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Lack of PTEN in osteocytes 
increases circulating phosphate 
concentrations by decreasing intact 
fibroblast growth factor 23 levels
Masanobu Kawai1,3*, Saori Kinoshita1,3, Keiichi Ozono2 & Toshimi Michigami1

Fibroblast growth factor 23 (FGF23) has been centric to the regulation of phosphate (Pi) metabolism; 
however, the regulatory network of FGF23 in osteocytes has not yet been defined in detail. We herein 
investigated the role of PTEN (phosphatase and tensin homolog deleted from chromosome 10) in this 
regulation. We created mice lacking PTEN expression mainly in osteocytes by crossing Pten-flox mice 
with Dmp1-Cre mice. The lack of PTEN in the osteocytes of these mice was associated with decreased 
skeletal and serum intact FGF23 levels, which, in turn, resulted in reductions of urinary Pi excretion 
and elevations of serum Pi levels. Mechanistically, the knockdown of PTEN expression in osteoblastic 
UMR106 cells activated the AKT/mTORC1 (mechanistic target of rapamycin complex 1) pathway 
and this was associated with reductions in Fgf23 expression. Furthermore, the suppression of Fgf23 
expression by PTEN knockdown or insulin simulation in UMR106 cells was partially restored by the 
treatment with the mTORC1 inhibitor, rapamycin. These results suggest that FGF23 expression in 
osteoblastic cells is in part regulated through the AKT/mTORC1 pathway and provide new insights into 
our understanding of the regulatory network of Pi metabolism.

Phosphate (Pi) plays pleiotropic roles in a wide range of biological processes, including bone metabolism, cell 
signaling, structural integration, and energy homeostasis1–4, and fibroblast growth factor 23 (FGF23) is centric 
to this regulation4–9. FGF23 is an endocrine factor mainly produced by osteocytes that canonically acts on tis-
sues expressing the FGF receptor and α-Klotho, such as the kidney, to regulate Pi homeostasis; the activation of 
the FGF23 signaling pathway decreases serum Pi levels by enhancing urinary Pi excretion. This is accomplished 
by reducing the localization of type IIa and IIc sodium-phosphate (Na+/Pi) co-transporters at the brush border 
membrane (BBM) of the proximal tubules in the kidney. In addition, the activation of the FGF23 signaling path-
way reduces serum 1,25-dihydroxy vitamin D (1,25(OH)2D) levels by increasing and decreasing the expression 
levels of Cyp24a1 and Cyp27b1, respectively.

The regulation of FGF23 in osteoblast-lineage cells, including osteocytes, has been extensively examined, 
and the activation of vitamin D receptor (VDR) signaling has been shown to increase the expression of FGF23 
through the VDR response element located in the promoter region of the FGF23 gene10,11. Furthermore, para-
thyroid hormone12–14, the activation of the FGF receptor (FGFR) pathway, hypoxia-inducible factor 1 (HIF1) 
activation, sympathetic activation12, and inflammatory signaling15,16 have been implicated in the regulation of 
FGF23 expression in bone; however, the transcriptional regulation of FGF23 in osteoblastic cells has not yet been 
defined in detail. Accumulating evidence from clinical and animal research recently revealed a new regulatory 
mechanism of FGF23 expression in bone that includes the activation of the insulin signaling pathway, with the 
activation of AKT reducing FGF23 expression17. In clinical settings, an inverse relationship was found between 
serum FGF23 levels and fasting insulin levels17,18, which supports insulin signaling being involved in FGF23 
regulation in bone. However, the mechanisms by which the insulin/AKT signaling pathway affects the regulation 
of FGF23 expression have not yet been elucidated. In addition, in vivo evidence to support this scenario is limited.

In the present study, we introduced a model in which AKT signaling was activated by deleting PTEN (Phos-
phatase and Tensin Homolog Deleted from Chromosome 10). PTEN is a molecule that is known to antago-
nize insulin-induced AKT activation and its loss of function has been shown to activate mechanistic target of 
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rapamycin (mTOR) complex 1 (mTORC1) pathway and block forkhead box protein O1 (FOXO1) activity19. 
By using this model, we have provided evidence to show that the lack of PTEN in osteocytes in vivo increased 
serum Pi levels by decreasing intact FGF23 levels. In addition, knock-down of PTEN in osteoblastic UMR106 
cells in vitro reduced Fgf23 expression and this was in part associated with the activation of the AKT/mTORC1 
pathway. These results highlight the important roles of PTEN/AKT signaling in the regulation of FGF23 expres-
sion and Pi metabolism.

