achieving about a 60% editing rate of the PCSK9 gene in primate liver 
led to a ~ 60% reduction in LDL-C, with only a single off-target mutation detected [16]. LNPs are advantageous for their 
low immunogenicity, enabling repeated administration without eliciting strong immune responses, and their flexible cargo 
capacity, which can accommodate large mRNA or protein payloads [124].

However, LNPs are generally limited by transient expression, which – while sufficient for permanent genome editing 
– is a limitation for therapies requiring sustained protein production [125]. Additionally, LNPs typically exhibit strong liver 
tropism, making extrahepatic delivery (e.g., to the heart or muscle) more challenging [126,127]. Research is now focused 
on enhancing LNP specificity through targeted modifications, such as N-acetylgalactosamine (GalNAc) conjugation for 
hepatocyte targeting via the asialoglycoprotein receptor (ASGR), or exploring new formulations capable of efficient deliv-
ery to extrahepatic tissues [40,128].

Emerging delivery technologies, such as engineered virus-like particles (eVLPs), represent a novel approach that 
blends the efficiency of viral vectors with the safety profile of non-viral systems. eVLPs deliver gene editing proteins 
(e.g., Cas9 or base editors) without viral DNA integration, reducing the risk of insertional mutagenesis. A 2022 study by 
Banskota et al. showed that intravenous delivery of eVLPs achieved editing in 63% of mouse hepatocytes and reduced 
hepatic PCSK9 protein by 78%, with minimal off-target effects [53].

Experimental model

Preclinical testing of cardiovascular gene editing spans small animal models (mice, rats), mid-sized models (rabbits, pigs), 
and non-human primates (usually macaques), each with their own biology. Results can vary widely between species, and 
these differences have crucial implications for interpreting data and predicting human outcomes. For instance, Rothgangl 
et al. (2021) reported that delivery of an adenine base editor via LNPs resulted in approximately 35–40% allele editing 
in the myocardium of non-human primates, whereas comparable strategies in mouse liver models achieved significantly 
higher efficiencies (~58%) [92].

Small animal models, such as mice and rats, are widely used due to their low cost, short reproductive cycles, and well-
mapped genomes. However, key physiological differences – especially in lipid metabolism and cardiovascular function – 
limit their translational value. Mice primarily transport cholesterol via HDL rather than LDL and require genetic modifications 
(e.g., ApoE or LDLR knockouts) to model human-like atherosclerosis [129]. Their high heart rates (∼250–500 bpm) and 
absence of collateral coronary circulation reduce their suitability for ischemia studies [130]. Furthermore, immunological 
differences are notable, as mice typically lack pre-existing immunity to AAV or Cas9, unlike humans and primates [131].

Mid-sized models, like rabbits and pigs, offer greater physiological relevance. Rabbits develop LDL-driven atherosclero-
sis on high-cholesterol diets and are well-suited for evaluating lipid-targeting gene therapies [132]. Their size also permits 
advanced imaging techniques. Pigs closely mimic human cardiovascular anatomy, lipoprotein profiles, and drug metabo-
lism, making them ideal for testing gene therapies for myocardial infarction and arrhythmias. However, gene editing in pigs 
is technically demanding, often requiring somatic cell nuclear transfer or advanced delivery systems [133].

Non-human primates, particularly macaques, are the most translationally relevant models due to their close genetic and 
physiological similarity to humans. They accurately replicate human lipid profiles, insulin responses, and cardiovascular 
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regulation, enabling comprehensive evaluation of gene-editing therapies. Yet, their use is limited by ethical concerns, cost, 
and long lifespans, making them suitable mainly for late-stage preclinical studies where safety and immune responses are 
critical [134].

In conclusion, while rodent models support early-stage research, translational success requires complementary data 
from larger animals. Differences in physiology and immunity across species remain key considerations, and regulatory 
approval often necessitates safety data from NHPs before initiating human trials.

