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The feasibility of the random subspace ensemble learning method was explored

to improve the performance of functional near-infrared spectroscopy-based

brain-computer interfaces (fNIRS-BCIs). Feature vectors have been constructed

using the temporal characteristics of concentration changes in fNIRS chromophores

such as mean, slope, and variance to implement fNIRS-BCIs systems. The mean and

slope, which are the most popular features in fNIRS-BCIs, were adopted. Linear support

vector machine and linear discriminant analysis were employed, respectively, as a single

strong learner and multiple weak learners. All features in every channel and available

time window were employed to train the strong learner, and the feature subsets were

selected at random to train multiple weak learners. It was determined that random

subspace ensemble learning is beneficial to enhance the performance of fNIRS-BCIs.

Keywords: brain-computer interface, ensemble learning, functional near-infrared spectroscopy, linear

discriminant analysis, random subspace, support vector machine

INTRODUCTION

Ensemble learning has been applied actively inmany differentmachine learning fields (Akram et al.,
2015; Li et al., 2016; Ren et al., 2016; Hassan and Bhuiyan, 2017; Sagi and Rokach, 2018; Yaman
et al., 2018; Zerrouki et al., 2018). It is defined as a type of machine learning technique that takes
advantage of multiple weak (i.e., straightforward but fair performance) learners instead of a single
strong (i.e., sophisticated and powerful performance) learner to make high-quality predictions.
This implies that the principle of collective intelligence being superior to an elite can be applied
in the field of machine learning. Ensemble learning approaches are typically categorized into (i)
bootstrap aggregating (bagging), (ii) boosting, and (iii) random subspace (Breiman, 1996; Freund
and Schapire, 1997; Ho, 1998). With respect to a structural perspective, which is different from
other ensemble approaches mentioned earlier, stacking, namely meta-learning, can be included in
ensemble learning.

Bagging algorithms generate multiple (tens or hundreds) bootstrap replicas of an original
dataset to train multiple weak learners corresponding to bootstrap replicas. Each bootstrap
replica is composed of N samples, where N is the same as the original dataset size, selected at
random with replacement. The algorithm trains weak learners until every weak learner is trained.
Boosting algorithms train weak learners sequentially by focusing on the data misclassified by a
weak learner. The misclassified data and correctly predicted data increasingly possess higher and
lower weights, respectively. The next weak learner is trained on the data with adjusted weights
to reduce classification loss. Random subspace algorithm requires less computational cost than
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others because the method uses random subsets containing M
features out ofD features, whereD is the total number of features.
Each weak learner is trained using a random subset ofm features
until every weak learner is trained. Stacking algorithms construct
multi-level learners. The gist of this algorithm is that outputs of
base learners are used as training data for the higher-level meta-
classifier.

In previous studies in the fields of neuroscience and neural
engineering, ensemble learning proved its effectiveness in
improving classification performance (Cho and Won, 2007;
Sun et al., 2007; Kuncheva and Rodriguez, 2010; Kuncheva
et al., 2010; Plumpton et al., 2012). Electroencephalography-
based brain-computer interface (EEG-BCI) is one of the
major topics in the field of neural engineering, and various
ensemble methods have been employed successfully to enhance
the EEG-BCI performance (Sun et al., 2008; Liyanage et al.,
2013). Another case garnering considerable attention is a
functional near-infrared spectroscopy-based brain-computer
interface (fNIRS-BCI), which already demonstrated its potentials
as an alternative to EEG-BCIs owing to its cost-effectiveness,
portability, scalability, and convenience (Herrmann et al., 2003;
Kubota et al., 2005; Irani et al., 2007; Sitaram et al., 2007; Ye
et al., 2009; Zhang et al., 2009; Falk et al., 2011; Power et al.,
2011, 2012; Holper et al., 2012; Naseer et al., 2014; Khan and
Hong, 2015; Shin et al., 2016; Shin and Im, 2018). Because
of their excellent performance and reliability, support vector
machine (SVM) and linear discriminant analysis (LDA) are two
popularmachine learning approaches that implement fNIRS-BCI
systems. According to Naseer and Hong (2015), SVM or LDA is
utilized in over 65% of fNIRS-BCI studies as a machine learning
method. It is noteworthy that only a few studies on ensemble
learning for fNIRS-BCI have been conducted to date. Instead,
hybrid EEG-fNIRS BCI, which recently proved excellent in BCI
performance, plays a leading role in taking advantage of the
benefits of ensemble learning for fNIRS-BCIs (Fazli et al., 2012;
Shin et al., 2017b, 2018a,c,d, 2019; Von Lühmann et al., 2017;
Kwon et al., 2020).

