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Abstract
The ability to control the transition from an undifferentiated stem cell to a specific cell fate is one of the key techniques that 
are required for the application of interventional technologies to regenerative medicine and the treatment of tumors and 
metastases and of neurodegenerative diseases. Reprogramming technologies, which include somatic cell nuclear transfer, 
induced pluripotent stem cells, and the direct reprogramming of specific cell lineages, have the potential to alter cell plas‑
ticity in translational medicine for cancer treatment. The characterization of cancer stem cells (CSCs), the identification of 
oncogene and tumor suppressor genes for CSCs, and the epigenetic study of CSCs and their microenvironments are important 
topics. This review summarizes the application of cell reprogramming technologies to cancer modeling and treatment and 
discusses possible obstacles, such as genetic and epigenetic alterations in cancer cells, as well as the strategies that can be 
used to overcome these obstacles to cancer research.

Keywords  Cancer stem cells · Epigenetics · Induced pluripotent stem cells · Organoid culture · Reactive oxygen species · 
Somatic cell nuclear transfer

Cellular and Molecular Life Sciences

 *	 Chang‑Shen Lin 
	 changshen.lin@gmail.com

 *	 Kazunari K. Yokoyama 
	 kazu@kmu.edu.tw

	 Shigeo Saito 
	 saict1@maple.ocn.ne.jp

	 Ying‑Chu Lin 
	 chulin@cc.kmu.edu.tw

	 Yukio Nakamura 
	 yukio.nakamura@riken.jp

	 Richard Eckner 
	 richard_eckner@yahoo.com

	 Kenly Wuputra 
	 kenlyw@hotmail.com

	 Kung‑Kai Kuo 
	 kuoksfo@yahoo.com.tw

1	 Saito Laboratory of Cell Technology, Yaita, 
Tochigi 329‑1571, Japan

2	 College of Engineering, Nihon University, Koriyama, 
Fukushima 963‑8642, Japan

3	 School of Dentistry, College of Dental Medicine, Kaohsiung 
Medical University, Kaohsiung 807, Taiwan

4	 Cell Engineering Division, RIKEN BioResource Center, 
Tsukuba, Ibaraki 305‑0074, Japan

5	 Department of Biochemistry and Molecular Biology, 
Rutgers, New Jersey Medical School‑Rutgers, The State 
University of New Jersey, Newark, NJ 07101, USA

6	 Graduate Institute of Medicine, College of Medicine, 
Kaohsiung Medical University, Kaohsiung 807, Taiwan

7	 Department of Surgery, Kaohsiung Medical University 
Hospital, Kaohsiung 807, Taiwan

8	 Department of Biological Sciences, National Sun Yat-sen 
University, Kaohsiung 804, Taiwan

9	 Faculty of Molecular Preventive Medicine, Graduate School 
of Medicine, The University of Tokyo, Tokyo 113‑0033, 
Japan

http://orcid.org/0000-0001-7415-2187
http://orcid.org/0000-0001-8508-7587
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-018-2924-7&domain=pdf


46	 S. Saito et al.

1 3

Introduction

The use of human embryonic stem cells (ESCs) is a prom‑
ising approach in the clinical applications of regenerative 
medicine and cancer research. However, the use of such 
ESC derivatives poses a major ethical dilemma, in that 
embryos need to be destroyed or compromised to produce 
ESCs. Therefore, more pragmatic alternatives, including 
reprogramming, are required to pave the path for the clini‑
cal application of pluripotent stem cells (PSCs) in humans. 
Currently, reprogramming technologies are divided into 
three approaches: (i) somatic cell nuclear transfer (SCNT) 
technology, (ii) induced PSC (iPSC) technology, and (iii) 
direct reprogramming (DR) technology [1].

SCNT, iPSC, and DR technologies

SCNT technology generates totipotent cells using an enucle‑
ated oocyte injected with a nucleus isolated from differen‑
tiated somatic cells [2]. In mammals, the reprogramming 
capability of somatic cells to an undifferentiated state was 
first substantiated by the birth of cloned sheep [3]. In a rather 
different context, ESCs derived from the inner cell mass 
cells of blastocysts also exhibit pluripotency with indefinite 
cell division and the ability to differentiate to all three germ 
layers [4]. The invention of methods for the induction of 
human iPSCs derived from somatic cells opened a new era 
of research, as it allowed researchers to derive an almost 
infinite number of new iPSCs that can be used as a source 
for autologous cell-based therapy, disease modeling, drug 
screening, and biomedical engineering [5–13]. The current 
methodologies generally reprogram somatic cells to iPSCs 
via serial passages in the presence of reprogramming fac‑
tors (OCT4, SOX2, KLF4, and c-MYC [OSKM], as well as 
NANOG and LIN28) under adherent culture conditions on 
a feeder layer or on extracellular matrix (ECM) components 
[14].

Reprogramming can also be induced by other methods 
using chemicals that promote the establishment of the core 
transcription circuitry of stem cells [15–18]. For example, 
an over 200-fold increase in reprogramming efficiency was 
reported for culture media supplemented with antagonists 
of transforming growth factor beta (TGF-β) signaling and 
mitogen-activated kinase/extracellular signal-regulated 
kinase (MEK–ERK) inhibitors, and by passaging the cells 
in the presence of thiazovivin, which is an inhibitor of 
the Rho-associated coiled-coil containing protein kinase 
(ROCK) [19].

A potentially important twist to reprogramming tech‑
niques has stemmed from the observation that pluripotency 
factors, such as OCT4 and LIN28, are markers of a group of 
stem cell-like cells in ovarian cancers [20]. Several studies 

have shown that the pluripotency factors used to generate 
iPSCs also exhibit tumorigenic capability, suggesting that 
reprogramming and cellular transformation might occur via 
overlapping pathways [21–28].

Therefore, reprogramming protocols involving the 
expression of oncogenic pluripotency factors might cause 
tumorigenesis by disrupting the epigenetic marks for the 
correct gene expression circuitry. For example, inhibition 
of the expression of the tumor suppressor gene encoding 
TP53 not only enhanced the reprogramming of fibroblasts 
into iPSCs [29], but also generated transformed CSCs from 
differentiated cells [30]. Moreover, it has been demonstrated 
that overexpression of c-MYC in immortalized mammary 
epithelial cells favored tumor formation via epigenetic cell 
reprogramming [31]. The authors provided evidence that 
this tumorigenesis was caused by epigenetic reprogram‑
ming, as the oncogenic enhancers were reactivated in the 
cancer cell counterparts. Furthermore, recent works have 
illustrated an important role of the epigenetic reprogram‑
ming of chromatin modifications in the evolution of cancer 
metastasis [32–34]. These articles emphasize the fact that 
reprogramming can lead to the formation of tumor-initiating 
cells that acquire stem cell-like phenotypes. Interestingly, 
the three-dimensional (3D) tumor sphere-forming assay is a 
unique model of cancer that can be used to investigate malig‑
nant heterogeneity in tumorigenesis [34, 35]. Therefore, the 
tumorigenic potential of the use of reprogrammed stem 
cells for clinical applications should be recognized and new 
approaches for safe stem cell therapy should be developed.