Safety and off-target effects

Safety assessments across the included studies consistently identified transient elevations in liver enzymes as the most 
commonly observed adverse effect. Notably, off-target gene editing events were minimal, occurring at a frequency of less 
than 1% in the majority of studies. No life-threatening adverse events were reported, suggesting favorable short-term 
safety of gene editing interventions in cardiovascular disease model. However, long-term safety remains insufficiently 
characterized. Key concerns such as immunogenicity following repeated vector administration or the potential for onco-
genic transformations arising from off-target genomic alterations highlight the need for extended follow-up, especially 
since most preclinical studies to date have monitored outcomes for only a few weeks to months post-intervention.

A comprehensive evaluation of safety is critical when translating gene editing therapies to clinical settings, as each 
component of the therapeutic platform can introduce distinct risks. For instance, the use of bacterial-derived nucleases 
like Cas9 or Cas12 could trigger immune responses in vivo, both animals and humans may harbor pre-existing antibodies 
against these proteins. [115,135]. High systemic doses of AAV vectors have been associated with immune-mediated hep-
atitis in some preclinical and clinical studies, while AdV vectors are well known to induce dose-dependent inflammatory 
responses [136,137]. LNP-based delivery systems are generally well tolerated, they can trigger transient infusion-related 
reactions or activate innate immune pathways [126,127].

Editor-specific off-target effects remain a significant concern in the field of gene editing. The CRISPR-Cas9 system, for 
instance, can occasionally induce unintended double-strand breaks at genomic loci bearing partial sequence homology, 
potentially resulting in mosaic or undesirable mutations [138]. Likewise, base editors may catalyze bystander nucleotide 
conversions and have been shown to alter RNA transcripts, thereby introducing unintended genetic modifications [139]. 
Furthermore, disruption of genes with uncharacterized or broad systemic functions may result in unforeseen phenotypic 
consequences, while partial correction – where only a subset of target cells is edited – may be insufficient for therapeutic 
efficacy and could introduce heterogeneity among cell populations [140].

To address these challenges, ongoing innovations are being developed to improve both the safety and specificity of 
gene editing strategies. Tissue-specific nanoparticles and non-viral delivery methods – such as exosomes and extra-
cellular vesicles – are being investigated as alternatives to conventional viral vectors. MyoAAV, a muscle-specific AAV 
variant, has shown promise in enhancing targeted gene delivery to cardiac and skeletal muscle tissues, [141]. Meanwhile, 
next-generation editing tools such as prime editing and high-specificity CRISPR variants (e.g., Cas12, Cas13, Cas14) 
offer improved precision [142,143]. High-fidelity Cas9 variants, including eSpCas9 and HiFi Cas9, have also demonstrated 
reduced off-target activity, thereby enhancing safety profiles [144]. Finally, the integration of artificial intelligence and 
machine learning in gRNA design could enhance targeting precision and minimize off-target effects [145,146].

Future directions: From bench to bedside

Promising outcomes from preclinical models have laid the groundwork for gene editing therapies in human cardiovascular 
disease. Currently, several clinical trials are underway to evaluate these approaches, particularly those targeting PCSK9 
for the treatment of hypercholesterolemia. Among the most advanced candidates is Verve Therapeutics’ VERVE-101, a 
 CRISPR-based therapy targeting the PCSK9 gene, now in Phase 1 clinical trial for familial hypercholesterolemia. Pre-
liminary data indicate substantial reductions in LDL-c levels without significant adverse effects [147]. A related candidate, 
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VERVE-102, employs the same genetic payload as VERVE-101 but utilizes a GalNAc LNP delivery system; it is currently 
being assessed in the ongoing Phase 1b HEART-2 trial [148]. In addition, Verve is developing VERVE-201, which targets 
ANGPTL3, offering an alternative therapeutic strategy focused on remnant cholesterol metabolism in patients with refractory 
hypercholesterolemia. This candidate is also in Phase 1b clinical evaluation [82]. The recent approval by the U.S. Food and 
Drug Administration (FDA) of Verve’s Investigational New Drug (IND) application has facilitated the expansion of clinical trials 
within the United States. CRISPR-based therapies utilizing LNP delivery systems have similarly shown substantial promise. 
AccurEdit Therapeutics’ ART002, for instance, achieved a 50–70% reduction in LDL-c levels in Phase 1 studies, potentially 
offering superior durability and efficacy compared to RNA interference (RNAi)-based treatments. These single-dose interven-
tions may also overcome long-standing challenges related to patient adherence in  lipid-lowering therapies [149].