Although different types of fNIRS-BCI related studies have
been introduced (Sereshkeh et al., 2019; Ghonchi et al., 2020;
Nagasawa et al., 2020; Von Luhmann et al., 2020) Deep
recurrent–convolutional neural network for classification of
simultaneous EEG–fNIRS signals), surprisingly, little literature
has covered the advantages of ensemble learning to improve
the performance in terms of classification accuracy, information
transfer rate, etc. (Shin and Im, 2020). In this study, the
effectiveness of ensemble learning for fNIRS-BCIs is evaluated.
For this, the random subspace method takes charge of the core of
the ensemble learning algorithm used in this study. Classification
accuracies that are yielded by a single strong learner and an
ensemble of multiple weak learners are provided as proof of
validation results.

METHODS

Open-Access Dataset
An open-access fNIRS-BCI dataset was used in subsequent data
analyses to secure the reproducibility and accuracy of results.

FIGURE 1 | fNIRS channel location. The figure is adapted from Shin et al.

(2018c) under CC-BY license.

The fNIRS-BCI dataset can be downloaded using the URL (Shin
et al., 2019). The dataset included a 16-channel fNIRS data of 18
participants [10 males and eight females, 23.8 ± 2.5 years (mean
± standard deviation)]. Optical intensity changes (1[OD])
were collected by a multi-channel fNIRS device (LIGHTNIRS;
Shimadzu Corp.; Kyoto, Japan) utilizing three wavelengths (780,
805, and 830 nm) at a sampling rate of 13.3Hz. The location
of fNIRS channels is presented in Figure 1 (Shin et al., 2018c).
Participants performed: (i) mental arithmetic task (repetitive
subtractions of a one-digit number from a three-digit number)
and (ii) stayed in an idle state during the task period of 10 s and
relaxed during the following rest period (24∼26 s). Items (i) and
(ii) were repeated 30 times. Sixty-trial fNIRS data were collected
from each participant after data recording. The details can be
found in Shin et al. (2018c).

Preprocessing
The collected 1[OD] were converted to two types of fNIRS
chromophore data (i.e., concentration changes in oxygenated
hemoglobin 1[HbO] and reduced hemoglobin 1[HbR]) using
the following formula which is given by Matcher et al. (1995):

(

1
[

HbR
]

1[HbO]

)

=
(

1.8545 −0.2394 −1.0947
−1.4887 0.5970 1.4847

)

·





1 [OD]780
1 [OD]805
1 [OD]830



 · (unit : mM · cm)

where the subscript denotes a wavelength.
The converted data were band-pass filtered using a sixth-order

Butterworth zero-phase filter with a pass-band of 0.01–0.09Hz
(Shin et al., 2017a, 2018b,c). The pass-band was selected to
eliminate unwanted physiological noises and DC offsets (Zhang
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et al., 2007). Anymotion artifact removal method was not applied
because the fNIRS data were collected at the stationary state. The
filtered data were segmented into epochs ranging from−1 to 15 s
relative to task onset (0 s). Afterward, the segmented data were
subjected to a baseline correction to subtract each channel offset
in the reference interval (−1 to 0 s).

CLASSIFICATION

Features
A variety of features have been considered in fNIRS-BCI studies
such as mean, slope, variance, etc. Among them, mean (average
amplitude of fNIRS data; AVG) and slope (average rate of
amplitude change of fNIRS data; SLP) were the most relevant
features in previous fNIRS studies (Bhutta et al., 2015; Hong and
Santosa, 2016; Hong et al., 2017; Shin et al., 2018c); therefore, four
types of time windows were employed to extract AVG and SLP of
the segmented 1[HbO] and 1[HbR] data ranging from 0 to 15 s.
Each type of window subdivided the interval into 1, 3, 5, and 15.

i) TYPE 1: single time window with a length of 15 s.
ii) TYPE 2: three time windows with a length of 5 s: [0 5], [5 10],

and [10 15] s.
iii) TYPE 3: five time windows with a length of 3 s: [0 3], [3 6],

. . . , [12 15] s.
iv) TYPE 4: fifteen time windows with a length of 1 s: [0 1], [1 2],

. . . , [14 15] s.

Feature vectors were constructed using both AVG and SLP as
well as a single feature, either AVG or SLP. The dimensionality
of feature vectors (i.e., the number of features, D) for each of the
trials is given as:

D = ntype × nchrm × nch × nwin (1)

where ntype, nchrm, nch, and nwin are the number of feature types
(1 or 2), chromophores (2), channels (16), and time windows (1,
3, 5, or 15 for TYPE 1, 2, 3, or 4), respectively.