DR (or transdifferentiation) technology, which repro‑
grams somatic cells to other differentiated lineages or multi‑
potent stem cells or progenitors, has also been developed 
[36]. DR introduces target cell-specific, defined transcription 
factors into recipient somatic cells, which are reprogrammed 
to the target cells by bypassing the pluripotent stage during 
lineage conversion, thus possibly avoiding teratoma forma‑
tion [37–39]. Human and mouse somatic cells have been 
converted into myoblasts, beta islet cells, neurons, and neu‑
ral stem cells using DR technology [40–43]. DR is assumed 
to shorten the preparation period for cell replacement ther‑
apy and has the highest potential for clinical application. 
Nevertheless, to obtain the final target cells, this technique 
remains time consuming in practice. In addition, compared 
with SCNT and iPSC technologies, DR exhibits the lowest 
efficiency of successful reprogramming to PSCs [44, 45]. 
This problem needs to be overcome.

Cancer stem cells (CSCs)

The CSC hypothesis was proposed over 140 years ago [46] 
and postulates that cancers arise from a rare subpopulation 
of cells that are endowed with both tumor and stem cell 
features. CSCs are resistant to drug and radiation therapies. 
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It is believed that CSCs are self-renewing cancer cells that 
have clonal tumor-developing capability and clonal long-
term repopulation ability [24, 47–49]. One model proposes 
that CSCs are derived from genetically and epigenetically 
altered stem or progenitor cells that reside in their original 
niches and acquire oncogenic growth advantages to sustain 
tumor mass. Thus, these CSCs might possess similar fea‑
tures to normal stem cells and are well adapted to the niche 
environments [50].

Cancer cell reprogramming

An identical set of reprogramming factors (OSKM) can be 
delivered to cancer cells derived from almost all tissues to 
generate induced pluripotent cancer cells (iPCCs) [51–53]. 
Such iPCCs appear to have a CSC-like state after the repro‑
gramming process [49, 53–55]. Alternatively, depending on 
the type of cancer, the introduction of a single gene (a pro‑
cess referred to as DR, see above) can be sufficient to acti‑
vate multipotency and induce tumor formation. In normally 
unipotent basal or luminal mouse mammary epithelium, 
the induction of an activated gene encoding the phosphati‑
dylinositol-4,5-biphosphate kinase catalytic subunit alpha 
(PIK3CA) was sufficient to trigger the reprogramming of 
these cells into a multipotent mammary epithelial stem cell-
like state and to give rise to breast tumors that displayed a 
similar cellular heterogeneity to that of human breast cancers 
[55, 56]. Slightly elevated levels of c-MYC were sufficient to 
reprogram and dedifferentiate luminal mammary epithelial 
cells into a stem cell-like state, resulting in the widespread 
decommissioning of transcriptional enhancers associated 
with differentiation-specific genes and the reactivation of 
genes associated with multipotent breast epithelial stem 
cells [31]. The latter study also showed that c-MYC and an 
activated PIK3CA allele collaborate in inducing multipo‑
tency and in increasing the number of tumor-initiating cells. 
Schwitalla et al. [32] demonstrated that enhanced NF-kB 
signaling was able to activate WNT in intestinal cells and 
induced dedifferentiation of nonstem cells to acquire stem 
cell-like properties. Another report showed that the consti‑
tutively active SMAD2/3 can interact with other factors on 
OCT4 target loci and potentiate DR conversion with multi‑
ple types of transcription factors from myoblasts to adipo‑
cytes, B cells to macrophages, and fibroblasts to neurons. 
Thus, they might be the common cofactors that potentiate 
diverse cell fate conversions with master genes [57].

Accordingly, cancer cells that have been reprogrammed 
via the introduction of a single or several genes, which are 
capable of triggering a stem cell phenotype, can be a good 
model of several aspects of cancer research (Fig. 1), such 
as the study of cancer heterogeneity and niches, the eluci‑
dation of the mechanisms of cancer initiation and progres‑
sion, epigenetic reprogramming, screening of compounds 

as therapeutic or re-differentiating agents, and induction of 
cell death/senescence for cancer ablation therapy [58, 59].

Advantages provided for cancer research 
by cancer cell reprogramming

Heterogeneity of cancer cells in the same patient can arise 
for multiple reasons [58–60]. First, heterogeneity can be 
generated by stochastic genetic [61] or epigenetic changes 
[62]. Clonal evolution confers heritable differences among 
cancer cells. Second, heterogeneity can arise through the 
interaction between cancer cells and environmental altera‑
tions within the tumors [63]. Third, heterogeneity can be 
derived from a minor subpopulation of tumorigenic CSCs, 
which can generate diverse non-tumorigenic cells and con‑
stitute a tumor mass. In addition, tumorigenic CSCs can be 
transplanted between immune-deficient mice and reestab‑
lish phenotypic heterogeneity inside the newly formed tumor 
[64]. These sources of heterogeneity are not mutually exclu‑
sive [65]. The cellular heterogeneity encountered in many 
human tumors may represent a specific niche, which is an 
important contributing factor to the maintenance of tumor 
stem cells.

Genetically, some tumors, such as medulloblastomas 
[66], hepatocellular carcinomas [67], small cell lung carci‑
nomas (SCLCs) [68], and pancreatic adenocarcinomas [69], 
are composed of such genetic subpopulations of each spe‑
cific cancer [70]. Different cell subpopulations with a certain 
cell identity may be dominantly represented by cell repro‑
gramming. For example, breast cancer cells with PIK3CA 
mutations may present as CSCs after MYC-induced repro‑
gramming [31]. Thus, reprogramming technology might 
help identify heterologous subsets among cancer progeni‑
tor cells. Single-cell RNA sequencing technology has now 
been used to identify and quantitate these subtypes of cancer 
cells [71]. Such high-throughput single-cell RNA sequenc‑
ing technologies have the potential to promote the under‑
standing of cancer generation in the decomposition of het‑
erogeneous cell populations and of the heterogeneity of cells 
associated with various tumorigenic stages. This technology 
allows the identification of the cellular subpopulations and 
the delineation of novel cell markers in the hematopoietic 
[71], respiratory [72], hepatobiliary [73], and pancreatic [74, 
75] lineages, as well as in the intestine [76]. Recent progress 
in single-cell RNA sequencing led to the identification of 
the heterogeneous origins of CSCs in gliomas [77], breast 
cancers [78], myeloid leukemias [79], bladder cancers [80], 
and colorectal cancers [81]. These heterogeneities stem from 
the original unidentified subpopulations that arise during 
the step of induction of cancer-specific iPSCs. Henceforth, 
this single-cell sequencing technique can be applied to can‑
cer-specific iPSCs. The limitations of this technique in the 
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identification of heterogeneity are also presented. The major 
sources of genetic and phenotypic variations among iPSCs 
can be assessed by including gene copy numbers and the 
extent of epigenetic changes, indicating that this problem 
could be solved in the near future and that the real heteroge‑
neity of such CSCs may be identified [82].