Results
Generation of osteocyte‑specific Pten‑deficient mice.  To understand the role of PTEN in the regu-
lation of Pi metabolism in osteocytes, we deleted Pten expression predominantly in osteocytes by crossing Pten-
flox/flox mice with Dmp1-Cre mice (Ptenocy

−/− mice) (Fig. 1a). To evaluate the efficacy of the deletion in osteocytes, 
we initially examined the expression of Pten in the whole femur and found that it was significantly weaker in 
Ptenocy

−/− mice than in controls (Ptenflox/flox mice) (Fig. 1b). To specifically analyze the deletion of PTEN in osteo-
cytes, we performed an immunohistochemical analysis and found that PTEN protein expression was decreased 
in the osteocytes of Ptenocy

−/− mice (Fig. 1c). We also investigated whether the use of Dmp1 promoter-driven 
Cre-recombinase expression affected Pten expression in the extra-skeletal tissues involved in Pi metabolism, 
such as the kidney and terminal ileum. As shown in Fig. 1d, the expression of Pten in these tissues did not signifi-
cantly differ between controls and Ptenocy

−/− mice. Since Pten expression in the terminal ileum showed a trend 
toward decreased expression, we performed immunohistochemical analysis of PTEN in the terminal ileum and 
found the comparable PTEN expression between control and Ptenocy

−/− mice (Fig. 1e). Ptenocy
−/− mice did not 

show any significant differences in body weight or tail length (Fig. 1f).

The lack of PTEN in osteocytes decreases intact FGF23 expression in the bone and the circu-
lation.  To investigate the effects of the Pten deletion in osteocytes in Pi metabolism, we examined FGF23 
expression in the femur using immunohistochemistry and found that it was weaker in Ptenocy

−/− mice than 
in controls (Fig. 2a, b). In line with this, biologically active FGF23 (intact FGF23) concentration in the bone 
extracts was also decreased in Ptenocy

−/− mice compared to control mice (Fig. 2c). Intact FGF23 concentration 
in the serum was also decreased in Ptenocy

−/− mice (Fig. 2d). Consistent with decreased intact FGF23 levels in 
the circulation, serum Pi levels were elevated in Ptenocy

−/− mice (Fig. 2e). Serum Ca levels remained unchanged 
(Fig. 2f).

The urinary excretion of Pi is elevated in Ptenocy
−/− mice.  Since the nodal point of the regulation of 

Pi metabolism by the FGF23 signaling pathway resides in its effects on the subcellular localization of the type 
II Na+/Pi co-transporter (NPT2) protein, we evaluated the expression of NPT2A at the BBM of the kidney 
because NPT2A is a predominant Na+/Pi co-transporter in the murine kidney and found that it was increased 
in Ptenocy

−/− mice (Fig. 3a, Fig. S1); however, the expression of Slc34a1 coding for NPT2A remained unchanged 
(Fig. 3b). The expression of Slc34a3 in the kidney, coding for NPT2C, was much lower than that of Slc34a1 and 
did not differ between control and Ptenocy

−/− mice (Fig. 3b). Consistent with increased NPT2A levels at the BBM 
of the kidney, the urinary excretion of Pi was significantly lower in Ptenocy

−/− mice than in controls (Fig. 3c). 
Since FGF23 also regulates vitamin D metabolism, we performed a real-time PCR analysis on the kidney and 
found that the expression of Cyp24a1 and Cyp27b1 was decreased and increased, respectively, in Ptenocy

−/− mice, 
although the difference in Cyp27b1 expression did not reach statistical significance (Fig. 3d).