In the context of cardiac amyloidosis, NTLA-2001 (Nexiguran ziclumeran or nex-z), a CRISPR-Cas9-based 
 gene-editing therapy, demonstrated an 89% reduction in serum transthyretin levels at 28 days and a 90% reduction at 
12 months during Phase 1 trials. Clinical outcomes indicated stability or improvement in 92% of patients, accompanied 
by stable NT-proBNP and troponin levels, and a favorable safety profile characterized by only mild adverse events [150]. 
Furthermore, Intellia Therapeutics’ NTLA-2001, delivered via LNPs, achieved over 80% TTR knockdown and was associ-
ated with improvements in cardiac performance. The therapy has been well tolerated in Phase 2 study, and the ongoing 
Phase 3 MAGNITUDE trial (NCT06128629) is expected to conclude in 2028 [151]. For inherited cardiomyopathies, AAV-
based gene delivery approaches have shown early potential. Tenaya Therapeutics’ TN-201, designed to target MYBPC3 
in hypertrophic cardiomyopathy, has demonstrated successful vector delivery and transgene expression in cardiac tissue 
[152]. Similarly, Regenxbio’s RGX-202, initially developed for Duchenne muscular dystrophy, has shown promising micro-
dystrophin expression and may offer therapeutic benefits for the associated cardiomyopathy [153] (Table 5).

Ethical considerations

The clinical implementation of gene editing therapies for CVDs must be guided by careful ethical oversight and com-
prehensive regulatory frameworks. As these interventions permanently alter the genome, there is a ethical obligation to 
ensure that potential benefits justify the risks and that unintended consequences are minimized. A central ethical imper-
ative is to maintain public trust. To this end, the medical and scientific communities must maintain transparency regard-
ing both the known risks – such as off-target effects and immune responses – and the uncertainties, including potential 
long-term outcomes. Active and ongoing engagement with patients and the broader public is essential to foster informed 
understanding and acceptance of these emerging therapies [155].

Public sensitivity to gene editing has been heightened by controversial events, such as the unethical germline genome 
editing of human embryos reported in 2018, which underscored the need to clearly distinguish therapeutic somatic gene 
editing from heritable germline modifications. International consensus statements, including the National Academy of Sci-
ences 2017 report, have affirmed that somatic gene editing may be ethically permissible under stringent regulatory over-
sight, whereas germline editing remains widely prohibited across jurisdictions [156]. Researchers and clinicians bear the 
responsibility to adhere to established ethical guidelines and regulatory standards. This includes obtaining comprehensive 
informed consent, which must explicitly communicate the irreversible nature of gene editing procedures and the necessity 
for long-term, potentially lifelong, clinical monitoring of individuals who receive such therapies.

Equitable access and justice considerations also arise as gene editing therapies move toward clinical application. Per-
haps the most pressing challenges is the cost. For example, the recently approved gene therapy for sickle cell disease, 
Casgevy, has a reported price of $2 million, raising serious questions about equitable access and reimbursement. This is 
especially concerning for chronic conditions such as CVDs, which affect large, diverse patient populations. It is a moral 
imperative to ensure that life-saving gene editing interventions are not limited to a socioeconomically privileged minority. 
Policies and funding mechanisms must be developed to promote broader accessibility and prevent the exacerbation of 
existing healthcare disparities.
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Regulatory authorities will also need to address how to ethically design early human trials – for example, selecting 
appropriate patients (those with no remaining conventional treatment options) and balancing risk-benefit in life- threatening 
versus less severe conditions. Furthermore, the long-term safety and durability of gene editing therapies remain incom-
pletely understood and warrant sustained investigation [157]. While preclinical studies and early-phase trials have 
shown promising results, the potential for delayed adverse effects, such as immune responses or off-target mutations, 

Table 5. Ongoing clinical trials in gene therapy of CVD. From the American Heart Association Advisory [154].