Study of the microenvironmental niches of cancer 
stemness and organoid culture

Patient-specific iPSCs could be applied as cancer models 
for mechanistic studies and drug development, as well as 
for studying interactions with cancer niches. The newly 

developed 3D cell cultures of patient-derived iPSCs might 
be useful for understanding the roles of cellular microenvi‑
ronments. Primary tumors at a late stage of cancer develop‑
ment represent differentiated cell lineages. The animal mod‑
els that are available currently fail to provide ideal systems 
because of their genetic differences. The 3D and organoid 
cell culture of iPSCs could provide useful systems that are 
appropriate for modeling human cancers, which would be 
clinically important for drug screening and the development 
of therapies.

Stem cells grow in their own cellular microenvironments, 
termed stem cell niches. In these niches, both interactions 
between cells and the ECM and their diffusible signals are 

Fig. 1   Schematic model of the interaction between reprogramming 
to pluripotency and tumorigenesis. The reprogramming of somatic 
cells to pluripotency is performed by overexpressing reprogramming 
factors (such as OCT4, KLF4, SOX2, c-MYC, NANOG, and miR‑
NAs) and inhibiting tumor suppressor genes (such as those encoding 
p14ARF, p16Ink4a, p21Cip1, and p53), to reset their fate toward a state 
of pluripotency, which is a dedifferentiation process that resembles 
tumor development. Patient-specific or healthy iPSCs are used in 
cell-based therapy after inducing differentiation to appropriate types 
of cells, for transplantation into patients. For example, iPCCs were 
derived by introducing OSKM factors and knocking down vector 
shTP53 in tumor cells in a manner similar to that described in iPSC 
protocols. The teratomas that are formed after the transfer of iPCCs to 
SCID mice are then dissected out, and isolated cells can form puta‑
tive CSC-like phenotypes. The various malignancy characteristics 

observed in iPCCs seem to depend on differences in tumor cell types. 
In contrast, CSCs can be derived by an OCT4-mediated dedifferentia‑
tion process in tumor progression, even in somatic cells, via the stable 
expression of telomerase, the H-Ras V12 mutant, and inhibition of 
the p53 and retinoblastoma protein (pRB) pathways. CSCs can also 
be derived directly from tumor cells via the overexpression of OCT4, 
NANOG, KLF4, and IGFBP3, in a dedifferentiating manner. Putative 
CSCs and iPCCs are expected to be used in studies of drug screening 
or cancer-initiation mechanisms in the field of human cancer thera‑
peutics. Hypoxia enhances the reprogramming of somatic cells, and 
HIFs directly regulate the factors that are needed for self-renewal 
and multipotency in cancer cells and CSCs. Furthermore, hypoxia 
increases the production of ROS, which promote cell development 
and EMT in CSCs via the TGF-β signaling pathway and drive CSCs 
to produce VEGF, which induces angiogenesis
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important for development. Niches have been used to iden‑
tify mammalian stem cells in various epithelial tissues from 
normal samples and cancers [83]. The niches are composed 
of fibroblasts, immune cells, endothelial and vascular pro‑
genitor cells, or ECMs and network signals composed of 
cytokines and growth factors [79]. CSCs are also capable of 
forming niches representing tumor microenvironments [84]. 
During tumor progression to a more malignant stage, CSCs 
in the primary tumor depend on the tumor microenvironment 
or on the CSC niches that are located within it [85]. Thus, 
the reprogramming of cancer cells to generate iPCCs can 
provide critical information that can be used to understand 
the role of such microenvironments.

To elucidate the role of niches, the recently developed 
technique of organogenesis also provides useful informa‑
tion [86]. Recent techniques of organoid formation from 
brain, intestine, kidney, liver, lung, ovary, pancreas, and 
stomach cells provide basic knowledge on the cross-talk 
between CSCs and their microenvironment. This technique 
can be used in clinical applications, including cancer mod‑
eling, drug screening, microorganism infection, and therapy 
using new gene editing technologies, such as CRISPR/Cas9, 
to identify the critical genes, respectively. Thus, patient-
derived organoids might be critical for future use in cancer 
research, for drug screening, and for mechanistic studies of 
CSCs and their microenvironments [87].

Merits of the application of this technique to cancer 
modeling and cancer therapy

Cancer cell reprogramming can be used as a model to under‑
stand tumorigenesis and to develop regenerative therapies. 
In some cases, such reprogramming advances oncogenic 
capacity even further. Thus, after dedifferentiation, repro‑
grammed cancer cells exhibit a more severe cancer pheno‑
type because of the genetic alterations or oncogenicity of 
the reprogramming factors that were used [40, 52, 88–90].

Leukemia

The reprogramming of the chronic leukemia KBM7 line into 
iPCCs using the transcription factors OSKM led to resist‑
ance to an inhibitor of the Bcl–Abl fusion oncogene in these 
cells, but not in the parental cells [52]. In another case, pri‑
mary chronic myelogenous leukemia (CML)-derived iPCCs 
were shown to be resistant to imatinib. However, CML-
iPCCs-derived hematopoietic cells recovered sensitivity 
to this drug. These findings indicate that the pathological 
features of the initial disease were recapitulated [88].

Gastrointestinal cancers

Nagai et al. [90] also reprogrammed gastrointestinal cancer 
cell (GCC) lines using OSKM. These iPCCs were sensi‑
tized to chemotherapeutic drugs and differentiation-inducing 
protocols at an early stage, but longer culture of these cells 
resulted in more aggressive features compared with the 
parental cells. Thus, the authors speculated that the cancer-
specific iPCCs were prone to genetic instability via genetic 
or epigenetic alterations, including oncogenic c-Myc acti‑
vation. Human pancreatic ductal adenocarcinoma (PDAC) 
cells were reprogrammed to generate iPCCs and injected 
into SCID mice. The reprogrammed cancer cells then pro‑
duced the pancreatic intra-epithelial neoplastic lesions that 
can progress to invasive tumors [40]. Miyoshi et al. [53] used 
four different GCC lines to obtain iPSC-like cells. These 
GCC-iPSCs were generated by ectopic expression of OSKM 
and oncogenes, such as BCL2 and KRAS, and short-hairpin 
RNAs (shRNAs) against the tumor suppressor genes, such as 
TP53, p16Ink4a, PTEN, FHIT, or RB1. These iPSC-like cells 
were more sensitive to 5-fluorouracil and drugs of differen‑
tiation–induction and exhibited reduced tumorigenicity in 
nonobese diabetic/severe combined immunodeficient mice. 
Kuo et al. [58] found that the positive feedback between 
OCT4 and c-JUN increased with the onset of cancers. We 
hypothesized that the positive feedback regulation of OCT4 
and c-JUN might promote the generation of liver CSCs.