Knockdown of PTEN expression in UMR106 cells reduces Fgf23 expression.  In order to elu-
cidate the molecular mechanisms underlying FGF23 regulation by PTEN, we knocked down PTEN expres-
sion in osteoblastic UMR106 cells. The lentiviral introduction of miRNA raised against Pten induced a mild 
reduction in PTEN expression (Fig. 4a, Fig. S2), which was associated with mild reduction in Fgf23 expression 
(Fig.  4b). When PTEN expression was more strongly knocked down in UMR106 cells using an adenovirus 
(Fig. 4c, Fig. S2), the suppression of PTEN expression was more prominent (Fig. 4d). These results indicate that 
the lack of PTEN in osteoblastic cells reduces Fgf23 expression in a dose-dependent manner. Since the reduc-

Figure 1.   Generation of mice lacking PTEN expression in osteocytes. (a) Mice lacking Pten expression in 
osteocytes (PtenOcy

−/− mice) were created by crossing Ptenflox/flox mice with Dmp1-Cre mice. (b) The expression 
of Pten and Actb in the whole femur was assessed by a real-time RT-PCR analysis at 16-week-oldmale mice 
(N = 5) and the expression ratio of Pten/Actb was determined. Statistical analysis was performed after corrected 
for the expression of Actb. (c) An immunohistochemical analysis of PTEN in the femur was performed on 
16-week-old male mice and the percentage of PTEN-positive osteocytes over total osteocytes were determined. 
A representative image of three independent experiments is shown. Arrow indicates osteocytes positive for 
PTEN. (d) Total RNA was extracted from the kidney (N = 6) and the villi of the terminal ileum (N = 3) of 
16-week-old male mice and the expression of Pten and Actb was investigated by a real-time RT-PCR analysis 
and the expression ratio of Pten/Actb was determined. Statistical analysis was performed after corrected for the 
expression of Actb. (e) An immunohistochemical analysis of PTEN in the terminal ileum was performed on 
16-week-old male mice. A representative image of three independent experiments is shown. As indicated by 
arrows, basal surface of intestinal epithelial cells was positive for PTEN. (f) Body weight and tail length were 
measured at the indicated weeks in control and PtenOcy

−/− mice from 4 weeks old (N = 11–13). Statistical analysis 
was performed by Mann–Whitney U test. *p < 0.01; **p < 0.05, ns: not significantly different.
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Figure 2.   Decreased intact FGF23 levels in PtenOcy
−/− mice. (a) and (b) An immunohistochemical analysis of 

FGF23 in the femur was performed on 16-week-old male mice. A representative image of three independent 
experiments is shown (a). The percentage of FGF23-positive osteocytes over total osteocytes was counted 
(N = 3) (b). (c) The bone extracts of the femur were prepared from 16-week-old male mice and intact FGF23 
concentration was measured (N = 8). (d–f) Serum levels of intact FGF23 (male: N = 11, female: N = 7–8) (d), 
Pi (male: N = 10–11, female: N = 11–13) (e), and Ca (male: N = 10–11, female: N = 11–13) (f) were measured 
in 16-week-old mice. Statistical analysis was performed by Mann–Whitney U test. *p < 0.01; **p < 0.05, ns: not 
significantly different.
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tion of PTEN expression by lentivirus was similar to that observed in bones of Ptenocy
−/− mice, UMR106 cells in 

which PTEN expression was knocked-down by lentivirus were used in the subsequent experiments.

Rapamycin partially restores decreased Fgf23 expression caused by PTEN knockdown or insu-
lin stimulation in UMR106 cells.  To identify the downstream signaling molecules involved in Fgf23 sup-
pression due to the lack of PTEN, we performed a Western blot analysis and found that the phosphorylation sta-
tus of AKT and S6K was elevated in cells in which PTEN was knocked down, suggesting that the AKT/mTORC1 
pathway was more strongly activated in PTEN knockdown cells than in control cells, whereas the phospho-
rylation of FOXO1 was not affected in the condition where PTEN was mildly knocked down (Fig. 5a, Fig.S3). 
To investigate the involvement of the activation of mTORC1, we treated cells with rapamycin, an mTORC1 
inhibitor, and found that the significant reduction in Fgf23 expression by PTEN knockdown was not noted in 
the presence of rapamycin, but rapamycin did not fully restore decreased Fgf23 expression (Fig. 5b). Consist-
ent with this, insulin, an activator of the AKT/mTORC1 pathway, reduced Fgf23 expression, but this was not 
observed in the presence of rapamycin (Fig. 5c). The use of LY-294002, a Pi3K inhibitor, restored the reduction 
in Fgf23 expression caused by PTEN knockdown more prominently than rapamycin (Fig. 5d). These findings 