Strong Learner
As mentioned in the Introduction section, the two most popular
machine learning algorithms (SVM and LDA) were employed.
Feature vector standardization was applied to linear SVM
to improve prediction performance while other miscellaneous
hyperparameters were default values. However, the feature vector
standardization was not applied to LDA because, as understood,
the application of standardization does not significantly affect
LDA prediction performance. The number ofD features was used
to train strong learners.

Random Subspace
LDA was chosen as a type of weak learner. Random subsets of
M features out of D features were used to train N weak learners,
where M = {m | m = [

√
D + 0.5] ± 2,±4,m ∈ N, D ∈ N},

[·] operator denotes the integer part of a number (e.g., M =
{3, 5, 7, 9, 11}, D = 50,

[√
D+ 0.5

]

= 7), and N = {n | 1 ≤
n ≤ 100, n ∈ N}. The basic rule of random subspace ensemble
follows the steps below:

i) choose N subsets containing M features selected at random
from D features.

ii) train N weak learners using each random subset.
iii) make a prediction by majority vote.

Cross-Validation
In the case of the strong learner, a 10 × 10-fold cross-validation
was performed to estimate the generalized classification
performance. A 60-trial training set for a single participant was
divided into 10-folds. A training dataset and a test set were
composed of 9-folds and the rest data, respectively. The strong
learner was trained using the training set, and the classification
performance was validated using the test set, which included
unseen data during the training process. The validation was
repeated until every fold was used at least once to estimate the
classification performance. In the case of ensemble learning,
while steadily increasing the number of weak learners up to
N, ten repetitions of 10-fold cross-validation were performed
using the training and test sets partitioned in the same way, as
employed in the process of strong learning validation.

Test Statistic
Prediction performances of random subspace ensembles and
strong learners were tested by repeated cross-validation tests. The
assessment was conducted as follows:

i) compute differences between classification losses for kthfold
of rth repetition of a random subspace ensemble and a
strong learner:

dr,k = errens(r,k) − errsvm(r,k) (2)

ii) compute the average differences across K folds:

E
(

dr
)

=
1

K

K
∑

k=1

dr,k (3)

iii) compute average differences across R repetitions:

E
(

d
)

=
1

R

R
∑

r=1

E
(

dr
)

(4)

iv) compute variances of the differences:

σ 2
r =

1

K

K
∑

k=1

(dr,k − E(dr))
2 (5)

v) compute average variances across R repetitions:

E
(

σ 2
)

=
1

R

R
∑

r=1

σ 2
r (6)

vi) compute overall variances of the differences:

S2 =
1

RK

R
∑

r=1

K
∑

k=1

(

dr,k − E
(

d
))2

(7)
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A test statistic (t) for comparing classification losses of both
random subspace ensemble and the strong learner is given by:

t =
E

(

d
)

√

S2/(df + 1)
(8)

where df is a degree of freedom and was assigned 10 in this study
(Bouckaert and Frank, 2004; Wang et al., 2017).

Statistical Test
Parametric statistical methods, such as analysis of variance
(ANOVA) and t-test, were adopted because the Anderson-
Darling test for classification accuracies returned a test decision
indicating that the classification accuracies were from a
population with a normal distribution.

RESULTS

Strong Learners
Figure 2 shows grand averages (over all participants) of LDA and
SVM classification accuracies according to the time window type
for constructing feature vectors. Variance analysis (ANOVA) was
employed to test whether a significant difference existed among
single-trial classification accuracies corresponding to each of the
feature vectors. The significant variability of SVM classification
accuracy by different time window and feature types (One-
Way ANOVA, p = 0.991) was not observed; in other words,
the SVM prediction power was not significantly influenced
by the number of dimensions (i.e., how many features) and

type of features that were considered, at least in this study.
Instead, for SVM: AVG at TYPE 5, the best grand average
classification accuracy yielded a result of 80.8 ± 8.4% (mean
± std), although this is not statistically significant, considering
the highest-dimensional feature vectors. However, statistically,
different prediction performances were observed among LDA
classifiers (One-Way ANOVA, p < 0.001). In the case of TYPE 5,
LDA classification accuracies, estimated by a single type of feature
(AVG: 65.3 ± 7.9%, SLP: 65.3 ± 10.5%), decreased steeply below
the effective binary BCI threshold [commonly, 70.0% (Dickhaus
et al., 2009; Allison and Neuper, 2010; Vidaurre and Blankertz,
2010)].