Lung cancers

Mahalingam et al. [91] reprogrammed a non-small cell lung 
cancer (NSCLC) cell line using OSKM to generate NSCLC-
iPCCs, which reversed the aberrantly dysregulated genes in 
cancer cells both epigenetically and transcriptionally, result‑
ing in reduced oncogenicity in iPCCs.

Li‒Fraumeni syndrome (LFS)

LFS is a cancer hereditary syndrome caused by TP53 
germline mutations. Patients with LFS are susceptible to 
adrenocortical carcinoma, brain tumor, breast cancer, leu‑
kemia, osteosarcoma, and soft tissue sarcoma. LFS-patient-
derived iPSCs have been generated [92]. LFS-iPSC-derived 
osteoblasts reproduced the hallmarks of osteosarcoma (OS), 
including defective osteoblastic differentiation and tumori‑
genicity. However, osteoblasts from LFS-derived iPSCs did 
not exhibit cytogenetic alterations in 18 regions that are usu‑
ally associated with late-stage OS. The imprinting gene H19 
was not upregulated in LFS osteoblasts during osteogenesis, 
and the restored forced expression of H19 in LFS osteoblasts 
improved osteoblastic differentiation and suppressed tumo‑
rigenicity. Thus, without differentiation, iPSCs were able to 
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maintain stemness with higher expression of the H19 gene 
product, even though the TP53 gene was mutated.

LFS-derived iPSCs provide several advantages compared 
with other models of LFS, such as (i) an unlimited supply 
of cells, (ii) a human platform, and (iii) access to the het‑
erogeneity across cell types. Thus, LFS-derived iPSCs can 
provide great value in drug screening and testing in vitro. 
LFS-derived iPSC models enable the understanding of pre‑
cise genome editing, three-dimensional (3D) organoid-based 
culturing systems, and subsequent organ-on-chip systems, 
which might facilitate anticancer drug discovery and provide 
a sophisticated model of cancer treatment [92].

Merits of the development of therapeutics

A cell line of the blast crisis stage of CML was repro‑
grammed to generate CML-iPSCs [52]. CML was gener‑
ated by mutating the BCR–ABL fusion gene, which caused 
enhanced cell expansion [93], while CML-iPSCs retained 
their differentiation potential. Thus, the maintenance of 
stemness and oncogenic expansion is a critical issue dur‑
ing differentiation. In a blast crisis, cells lose their ability 
to differentiate, and immature leukemia cells can overgrow 
instead. In the case of in vivo differentiation in teratomas, 
CML-iPSCs differentiate into all three germ layers, includ‑
ing hematopoietic cell lineages expressing CD34, CD43, 
and CD45. Cells with loss of the CML phenotype and 
independence from BCR–ABL signaling were resistant to 
imatinib. Differentiation of the cells into hematopoietic line‑
ages in vitro rendered them sensitive to imatinib, suggesting 
the recovery of oncogenic dependency, as the CML-iPSCs 
underwent hematopoietic differentiation.

Kumano et al. [88] demonstrated that iPSCs derived 
from the primary tumors of two patients with CML exhib‑
ited stemness and differentiation to hematopoietic progeni‑
tors that expressed BCR–ABL. These iPSCs were prepared 
from imatinib-sensitive patients, but the iPSCs finally 
showed resistance to this drug and resembled CML stem 
cells after reprogramming. These cell lines might provide 
a good model system for understanding the mechanism of 
drug resistance and the role of stem cells in CML.

iPSCs might be useful for the development of personal‑
ized approaches to cancer treatment, as they would enable 
the discovery of a wide range of therapeutic agents against 
the genetic differences between individuals, which might aid 
the discovery of those that are ideal for each patient [94]. 
The identification of an efficient strategy to eliminate CSCs 
is a critical issue in cancer therapy. As CSCs are rare, iPSC 
technologies could be used to generate a large quantity of 
CSCs for subsequent applications [95, 96]. Nishi et al. [97, 
98] generated mammary CSC-like cells that were used to 
screen compounds that selectively targeted CSCs, including 
salinomycin and withaferin A. Choi et al. [99] generated 

iPSC-derived hepatic cells from patients with α-1 antitrypsin 
(AAT) deficiency, to screen the Johns Hopkins Drug Library 
(3131 clinical compounds). Of the 262 compounds that led 
to decreased AAT accumulation by > 50%, 43 showed no 
side effects. Finally, the authors identified five hits that con‑
sistently decreased AAT levels in four AAT-deficient iPSC 
lines. Patient-derived iPSCs are also useful for the study 
of drug absorption, distribution, metabolism, excretion, and 
toxicity. Thus, the use of iPSCs is beneficial for the identifi‑
cation of CSC-related genes and for mechanistic studies of 
cancer induction, promotion, and progression.

Study of metabolic shifts

Cancer cell reprogramming has the advantages of recon‑
stituting cancer initiation and progression, which renders it 
an ideal model to investigate changes in cancer character‑
istics, such as metabolism, epithelial–mesenchymal transi‑
tion (EMT)/mesenchymal–epithelial transition (MET), and 
metastasis.

The Warburg effect, via which cancer cells use glycolysis 
rather than oxidative phosphorylation in mitochondria for 
producing energy, is well known [100, 101]. Aerobic glyco‑
lysis, which is mediated by uncoupling proteins that uncou‑
ple oxidative phosphorylation from glycolysis [102–105], is 
enhanced in ovarian and breast cancers and when PSC pluri‑
potency is induced. Lu et al. [106] generated iPSCs from 
patients with ataxia telangiectasia (AT) syndrome that mim‑
icked the AT phenotype, including deregulated AT-mutated 
(ATM)-associated pathways and altered gene expression 
patterns in the pentose phosphate and mitochondrial oxida‑
tive phosphorylation pathways. Metabolic reprogramming 
of pyruvate utilization is a therapeutic target for the devel‑
opment of new reagents for cancer prevention [107], such 
as those affecting the inhibition of pyruvate dehydrogenase 
kinase [108]. The anti-hyperglycemic agent metformin is 
an interesting substance with therapeutic effectiveness. 
Although the action of metformin has not been explained 
fully, it is useful for the metabolic reprogramming of cancer 
cells [109]. Metformin promoted growth arrest in pancre‑
atic tumor cells via direct impairment of fatty acid synthesis 
[110]. The antitumor effects of metformin appear to be cor‑
related with microRNA (miRNA) modulation and increased 
expression of the AMP-activated protein kinase, leading to 
the modulation of targets that restore energy homeostasis by 
inhibiting hepatic gluconeogenesis [109].