Figure 3.   Enhanced Pi excretion in the urine of PtenOcy
−/− mice. (a) The brush border membrane of the kidney 

was isolated from 16-week-old male mice and the expression of NPT2A was assessed by a Western blot analysis 
(N = 3). A densitometric analysis was performed (N = 3). (b) Total RNA was extracted from 16-week-old male 
mice and the expression of Slc34a1, Slc34a3 and Actb in the kidney was assessed by real time RT-PCR (N = 4), 
and the expression ratio of Slc34a1/Actb and Slc34a3/Actb was determined. Statistical analysis was performed 
after corrected for the expression of Actb. (c) The fraction excretion of Pi was measured in 16-week-old mice 
(male: N = 8, female: N = 10–12). (d) Total RNA was extracted from 16-week-old male mice and the expression 
of Cyp24a1, Cyp27b1 and Actb in the kidney was assessed by real time RT-PCR (N = 4), and the expression ratio 
of Cyp24a1/Actb and Cyp27b1/Actb was determined. Statistical analysis was performed after corrected for the 
expression of Actb. Statistical analysis was performed by Mann–Whitney U test. *p < 0.05, ns: not significantly 
different.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21501  | https://doi.org/10.1038/s41598-020-78692-6

www.nature.com/scientificreports/

indicate that the activation of the mTORC1 pathway is at least partly involved in the regulation of Fgf23 expres-
sion although other pathways than mTORC1 also play an important role in this regulation.

Discussion
In the present study, we tested our hypothesis on the involvement of AKT activation in the regulation of Pi 
metabolism by deleting PTEN expression in an osteocyte-specific manner and provided evidence to show that 
the lack of PTEN in osteocytes caused elevations in serum Pi levels by reducing circulating FGF23 concentrations. 
In addition, an in vitro analysis revealed the nodal point of mTORC1 activation in this regulation, such that the 
treatment with rapamycin, an inhibitor of the mTORC1, resulted in the partial rescue of Fgf23 suppression by 
PTEN knockdown or insulin stimulation in UMR106 cells. These lines of evidence support the activation of the 
AKT/mTORC1 pathway in osteoblastic cells being involved in the regulation of FGF23 expression.

These results are partly consistent with previous findings, in which the activation of the AKT signaling path-
way by insulin or IGF-1 reduced Fgf23 expression in UMR106 cells through the FOXO1 signaling pathway17. 
In vivo insulin depletion by streptozotocin in mice increased C-terminal FGF23, which includes the biologically 
active and inactive forms of FGF23; however, serum Pi levels were unaffected17, which raises questions regard-
ing the functional interaction between osteocytic AKT activation and Pi metabolism. In contrast, we herein 
provided in vivo evidence to show that the activation of the AKT pathway through the suppression of PTEN has 
functional consequences in Pi metabolism; the lack of PTEN in osteocytes decreases biologically active intact 
FGF23, which, in turn, increases serum Pi levels. In addition, increases in the BBM localization of NPT2A and 
decreases in Cyp24a1 expression were functionally consistent with decreased serum intact FGF23 levels. These 
results together with previous findings support the critical role of the AKT signaling pathway in osteocytes in 
the regulation of Pi metabolism through alterations in FGF23 expression.