Random Subspace Ensemble
Classification accuracies of random subspace ensemble classifiers
varied as a function of the number of weak learners as shown
in Figure 3. Typically, classification accuracies were drastically
improved until the 20 weak classifiers were involved in the
ensemble. Afterward, it was confirmed that the classification
accuracy gradually increased as the number of weak learners
increased. The classification enhancement rate distinctly became
lower in the regions where the ensemble included around 80 or
more weak learners.

Overall, ensembles with 10+ weak learners outperformed a
single strong learner, and this improvement was significantly
observed in the areas where the number of weak learners was
> 20 (paired t-test with false discovery rate corrected-p <

0.05). The highest ensemble classification accuracy was often
yielded where the subset size was relatively larger; however,

FIGURE 2 | Grand averages (over all participants) of LDA and SVM classification accuracies according to time window type. The error-bar indicates standard deviation.
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FIGURE 3 | Random subspace ensemble classification accuracies estimated

using: (A) AVG, (B) SLP, and (C) AVG and SLP features as a function of the

(Continued)

FIGURE 3 | number of weak learners. Dotted lines indicate SVM (strong

learner) classification accuracy, estimated using the same 10-fold

cross-validation partition used to validate the classification performance of the

random subspace ensemble classifier. The random subset size for each weak

learner is shown in the legend. Red dots in the upper part of each subfigure

indicate the significance of differences in the classification accuracy between

ensembles and strong leaners (t-test with false discovery rate

corrected-p < 0.05).

its consistency was not observed. Table 1 shows the highest
individual random subspace ensemble classification accuracies,
estimated using the fittest subset size. Using either AVG or SLP
feature, a classification accuracy of 84.5 ± 6.2 or 83.0 ± 6.4%,
respectively, was obtained on average. By using both features
simultaneously, 84.4± 6.5% classification accuracy was obtained
on average. The difference in classification accuracy among these
three cases was not significant (One-Way ANOVA, p = 0.746).
It was rarely displayed that N was <20 (3 out of 54 cases), while
diverseM-values were selected depending on each participant to
obtain the highest classification accuracy for each participant.

DISCUSSION

Dimensionality
For classification problems, it is generally acknowledged that
as the dimensionality of the feature vector is much larger than
the training set size, prediction performance can be adversely
affected. This is called the “curse of dimensionality.” In areas
where only AVG or SLP was used in this study, the ratio of
the dimensionality of a feature vector to the training set size
was 8.9 approximately (dimensionality: 32 × 15, training set
size: 56 based on 10-fold cross-validation partition). The SVM
prediction performance did not sensitively suffer from the “curse
of dimensionality.” In contrast, a high-dimensional feature vector
significantly influenced LDA prediction in consideration of poor
classification accuracies in the TYPE 5 case. Regularization can be
a viable option tomitigate the adverse effects of high-dimensional
feature vectors. If the dimensionality of feature vectors exceeds
a training set size, the parameter estimations required for
LDA can be highly unstable (e.g., poor covariance matrix
estimator; Friedman, 1989). By employing the regularization
factor, one can improve the parameter estimations to be more
plausible. In such cases, it is essential to select the regularization
factor appropriately. It is noted that this approach is often
iterative and requires heavy computation. SVM classification
performance, at least in this study, was not sensitive to the
negative effect of high-dimensional feature vectors. Therefore, if
SVM is chosen, regularization, feature selection, and dimension
reduction methods need not be applied to alleviate the “curse
of dimensionality.”

Within-Fold Comparison
In terms of the classification accuracy improvement at the
group level (i.e., grand average classification accuracy), a
strong statistical proof, which infers that ensemble learning
is more beneficial than a strong classifier, was provided.
On the other hand, fold-wise comparisons of classification
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TABLE 1 | The best classification accuracy of the ensemble that contains N weak learners, which were trained using random feature subsets of the fittest size (M).