Analysis of EMT/MET

EMT/MET play critical roles during normal development, 
as they contribute to the formation of the mesoderm during 
gastrulation, as well as at subsequent stages of the develop‑
ment of neural crests and lung formation [111]. They are 
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also hallmark of cancer initiation and metastasis. For exam‑
ple, EMT/MET inducers, such as SNAIL1/2 or TWIST1/2, 
are associated with relapse and survival in several cancers, 
such as those that arise in mammary, colorectal, and ovar‑
ian tissues, suggesting that EMT/MET pathways are associ‑
ated with poor outcomes of cancer patients [112, 113]. The 
expression of EMT/MET genes is correlated with cancer 
progression in colon cancers, papillary thyroid carcino‑
mas, and breast carcinomas [113], and in the development 
of metastases in melanomas [114]. In xenotransplantation 
assays, iPSCs derived from human sarcoma cell lines prolif‑
erated more slowly than did their parental counterparts and 
exhibited necrosis and lower expression of EMT markers 
[115]. During reprogramming, initial methylation followed 
by demethylation of the promoters of 32 oncogenes and 82 
tumor suppressor genes were demonstrated, showing that 
pluripotency factors can suppress the features of cancer 
phenotypes, restore differentiation potentials, perturb epi‑
genetics via DNA methylation, and alter cancer-related gene 
expression.

Molecular approach to the study of cancer 
metastasis

Compared with their normal counterparts, cancer cells 
exhibit widespread alterations in DNA methylation patterns 
and an altered organization of open and condensed chro‑
matin because of profound changes in epigenetic chromatin 
marks [116, 117]. Additional epigenomic reorganization 
takes place during tumor progression to metastasis [118, 
119]. Each metastatic event establishes a new tumor nodule 
and is, thus, by definition, carried out by CSCs [120]. Recent 
studies have begun to shed light on the molecular mecha‑
nisms that lead to metastasis. Not surprisingly, the changes 
appear to be tumor-type specific. For example, during SCLC 
progression to metastasis, the expression of the transcription 
factor nuclear factor 1b (Nfib) increases by several fold, in 
part from the amplification of the Nfib gene, resulting in the 
activation of new distal regulatory elements (i.e., transcrip‑
tional enhancers) and the implementation of a neuroendo‑
crine transcriptional program that drives metastasis [121]. In 
PDAC, the genomes of primary tumors and their metastases 
are largely similar, suggesting that epigenetic reprogram‑
ming might be the primary force driving the transition [122]. 
Two different reports have described widespread chromatin 
and gene-enhancer reprogramming during PDAC progres‑
sion [33]. Those authors investigated matched PDAC cells 
from the same patients from either proximal (peritoneum) 
or distant (lung and liver) metastatic sites. PDAC metastases 
from distant sites were dependent on the oxidative pentose 
phosphate pathway for the maintenance of their malignant 
gene expression programs. Roe et al. [34] also used a mouse 
PDAC model and found that the transition to a metastatic 

state was accompanied by massive FoxA1-driven enhancer 
activation. The newly activated genes rendered cells more 
invasive, and they assumed a cell fate resembling that of the 
embryonic foregut endoderm.

These examples suggest that the reprogrammed cancer 
cells displayed various cancer phenotypes that provided a 
prevention technology and insights into cancer biology and 
the progression of cancers.

Obstacles to cancer cell reprogramming

This reprogramming technique for cancer cells remains 
immature; therefore, additional trials are needed to under‑
stand the weakness that exists currently in cell reprogram‑
ming for the translational research of cancers.

Mutations in the genome

Usually, cancers are produced by “driver” mutations at the 
initiation stage and, subsequently, by positive selection and 
clonal expansion, which lead to the accumulation of “pas‑
senger” mutations [123, 124]. The “driver” mutations confer 
an advantage to the proliferation and development of can‑
cers. In contrast, the “passenger” mutations do not affect 
the fitness of cancer clones significantly [125–127]. Recent 
advances in deep genomic sequencing technologies have led 
to the identification of these mutations in some oncogenes 
and tumor suppressor genes, which are the hallmark drivers 
of certain cancers [128]. However, whether these genetic 
mutations become a barrier to cancer cell reprogramming 
remains unclear.

In addition, many studies have demonstrated that the pro‑
cess of cell reprogramming may cause genomic alterations, 
such as chromosomal aberrations, copy number variations 
(CNVs), and single-nucleotide variations. For example, 
trisomy 12 is an aberration that is observed commonly in 
ESCs and iPSCs [72–75]. Some cell cycle-related genes and 
NANOG are located on chromosome 12; thus, trisomy 12 
might result in alterations in proliferation and reprogram‑
ming [76, 77]. The amplification of chromosomes 8 and 
X, as well as of other chromosomes, was also detected in 
iPSCs [72, 73]. iPSCs may acquire CNVs during reprogram‑
ming or from the mosaicism that is present in the parental 
cells; however, CNVs are lost gradually by cell passaging, 
with selective pressure for the deletion of tumor suppressor 
genes in early cell passages and duplication of oncogenes 
at a later time [75, 82–84, 129]. Single-nucleotide mutants 
in iPSCs are identified by high-throughput next-generation 
sequencing analyses. These analyses have identified an aver‑
age of ten protein-coding mutations per human iPSC line 
[68, 85]. Thus, further investigation is required to identify 
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approaches aimed at preventing these mutations during the 
cellular reprogramming of cancer cells.

The use of young donor cells is one possible way to over‑
come this issue, because mutations in mitochondrial DNA 
increase with age in human iPSCs [88, 130]. If the prepa‑
ration of autologous donor cells is difficult, human histo‑
compatibility antigen (HLA)-matched allogenic cells can be 
used to replace them in reprogramming, to generate iPSCs. 
It might not be necessary to prepare autologous donor cells, 
because human HLA-matched umbilical cord blood-derived 
iPSCs, which do not show a higher rate of point mutations, 
are useful sources of allogenic iPSC-based cell therapies 
[131]. Yamanaka’s group and the RIKEN Cell Bank in Japan 
are initiating this project to cover most Japanese HLAs to 
produce allogenic iPSCs with lower mutation rates that 
could be used as iPSCs bank stocks.