Trial ID Start Year Disease/
Condition

Study Design Target Gene/
Protein

Therapy 
Name

Delivery 
Method

Current 
Trial Phase

Genetic Cardiomyopathy

NCT05885412 2023 Arrhythmogenic Cardiomyopathy 
(ACM)

Open Label
Multi center

PKP2 RP-A601 AAV Phase 1

NCT06109181 2024 ACM Open Label
Multi center

PKP2 LX2020 AAV Phase 1/2

NCT06228924 2024 ACM Open Label
Multi center

PKP2 TN-401 AAV Phase 1

NCT05836259 2023 Hypertrophic Cardiomyopathy 
(HCM)

Open Label
Multi center

MYBPC3 TN-201 AAV Phase 1b

Heart Failure

NCT05598333 2023 Ischemic Cardiomyopathy & 
Heart Failure

Double-blinded
Multi center

PP1 AB-1002 AAV Phase 2

Hyperlipidemia

NCT06125847 2023 FH Open-label Single-center LDLR NGGT006 AAV Phase 1

NCT00891306 2009 FH Open Label
Multi center

LDLR LPLS447X AAV Phase 2/3

NCT06293729 2024 FH Open-label Single-center LDLR NGGT006 AAV Phase 1

NCT06112327 2024 FH Long-term follow-up PCSK9 VERVE-101 LNP Phase 1

NCT05860569 2024 Hypertriglyceridemia Open Label
Multi center

LPL GC304 AAV Phase 1

Genetic Syndromes

NCT04601051 2020 Transthyretin Amyloidosis Open Label
Multi center

TTR NTLA-2001 LNP Phase 1

NCT05445323 2022 Friedreich’s Ataxia Open Label
Multi center

FXN LX2006 AAV Phase 1/2

NCT05302271 2022 Friedreich’s Ataxia Open-label Single-center FXN AAVrh.10hFXN AAV Phase 1a

NCT04174105 2020 Pompe Disease Open Label
Multi center

GAA AT845 AAV Phase 1

NCT03533673 2018 Pompe Disease Open-label Single-center GAA ACTUS-101 AAV Phase 1/2

NCT04093349 2020 Pompe Disease Open Label
Multi center

GAA SPK-3006 AAV Phase 1/2

NCT00976352 2010 Pompe Disease Open-label Single-center GAA AAV-GAA AAV Phase 1/2

NCT02240407 2017 Pompe Disease Double-blinded
Single-center

GAA AAV-GAA AAV Phase 1

NCT04046224 2019 Fabry Disease Open Label
Multi center

GLA ST-920 AAV Phase 1/2

NCT04519749 2020 Fabry Disease Open Label
Multi center

GLA 4D-310 AAV Phase 1/2

NCT06092034 2023 Danon Disease Open Label
Multi center

LAMP2 RP-A501 AAV Phase 2

https://doi.org/10.1371/journal.pone.0325330.t005

https://doi.org/10.1371/journal.pone.0325330.t005
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necessitates long-term monitoring of patients [158]. The establishment of long-term patient registries will likely be essen-
tial to track clinical outcomes and identify any late-emerging complications, ensuring continuous data collection beyond 
the confines of initial trials. Moreover, as with any transformative biomedical technology, the ethical governance of gene 
editing must be dynamic and responsive. This includes ongoing ethical review processes, periodic reassessment of reg-
ulatory frameworks in light of emerging scientific evidence or evolving societal values, and active involvement of diverse 
stakeholders – including ethicists, patient advocacy groups, clinicians, and policymakers – in guiding the responsible 
development of these therapies.

Conclusion

This study highlights the tremendous potential of gene editing therapies for treating CVDs. The high editing efficiencies, 
significant therapeutic outcomes, and favorable safety profiles observed in animal models provide a strong rationale 
for advancing these therapies to clinical trials. Notably, unlike conventional drugs or interventions that require ongoing 
treatment to control disease symptoms, gene editing offers the possibility of a one-time, curative intervention by directly 
correcting the underlying genetic defect. However, challenges related to delivery, long-term safety, and scalability must be 
addressed to fully realize the potential of gene editing in cardiovascular medicine. With continued innovation and rigor-
ous preclinical and clinical evaluation, gene editing therapies could revolutionize the treatment of CVDs, offering hope for 
patients with currently untreatable conditions.
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