AVG SLP AVG and SLP

Participant Acc. N M Acc. N M Acc. N M

1 0.852 87 18 0.880 92 26 0.847 97 27

2 0.855 43 26 0.815 33 26 0.838 98 33

3 0.823 27 22 0.808 100 26 0.828 81 27

4 0.960 84 26 0.923 22 22 0.960 87 33

5 0.798 71 18 0.795 32 20 0.778 33 27

6 0.892 73 26 0.867 33 22 0.902 45 33

7 0.740 46 20 0.668 33 24 0.682 32 31

8 0.815 92 26 0.845 38 18 0.830 94 27

9 0.812 95 26 0.767 66 26 0.798 89 27

10 0.758 12 18 0.812 9 22 0.820 28 33

11 0.837 83 24 0.883 65 22 0.873 82 35

12 0.807 34 26 0.775 23 22 0.812 32 31

13 0.777 79 24 0.753 24 20 0.778 84 33

14 0.933 71 24 0.872 63 26 0.935 86 27

15 0.873 49 22 0.858 92 24 0.868 58 27

16 0.935 93 18 0.920 42 18 0.923 14 27

17 0.907 71 20 0.857 59 20 0.868 96 29

18 0.837 84 18 0.848 97 26 0.848 42 33

Mean 0.845 – – 0.830 – – 0.844 – –

Std 0.062 – – 0.064 – – 0.065 – –

Bold indicates Standard deviation of individual classification accuracies (Std) and Average classification accuracy across participants (Mean).

FIGURE 4 | Within-fold differences of prediction performance between random subspace ensemble and strong learner (SVM) assessed by ten repetitions of a 10-fold

cross-validation-based t-test. *p < 0.05, **p < 0.01. Error-bars represent the standard deviation.

accuracies of SVM and random subspace ensemble to investigate
classification accuracy improvement at the individual level
results in somewhat different statistical results. The degree of
improvement is not revealed as statistically significant for most
individual cases. Figure 4 shows the within-fold differences in

classification accuracy between ensemble and strong learner. As
shown in Figure 3, while significant within-group differences in
classification accuracy were observed, 14 out of 18 individual
cases in Figure 4 showed insignificant within-fold differences
in classification accuracy. These individual cases were presented
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TABLE 2 | Comparison of random subspace ensemble classification accuracies

according to type of time window (AVG, N = 100, M = 22).

Type 2 Type 3 Type 4

Mean 0.827 0.827 0.829

Std 0.072 0.065 0.067

One-Way ANOVA p 0.995

(repeated cross-validation t-test, p > 0.05) because the test
statistic was more likely to yield a conservative test decision
(i.e., strict to false-positive cases). The null hypothesis is rejected
only if the within-fold differences in classification accuracy are
consistent. This type of test statistic has not typically been
employed for comparison of classifier performance in existing
fNIRS-BCI studies. The test statistic might suit cases where the
dataset size is too small.

Features
The main advantage of the random subspace method is to
randomly select feature subsets, resulting in low-correlated
multiple weak learners. It is well known that prediction
performance is usually enhanced where predictions are
determined with the help of low-correlated multiple weak
learners. However, if most of the features are highly correlated,
randomly selected features contained in a feature subset
are also likely to be highly correlated. In many fNIRS-BCI
studies, features extracted in the time domain such as mean,
maximum, variance, and slope are correlated (Hwang et al.,
2014). Moreover, because NIRS signals are slowly-varying
continuous signals, features extracted from different time
windows are likely to be correlated as well (Cui et al., 2010a,b).
As seen in Table 2, random subspace ensemble learners trained
using features extracted in different numbers and sizes of time
windows show very similar prediction performance to one
another (One-Way ANOVA, p = 0.995). Features extracted
in different ways can be added by gaining higher prediction
performance, rather than by typical algebraic methods in the
time domain.

Future Prospects
The ensemble classifier has better classification accuracy;
however, the ensemble method that requires far more computing
power will not be absolutely the first option in any case. It
is anticipated that a conventional single strong learner, such
as SVM, LDA, etc., could be a more proper option under the
circumstance like a real-time system with low computational
resources. However, where the computing power is sufficient,

ensemble learning methods have the immanent potential to
replace the existing single strong learner. Even though deep

learning has been receiving much attention recently, it is
very difficult to collect enough data for fNIRS deep learning
to improve classification performance, and thereby it lacks
practicality. Recent findings showed the feasibility of deep
learning on fNIRS-studies. However, their finding is not enough
to be accepted generally and to be proven rigorously. Hence,
ensemble learning as an alternative to deep learning is also likely
to attract attention to improve fNIRS-BCIs.

CONCLUSION

In this study, the enhanced prediction performance of random
subspace ensemble learning was validated to investigate the
feasibility of ensemble learning based on the random subspace
method. The two most popular types of temporal fNIRS signal
features called AVG and SLP were employed to estimate the
classification performance of both single strong learners and
ensembles based on the random subspace method. Ensembles
containing more than 20 LDA weak learners outperformed
SVM strong learners significantly. The use of different single
temporal features such as AVG and SLP did not make
a significant difference in the prediction performance of
ensembles. This study is expected to be helpful in the
comprehension and use of ensemble learning in future
fNIRS-BCI studies.
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