The results of the in vitro analysis showed that mTORC1 activation was involved in the insulin-induced 
suppression of Fgf23 expression in UMR106 cells; however, the in vivo relevance of mTORC1 activity in the 
regulation of FGF23 expression is limited. Based on clinical evidence obtained from patients after kidney trans-
plantation, the use of rapamycin, an mTORC1 inhibitor, has been shown to cause hypophosphatemia associ-
ated with the impaired renal reabsorption of Pi20,21; however, this has not been associated with alterations in 
FGF23 levels20. To understand the effects of mTORC1 activation on Pi metabolism, the in vivo administration 
of an mTORC1 inhibitor in animal models has been performed22,23. Haller et al. reported that a treatment with 
sirolimus, an mTORC1 inhibitor, in rats resulted in decreases in serum Pi levels and increases in urinary Pi 

Figure 4.   The lack of PTEN in UMR106 cells suppresses Fgf23 expression. (a) and (b) The expression of 
PTEN was knocked down using a lentivirus and knockdown efficacy was evaluated by a Western blot analysis 
for PTEN (N = 4) (a). The expression of Fgf23 and Gapdh was assessed by a real-time RT-PCR analysis and 
the expression ratio of Fgf23/Gapdh was determined. Statistical analysis was performed after corrected for the 
expression of Gapdh. (N = 3) (b). (c) and (d). The expression of PTEN was knocked down using an adenovirus 
and knockdown efficacy was evaluated by a Western blot analysis for PTEN (N = 3) (c). The expression of 
Fgf23 and Gapdh was assessed by a real-time RT-PCR analysis and the expression ratio of Fgf23/Gapdh was 
determined. Statistical analysis was performed after corrected for the expression of Gapdh. (N = 3) (d). Statistical 
analysis was performed using one-way ANOVA. *p < 0.01; **p < 0.05, miR: microRNA, nc: negative control.
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Figure 5.   Suppression of Fgf23 expression by PTEN knockdown or insulin was partially restored in the presence of 
rapamycin in UMR106 cells. (a) The expression of PTEN was knocked down using a lentiviral system in UMR106 
cells and the expression of pAKT/AKT, pS6K/S6K, and pFOXO1/FOXO1 was assessed by a Western blot analysis, 
which was followed by a densitometric analysis (N = 4). (b) The expression of PTEN was knocked down using a 
lentiviral system in UMR106 cells and treated with 10 nM of rapamycin (b). The expression of Fgf23 and Gapdh was 
assessed by a real-time RT-PCR analysis and the expression ratio of Fgf23/Gapdh was determined. Statistical analysis 
was performed after corrected for the expression of Gapdh (N = 3). (c) UMR106 cells were pre-treated with 10 nM of 
rapamycin for 6 h, followed by an overnight treatment with 50 nM of insulin. The expression ratio of Fgf23/Gapdh was 
determined. Statistical analysis was performed after corrected for the expression of Gapdh (N = 4). (d) The expression 
of PTEN was knocked down using a lentiviral system in UMR106 cells and treated with 5 μM of LY-294002. The 
expression of Fgf23 and Gapdh was assessed by a real-time RT-PCR analysis and the expression ratio of Fgf23/Gapdh 
was determined. Statistical analysis was performed after corrected for the expression of Gapdh (N = 4). Statistical 
analysis was performed using one-way ANOVA. *p < 0.01; **p < 0.05, ns: not significantly different.
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excretion22. Interestingly, FGF23 levels were unchanged 2 days after the sirolimus treatment, but were reduced 
on day 7, suggesting that decreases in FGF23 were secondary to low Pi levels. As described above, previous 
studies have consistently demonstrated the phosphaturic effects of systemic mTORC1 inhibition; however, the 
underlying mechanisms remain largely unknown, although NPT2A/2C localization was shown to be unaffected 
by mTORC1 inhibition22,23. These findings indicate that the systematic introduction of an mTORC1 inhibitor may 
have stronger effects in proximal tubules than in osteocytes and, thus, the direct effects of mTORC1 inhibition 
on FGF23 production in osteocytes become minimized. Additional studies, such as the deletion of the mTORC1 
component in osteocytes, will clarify the role of mTORC1 activation in the regulation of FGF23 in osteocytes.