Epigenetic alterations

The process of fibroblast reprogramming using Yamanaka’s 
factors (OSKM) includes three steps: initiation, maturation, 
and stabilization [132]. The initiation step is characterized 

by the expression of genes that encode proteins involved in 
MET via the silencing of SNAIL1/2, suppression of TGF-β 
signaling, and upregulation of CDH1 [133]. In the matu‑
ration step, the expression of exogenous 4Fs is repressed 
and pluripotent-related genes, such as NANOG, SALL4, and 
ESRRB, are expressed in their stead. In the stabilization 
step, other pluripotent marker genes are expressed for full 
reprogramming.

In the initiation step, cells undergoing reprogramming 
exhibit downregulation of the H3K79me2 epigenetic 
markers located around MET-related genes. A decreased 
H3K79me2 level indicates the inhibition of mesenchymal 
properties through transcriptional repression. Subsequently, 
the genes encoding poly-(ADP-ribose) polymerase-1 and 
the ten–eleven translocation (TET) family 2 (TET2) are 
recruited to the NANOG and ESRRB loci, which direct the 
transition from the initiation to the maturation phase [134]. 
In the maturation and stabilization phases, epigenetic silenc‑
ing of the exogenous genes and enhancing of chromatin 
remodeling represent the resetting of epigenetic modifica‑
tions in these reprogramming-related genes [135].

Fig. 2   Schematic model of the mechanisms via which epigenesis, 
p53, and ROS‒hypoxia‒HIFs promote reprogramming efficiently 
and genome integrity in PSCs. Cancer cells with driver and pas‑
senger mutations might be overcome by epigenetic reprogramming 
and DNA repair to induce the formation of PSCs with correct plas‑
ticity. Active chromatin with active histone markers (H3K4me3, 
H3K79me2, H3Ac, and H3K27Ac) should be repressed by repres‑
sive markers (H3K9me3, H3K36me2/3, and H3K27me3) at specific 

regions by three different reprogramming methods (SCNT, iPSC, and 
DR). Forced expression of reprogramming factors increases the lev‑
els of ROS that are generated in mitochondria, which in turn causes 
DNA damage and undermines both reprogramming efficiency and the 
genomic integrity of iPSCs. Antioxidants can promote reprogram‑
ming efficiency and safeguard the stability of the genomes of iPSCs 
by inhibiting ROS production and exerting non-antioxidant functions, 
including modulating epigenetic modifiers, and histones



53Potential application of cell reprogramming techniques for cancer research﻿	

1 3

TET-mediated DNA demethylation at CpG islands (at the 
ESRRB and OCT4 loci via an interaction with NANOG) 
promotes gene expression and helps maintain the pluripo‑
tency of stem cells [136]. In cancer cells, high levels of DNA 
methyltransferase 1 (DNMT1) and DNA methyltransferase 
3A/3B (DNMT3A/3B), as well as suppression of TET, have 
been detected [137, 138]. The repressed function of TET in 
cancer cells might impair pluripotency and genomic repro‑
gramming. The epigenetic features of cancer cells, such as 
high expression of DNMTs, low expression of TETs, and 
overexpression of histone deacetylases (HDACs), might be 
an obstacle to the reprogramming process.

In addition to DNA methylation, histone modifications 
also play critical roles in cancer cell reprogramming (Fig. 2). 
Histone marks, such as H3K27me3, H3K9me3, H3K4me3, 
and H3K27ac, are targets for the reprogramming of cancer 
cells. The catalytic subunit of the polycomb repressive com‑
plex 2 (PRC2) enhancer of zesta homolog2 (EZH2) medi‑
ated transcriptional repression by introducing H3K27me3 
[139]. In breast cancers, B-cell lymphomas, and prostate 
cancer, EZH2-mediated H3K27me3 permitted the silenc‑
ing of tumor suppressor genes [140–143]. Accordingly, 
in myeloid malignancies, loss of EZH2 function was suf‑
ficient to induce a self-renewal-supporting transcriptional 
program and leukemogenesis. These reports indicate that 
the deregulation of the H3K27me3 landscape—hence, the 
transcriptional repression—is the driving force behind the 
emergence of CSCs, independent of the original EZH2 
mutation [144–147]. The mixed lineage leukemia (MLL) 
histone methyltransferase is also involved in histone modifi‑
cation. MLL requires the repressive activity of the polycomb 
repression complex 1 (PRC1), which monoubiquitinates his‑
tone H2A at lysine 119 (H2AK119Ub1) or trimethylates 
histone H3 at lysine 4 (H3K4me3), and then cooperates with 
PRC2 to mediate transcriptional repression [139]. The Bmi1 
subunit of PRC1 mediates the repression of tumor suppres‑
sors in myeloid progenitors [148, 149] and is required for 
the inhibition of tumor suppressor genes that is necessary to 
initiate the self-renewal of CSCs in solid tumors [150]. The 
control afforded by ATP-dependent chromatin remodeling 
complexes, such as SWI/SNF, ISWI, CHD, and INO080, 
represents another pathway of epigenetic regulation in mam‑
mals [151]. The genes encoding the SWI/SNF complex are 
mutated in > 20% of human cancers. Loss of SMARCB1, a 
subunit of the SWI/SNF complex, drives malignant rhabdoid 
tumors and is associated with the blocking of differentia‑
tion, reprogramming toward an oncogenic transcriptional 
program, and activation of cancer signaling [152, 153]. 
ARID1A, another subunit of SWI/SNF, is a tumor sup‑
pressor in colon cancers and its loss activates an oncogenic 
program and promotes the development of invasive colon 
adenocarcinomas in the mouse [154]. Taken together, these 
findings show that deregulations of the DNA methylation 

and histone modification landscapes represent key steps in 
the onset of the generation of CSCs.

In general, it might be better to define precise chromatin 
regulatory regions, including physical constraints such as 
the insulators and topologically associated domains, while 
lamina-associated domains are mainly localized along large 
organized chromatin modifications, as well as with the het‑
erochromatic regions of silenced genes in cells [155]. Altera‑
tions in these higher order structures have been linked to the 
control of tumorigenesis [156]. Transcriptional enhancers 
are enriched for the binding of chromatin factors such as 
p300/CBP, a major histone acetyltransferase that mediates 
the formation of H3K27AC, and its mediator, a long-range 
interaction facilitator [157]. The correct ordering and func‑
tional integrity of these modifiers with transcription factors 
and enhancers should be clarified in terms of the generation 
and expansion of CSCs [158].