In the present study, we did not find any difference in the phosphorylation status of FOXO1 between control 
and PTEN-knocked down UMR106 cells, and this may in part be due to the mild knockdown efficacy of PTEN. 
We took advantage of this cell model to delineate the signaling cascades other than FOXO1 signaling pathway 
that may regulate FGF23 expression and found the involvement of mTORC1 in the regulation of Fgf23 expression 
in UMR106 cells. However, this result does not necessarily mean that signaling pathway other than mTORC1 
is not involved in this regulation. Indeed, the treatment with rapamycin did not fully restore the suppression 
of Fgf23 by PTEN knockdown or the insulin stimulation, whereas the treatment with a Pi3K inhibitor showed 
greater increase in Fgf23 expression in PTEN-knocked down UMR106 cells. In addition, there is a conflicting 
paper describing that rapamycin reduced Fgf23 expression in UMR106 cells treated in high-glucose (4.5 g/dL) 
media24, which was not consistent with the present result describing that rapamycin did not show any alteration 
in Fgf23 expression in control UMR106 cells cultured in high-glucose media. These differences may represent 
the disadvantage of the use of UMR106 cells because UMR106 cells express very low level of Fgf23; therefore, 
other models including IDG-SW3 cells may be necessary to draw concrete conclusion regarding the role for 
mTORC1 pathway in the regulation of FGF23.

The clinical relationship between FGF23 and metabolic markers has been emerging. For example, a posi-
tive relationship has been implied between FGF23 levels and BMI or adiposity25,26, and leptin, PTH, vitamin D, 
and inflammatory signaling have been suggested to play a role in this regulation. Leptin levels were previously 
shown to be elevated in obese subjects and positively correlated with FGF2327. Furthermore, leptin has been 
implicated as a positive regulator of FGF23 levels in humans28. A relationship was also noted between FGF23 and 
1,25(OH)2D levels27, which is known to transcriptionally increase FGF23 expression. These findings indicate a 
connecting role for leptin and/or 1,25(OH)2D between obesity and FGF23. PTH may also be a candidate factor 
for this connection because PTH levels are elevated in obese subjects28,29 and there is evidence to show that PTH 
is a positive regulator for FGF2312,13. However, Billington et al. recently reported that FGF23 concentrations 
decreased after sleeve gastrectomy independent of changes in adiposity, PTH, and leptin levels30, which suggests 
an additional factor affecting FGF23 concentrations in humans. Based on accumulating evidence showing a rela-
tionship between insulin and FGF23 levels in humans17,18, insulin signaling has been implicated in the regulation 
of FGF23. A recent study on healthy volunteers demonstrated that the area under the curve of FGF23 levels was 
inversely associated with that of insulin after an oral glucose tolerance test17. Similarly, a negative correlation was 
observed between FGF23 and both C-peptide and fasting insulin in obese subjects31.

The factors that activate AKT signaling and decrease FGF23 expression in osteocytes were not identified in 
the present study. As described above, insulin is a potential candidate regulating AKT signaling in osteocytes. 
In support of this notion, the presence of insulin receptors in UMR106-01 cells, not in immature osteoblastic 
UMR201-10B cells, was previously reported32. Similarly, insulin receptor expression was detected in the oste-
ocyte-like cell line IDG-SW333. Despite these findings, in vivo evidence for the expression of insulin receptors 
in osteocytes is limited. Although there are several models of insulin receptor deletion in osteoblastic cells34–36, 
FGF23 and Pi levels have not yet been measured in these mice. Insulin-like growth factor 1(IGF-1) is also a 
potential factor for this regulation. Interestingly, the deletion of Igf1 in osteocytes resulted in higher FGF23 levels 
than those in control mice37, suggesting a role for IGF-1 in this regulation. Further studies are needed to clarify 
the involvement of insulin or IGF-1 in the regulation of FGF23 expression in osteocytes.

In summary, we herein provided evidence for the critical role of PTEN suppression, mainly in osteocytes, 
in the regulation of Pi metabolism through the modulation of FGF23 levels, which may be attributed to the 
activation of the AKT/mTORC1 signaling pathway; however, the clinical implications of this regulation remain 
largely unknown. Due to accumulating evidence for the relationship between disorders associated with aberrant 
insulin signaling and FGF23 levels, the present results may provide novel insights into the role of osteocytic AKT 
activation in the regulation of FGF23 expression, which may be critical for the regulation of Pi homeostasis.

Methods
Ethical considerations.  All animal studies were reviewed and approved by the Institutional Animal Care 
and Use Committee of the Osaka Women’s and Children’s Hospital (Permit No. BMR-2018-1), and all experi-
ments were performed in accordance with relevant guidelines and regulations.

Animal.  Ptenflox/flox mice were generated as previously described38, and kindly provided by Dr. Tak W Mak 
(Princess Margaret Cancer Centre, University Health Network, Toronto, Canada). The generation of 10-kb 
Dmp1-Cre mice was previously described39. To generate osteocyte-specific Pten knockout mice (Ptenocy

−/− mice), 
Ptenflox/flox mice on a C57BL/6J background were crossed with Dmp1-Cre mice on a C57BL/6J background. 
Ptenflox/flox mice were used as control mice for Ptenocy

−/− mice. Mice were maintained with free access to water 
and standard chow containing 1.0% phosphate and 1.0% calcium (CE-2, CLEA Japan, Inc.) on a 12-h:12-h light/
dark cycle in a pathogen-free animal facility.
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Cell culture.  UMR-106 cells were purchased from ATCC (Manassas, VA) and cultured in high-glucose 
DMEM containing 10% fetal bovine serum and 1% insulin-transferrin-selenium-G supplement (Invitrogen, 
Carlsbad, CA).

Western blot analysis.  To prepare whole cell lysates, UMR106 cells were homogenized in RIPA buffer 
(1% Triton, 1% Na deoxycholate, 0.1% SDS, 150 mM NaCl, 10 mM Tris–HCl (pH 7.4), 5 mM EDTA, 1 mM 
orthovanadate, and protease inhibitor cocktail (cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail, Roche) 
and centrifuged. The supernatant was used as the whole cell lysate. The BBM of the kidney was isolated based 
on the divalent cation precipitation method as previously reported40. In brief, the kidney was homogenized in 
30 volumes (w/v) of homogenization buffer (50 mM mannitol and 2 mM Tris–HCl, pH 7.5), followed by the 
incubation of homogenates with 100 mM CaCl2 with rotation at 4 °C for 10 min and centrifugation at 3,000×g at 
4 °C for 15 min. The supernatant was collected and again centrifuged at 43,000×g at 4 °C for 30 min. The pellet 
was resuspended in suspension buffer (300 mM mannitol and 10 mM Tris-HEPES, pH 7.5) and homogenized, 
followed by centrifugation at 43,000×g at 4 °C for 45 min. The pellet was solubilized in RIPA buffer and used as 
the BBM fraction.

Equal amounts of protein were separated by SDS-PAGE and transferred electrophoretically to PVDF mem-
branes. Blocking was performed using BlockAce reagent (Dainippon Pharmaceuticals, Osaka, Japan) or Block-
ing-one P reagent (Nacalai Tesque). Membranes after SDS-PAGE were then immunoblotted with antibodies 
raised against AKT (1:1000, #9272, Cell Signaling), pSer473-AKT (1:1000, #9271, Cell Signaling), S6K (1:1000, 
#2708, Cell Signaling), pS6K (1:1000, #9205, Cell Signaling), FOXO1 (1:1000, #2880, Cell Signaling), pSer256-
FOXO1(1:1000, #9461, Cell Signaling), PTEN (1:1000, #9559, Cell Signaling), GAPDH (1:2000, sc-20357, Santa 
Cruz Biotechnology), or β-ACTIN (1:2000, sc-47778, Santa Cruz Biotechnology), and developed with horse-
radish peroxidase-coupled secondary antibodies, followed by enhancements with a chemiluminescence (ECL) 
detection system (GE Healthcare). An anti-NPT2A antibody (rabbit polyclonal antibody) was raised against an 
NPT2A peptide sequence (MMSYSERLGGPAVSP) in the amino-terminal region41.

Real‑time RT‑PCR.  Total RNA was prepared using TRIzol (Invitrogen) and treated with DNase I (Qiagen). 
cDNA was generated using a random hexamer and reverse transcriptase (Superscript II, Invitrogen) according 
to the manufacturer’s instructions. The quantification of mRNA expression was performed using a StepOnePlus 
Real-time PCR system (Applied Biosystems). TaqMan Gene Expression Assays for mouse Slc34a1, rat Fgf23, 
mouse Gapdh, mouse Actinb, and rat Gapdh were purchased from Applied Biosystems. Primer sequences for 
mouse Pten are available upon request. Actinb or Gapdh was used as an internal standard control gene for quan-
tifications. Expression level of each gene was evaluated by generating a standard curve with the use of serial dilu-
tion of plasmid DNA containing the PCR product of interest (10–10, 10–9, 10–8, 10–7 and 10–6 μg/μL).