However, recent development in high-throughput tools 
that allow the examination of chromatin structure, such as 
DNase I-, formaldehyde-assisted isolation of regulatory 
elements- (FAIRE-), and assay for transposase-accessible 
chromatin (ATAC) sequencing, can be used to extend our 
knowledge of epigenetic regulation during cell reprogram‑
ming [159, 160]. Conversely, the incorporation of hyper‑
dynamic histone variants at enhancers (H2A.Z and H3.3) 
might render the chromatin less stable and facilitate the ini‑
tial access to transcription factors [161–163], demonstrat‑
ing the presence of oncogenic enhancers that are involved 
in cancer commitments. However, many questions remain 
unanswered: how can cancer reprogramming erase the epi‑
genetic memory of stem or differentiated cells? How can 
oncogenic enhancers be maintained? Which molecules 
are involved in the initiation and progression of cancer 
genotypes with expanding CSCs of each tumor type [164]? 
CRISPR-mediated epigenome editing may be a promising 
technique to identify the key cis-elements in the genomes 
of CSCs [165–168]. The origins of cancer stemness and the 
manners in which stemness genes and oncogenes might be 
separated remain unclear. However, these breakthroughs 
and the identification of new drugs targeting epigenetic 
processes (epi-drugs) may open a new era of therapeutic 
strategies to target CSCs for reprogramming.

Potential key factors to overcome 
the obstacles to cancer cell reprogramming

Several reprogramming enhancers are thought to be able to 
overcome the problems raised above. These reprogramming 
enhancers can be divided into the following categories: mod‑
ulators of tumor suppressor proteins, hypoxia and reactive 
oxygen species (ROS), and cellular signaling and chromatin 
modifiers (Table 1, Fig. 2).
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Table 1   List of modulating factors for enhancing the efficacy of reprogramming

This table is a modified version of the one published by Kwon et al. [244]

Technology Modulators Function Type References

SCNT Serum starvation Cell cycle Medium supplement [134]
TSA, VPA, Scriptaid Epigenesis Medium supplement [215–217]
FBS Proliferation Medium supplement [218]
Vitamin C ROS Medium supplement [219, 220]
Hypoxia ROS Medium supplement [221]
5-Azacytidine Epigenesis Medium supplement [222–224]
KDM4A Epigenesis Gene [45]
H1foo Epigenesis Gene [225]

iPSCs or iPCCs TSA, VPA, thiazovivin, chemi‑
cals

Epigenesis Medium supplement [15–19, 226–228]

5-Azacytidine Epigenesis Medium supplement [226]
SB431542 TGF-β inhibitor Medium supplement [229]
Vitamin C ROS Medium supplement [230]
FBS Proliferation Medium supplement [175]
Serum starvation Cell cycle Medium supplement [231]
Inhibition of DOT 1L Epigenesis Gene [2]
AID Epigenesis Gene [232, 233]
Overexpression of MYC Epigenesis Gene [31]
Activation of PIK3CA, Smad2/3 Epigenesis Gene [55–57]
Inhibitors of p53 or PTEN Proliferation Gene [29, 51, 169–177]
Inhibitors of Brigent/Arid3A Proliferation Gene [234]
Inhibitors of cyclin D1 Cell cycle Gene [177]
Overexpression of E-Cad Mesenchymal–epithelial transi‑

tion
Gene [235]

Hypoxia Proliferation Other [236]
Pattern Epigenesis Other [237]
Overexpression of YY1/Sox2, 

OCT4/Bmi1
Proliferation Gene [94]

YAPI/TAZ Proliferation Gene [238]
TERT–EZH2 Proliferation/chromatin Gene [239]

Direct reprogramming Hypoxia ROS Other [44]
SB431542 TGF-β signal Medium supplement [197]
Inhibitor of p53 Proliferation Gene [112, 240]
Inhibitor of Bmi1 Epigenesis Gene [199]
Overexpression of HMGA2 Epigenesis Gene [43]
miR-125a/HK2 Metabolism Gene [241]
SoxB1, SoxE, SoxF Stemness Gene [200]
C-Myc, Klf4, Sox9 Pluripotency Gene (mouse dermal fibroblasts 

to chondrogenic cells [iChon])
[242]

Sox, EZH2 Epigenesis Gene (mouse fibroblasts to 
iNSCs)

[202]

NF-κB, LEF-1 Signal Gene (human fibroblasts to 
sweat gland-like cells)

[243]

ASCL1, ISL1, NEUROD1, 
BRN2, HB9, LHX3, HYT1L, 
NGN2

Pluripotency Gene (human fibroblasts to 
motor neuron)

[203]

JMJD3 Epigenesis Gene (bone marrow progenitor 
to liver cells)

[204]

Ascl1, Zfp238, Sox8, Dlx3 Pluripotency Gene (mouse fibroblasts to iN) [201]
GATA4, HAND2, MEF2C, 

TBX5(AGHMT), ZNF281
Pluripotency Gene (human fibroblasts cardio‑

myocytes)
[198]
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Tumor suppressor proteins

Transient inhibition of the gene encoding the tumor suppres‑
sor protein 53 (TP53) or the phosphatase and tensin homolog 
protein (PTEN) increases reprogramming efficiency [51, 
169–175]. During the transient inhibition of tumor suppres‑
sors, cell proliferation is increased, and cell cycle arrest, 
apoptosis, and senescence are inhibited, which are favorable 
conditions for reprogramming. For example, the introduction 
of a dominant-negative TP53 [176] or shRNA–TP53 [59] 
into cells increased the efficiency of reprogramming. How‑
ever, cyclin D1 was reported to be an obstacle to reprogram‑
ming to a pluripotent state [177]. Inhibition of TP53 was 
also effective in the direct conversion of human fibroblasts 
to dopaminergic neurons [178].

Hypoxia and ROS scavenger JDP2

Hypoxia induces the expression of hypoxia-inducible factors 
(HIFs). Two main HIFs, HIF1α and HIF2α, are essential for 
the metabolic changes that are required to generate iPSCs, 
whereas HIF2α is detrimental at the late stage of repro‑
gramming of human cells. Prolonged HIF2α stabilization 
represses reprogramming because the tumor necrosis factor 
(TNF)-related apoptosis-inducing ligand and apoptosis are 
induced. Hypoxia treatment used during the induction of 
iPCCs might induce an increase in tumorigenicity, indicating 
the possibility that the targets of HIFs might be enhancers of 
CSC genes [89]. Moreover, hypoxia and expression of HIFs 
are required for the survival of CSCs [47, 179] and trig‑
ger ROS-dependent EMT [180]. Both hypoxia and elevated 
levels of glycolysis are conducive to the maintenance of 
stem cell features. It has been proposed that hypoxic culture 
conditions and reduced mitochondrial respiratory activity 
might increase the generation of iPSCs and inhibit the dif‑
ferentiation of ESCs [181, 182]. For example, it has been 
shown that hypoxia increases the DR efficiency of somatic 
cells into induced neural stem cells (iNSCs) or induced car‑
diomyocytes (iCMs) [183].

ROS are toxic oxygen derivatives and radicals derived 
from aerobic metabolism that lead to cellular damage and 
cell death [184, 185]. Increased levels of ROS reduce cell 
viability and decrease the reprogramming efficiency. In 
contrast, ROS scavengers lower oxidative stress, thereby 
increasing reprogramming efficiency. The reprogramming 
efficiency is significantly increased by adding vitamin C to 
the cell reprogramming culture medium [186]. The c-Jun 
dimerization protein 2 (JDP2) was identified as a cofactor 
that enhances antioxidant response activity [187, 188]. JDP2 
acts as a repressor protein that inhibits cell proliferation; 
it induces cellular senescence during tumor development 
and participates in ROS homeostasis to inhibit cell dam‑
age by ROS [188]. These molecular features of JDP2 are 

also controlled by hypoxia and HIFs. Oxidative stress also 
induces angiogenesis via increased expression of angioge‑
netic marker genes, such as the vascular endothelial growth 
factor (VEGF) gene [189]; moreover, hypoxia stimulates the 
production of VEGF by CSCs [190]. Taken together, these 
findings suggest that the stemness of CSCs might be affected 
by extrinsic factors, such as hypoxia, ROS, and signaling 
between CSCs and environmental niches (e.g., TGF-β and 
the tumor necrosis factor-α, WNT, NOTCH, SHH signals 
and ECM stiffness, and some CSC-related transcription fac‑
tors) [180, 190–193].

Signaling modulators and chromatin modifiers

In addition to the reprogramming factors mentioned above, 
other reprogramming enhancers, including miRNAs and 
lncRNAs [194], have been emerging. These are also fac‑
tors that are key to overcoming the obstacles to cancer 
cell reprogramming (Table 1). Kaufhold et al. [195] found 
that Yin Yang 1 (YY1) was a transcriptional repressor for 
stemness factors such as BMI1, SOX2, and OCT4. YY1 
contributes to enhancer‒promoter interactions in a man‑
ner that is analogous to the DNA interaction mediated by 
CTCF [196]. The existence of a regulatory loop between 
the nuclear factor kappa b (NF-kB)–PI3K–AKT pathway 
and downstream products, such as BMI1, OCT4, SOX2, and 
YY1, has also been noted. Thus, modulation of YY1 and 
NF-kB–PI3K–AKT signaling may contribute to cell repro‑
gramming. TGF-β pathway inhibitors, such as SB431542, 
increased the efficiency of the reprogramming of adult 
cardiac fibroblasts to iCMs [197]. Moreover, the B-lym‑
phoma Mo-MLV insertion region 1 homolog (Bmi1) is a 
barrier to cardiac reprogramming. The inhibition of Bmi1 
leads to an increase in the level of the active histone mark 
H3K4me3, and to a decrease in the level of the repressive 
mark H2AK119ub at cardiogenic loci, resulting in cardiac 
gene expression and increased reprogramming efficiency 
[198]. The zinc finger protein 281 (ZNF281) also enhances 
the direct conversion of fibroblasts to iCMs [199]. Because 
the high-mobility group AT-hook 2 (HMGA2) is involved 
in higher order chromatin compaction, its overexpression 
might help relax the nucleosome into a more open state for 
DR. Among the known reprogramming factors, the SOX 
family members, especially those of the SOXB, SOXE, and 
SOXF subclasses, are potent drivers of direct somatic cell 
reprogramming into multiple lineages [200].

Chromatin modifiers, such as the EZH2 and ASCL1 
components, are also useful for DR to iNSCs or motor neu‑
rons [183, 201–203]. JMJD3 has been reported as an epi‑
genetic enhancer of lineage conversion from bone marrow 
progenitors to liver cells [204]. Agathocleous et al. [205] 
and Cimmino et al. [206] reported that vitamin C regulated 
HSCs and suppressed leukemogenesis by modulating TET2 
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activity. Vitamin C is a cofactor of Fe2+- and alpha-ketoglu‑
tarate-dependent dioxygenases. Vitamin C modulates stem 
cell function, potentiates the reprogramming of fibroblasts 
to iPSCs, and inhibits the aberrant self-renewal of HSCs 
by enhancing the activity of Jumonji-1C domain-containing 
histone demethylases or TET DNA hydroxylases. Thus, vita‑
min C restores TET function in HSCs and might represent 
an adjuvant agent for treating leukemia and other cancers 
[207]. Vitamin C treatment has been applied to cancer cells 
such as melanomas [208], in which it increased 5-hydroxym‑
ethylcytosine content and resulted in the inhibition of tumor 
cell invasion and clonogenic growth in soft agar. Moreover, 
vitamin C is also useful for the metabolic reprogramming of 
cancer cells [207]. In addition to these identified reprogram‑
ming enhancers/modulators, further studies are still required 
to verify and overcome the problems of epigenetic repro‑
gramming, mutations, and ROS-metabolic reprogramming 
in mitochondria and the endoplasmic reticulum.

Conclusions and future perspectives

The basic techniques of cell reprogramming have their 
own merits for each cell type. Both the SCNT and iPSC 
technologies have the potential to erase genetic and epi‑
genetic modifications in cancers and return the cells back 
to their stemness phenotype. Although DR- and classical 
iPSC-based reprogramming have considerable potential, 
their low efficiency of successful reprogramming and 
poor reproducibility limit the development of research in 
this field. Several obstacles must be overcome in the use 
of cell reprogramming. It will be challenging to maintain 
homeostasis, regulate ROS production, and maintain normal 
aging in the directly reprogrammed and pluripotent cells. 
Reprogramming enhancers are possible modulators of can‑
cer and their microenvironments (niches) that might allow 
the application of this technology to translational research. 
Among the tumor suppressor genes, the status of TP53 
signaling in CSCs plays a critical role in maintaining the 
stemness and expansion of cancer cells [49, 209]. To study 
therapeutic models in cancer research, 3D organoid models 
of ductal pancreatic cancers have provided a new spectrum 
of models of tumor progression by forming neoplasms that 
proceed to form invasive and metastatic carcinomas [210]. 
The organoid methodology is a useful system that can be 
used to identify the characteristics of malignancy, and the 
creation of complete tissues or neoplastic cancer organoids 
in vitro might provide better models of cancers in the future 
[35, 211–214]. Moreover, the CRISPR/Cas9 approach is 
believed to be a new breakthrough technology that can be 
used to correct cancer genomes for clinical applications 
[214]. However, Haapaniemi et al. [212] and Ihry et al. [213] 

demonstrated that CRISPR/Cas9 genome editing technol‑
ogy induces p53-mediated DNA damage and that, in human 
PSCs, p53 inhibits CRISPR/Cas9-induced genome editing. 
Thus, the tumor suppressor product of TP53 remains critical 
for overcoming this problem. Efforts to harness the versatil‑
ity of iPSCs to model human cancers and to screen for effec‑
tive therapeutics will undoubtedly accelerate translational 
cancer research from the laboratory to the bedside.
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