Generation of the lentivirus and adenovirus.  The generation of the lentivirus and adenovirus was 
performed as previously reported40. Knockdown experiments for Pten were performed based on the lentivirus-
mediated expression of the microRNA (miRNA) system using the BLOCK-iT Pol II miR RNAi Expression Vec-
tor Kit with EmGFP (Invitrogen). The sequences of DNA oligos for this purpose were designed using BLOCK-
iT RNAi Designer provided by the manufacturer and hybridized oligos were inserted in the pcDNA6.2-GW/
EmGFP-miR vector, followed by transfer into the pDONR vector by the BP reaction system (Invitrogen). To 
generate the lentivirus, the insert was recombined into the CSII-EF-RfA–IRES-puro vector (a kind gift from Dr. 
Hiroyuki Miyoshi (RIKEN BRC, Ibaraki, Japan) with the LR recombination reaction system (Invitrogen). The 
lentivirus was generated according to the manual provided by RIKEN BRC. UMR106 cells were infected with the 
lentivirus in the presence of 5 μg/mL polybrene (Sigma) and selected by puromycin (1 μg/mL). In the case of the 
generation of the adenovirus, the insert was recombined into the pAd-CMV-V5 vector (Invitrogen) using the 
LR recombination reaction system (Invitrogen). The adenovirus was generated using the ViraPower Adenovirus 
Expression System (Invitrogen) according to the manufacturer’s protocol.

Immunohistochemistry.  Tissue samples were fixed in 10% buffered formalin and decalcified by the treat-
ment with EDTA (pH7.4). Paraffin-embedded samples were prepared. In the immunohistochemical analysis, 
following deparaffinization and rehydration, antigen retrieval was performed using citrate buffer at 95 °C for 
60 min and endogenous peroxidase activity was quenched. In case of FGF23 immunohistochemistry, antigen 
retrieval was not performed. After blocking, sections were incubated with an anti-PTEN antibody (1:16, #9559, 
Cell Signaling) or anti-FGF23 antibody (1:20, #MAB26291, R&D systems) at 4 °C overnight. Sections were then 
incubated with a biotinylated secondary antibody, followed by an incubation with the streptavidin-biotinylated 
HRP complex, and visualized with 3, 3′-diaminobenzidine.

Extraction of growth factors from the femur and measurements of FGF23 concentra-
tion.  Femurs were collected from 16-week-old male mice and bone marrow was removed by rinsing with 
ice-cold PBS. Bones were snap-frozen in liquid nitrogen and ground into powders using a cryo-press. The bone 
powder was transferred to siliconized tubes in the presence of 2.0 mL of extraction solution (0.5M EDTA, 4M 
guanidine HCl, and protease inhibitor cocktail (cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail, Roche) 
per 50 mg bone powder and rotated at 4 °C for 48 h. The supernatant was collected after centrifuge and dialyzed 
against phosphate-buffered saline (PBS) for 48 h at 4 °C, and intact FGF23 was measured using an ELISA kit 
(KAINOS Laboratories, Inc.).
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Measurement of serum parameters.  Serum levels of full-length FGF23 were measured using the intact 
FGF-23 ELISA Kit based on the manufacturer’s protocol (KAINOS Laboratories, Inc.). Serum and urinary phos-
phate, calcium, and creatinine levels were measured by Phospha-C test Wako (270-49801, Wako Pure. Chemical 
Industries), Calcium-E test Wako (437-58201, Wako Pure. Chemical Industries), and LabAssay Creatinine (290-
65901, Wako Pure. Chemical Industries), respectively, following the manufacturers’ instructions.

Statistical analysis.  All data are expressed as the mean ± standard error of the mean (SEM). Results were 
analyzed for significant differences using Mann–Whitney U test or ANOVA followed by the Bonferroni multiple 
comparison post hoc test. Significance was set at p < 0.05.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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