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B lymphocyte progenitor cells arise from pluripotent stem cells in a competent
environment by a set of critical steps of differentiation . During embryonic develop-
ment of the mouse, progenitors of B lymphocytes arise in fetal liver at day 13 of
gestation (1-4), then develop into precursor (pre) B cells, which consequently rear-
range the gene segments of the sIg V regions of H chains, followed by those of the
L chains (5, 6) . The early stages of progenitor proliferation andinduction to Ig gene
rearrangements have been found to depend on interactions with cells ofthe environ-
ment called stroma (7-15). At least in part, the effects ofstromal cells on B cell devel-
opment appear to be mediated by soluble cytokines, notably IL-3 or -7 (16-21) . Produc-
tive rearrangements of both H and L chain V genes allow the expression of Ig on
the surface ofpre-B cells, detectable from day 16 of gestation onwards in fetal liver
of the mouse (22) . 2 d later, these slg+ B cells become reactive to polyclonal acti-
vators (1-3), so that upon stimulation with LPS, they develop into clones of IgM-
secreting plasma cells, which can be detected in a plaque assay (23, 24).

Tissue culture systems have been established in which the development of B lin-
eage cells in fetal liver from day 13 of gestation can be followed to the final matura-
tion into a clone of IgM-secreting plaque-forming cells (PFC)' (1-3) . The time
schedule ofdevelopment in vitro follows that observed in vivo, so that mitogen-reactive
B cells arise at day 19 of gestation and the peak of the IgM PFC response 5 d there-
after, no matter when the cells have been transferred from fetal liver into tissue cul-
ture at any time between days 13 and 19 of gestation (1-3) .

In this report, we follow in vitro the development of B lineage cells in fetal liver
from day 13 of gestation with time and in dependence ofinteractions with the stromal
cell environment and with rIL-2 through rIL-7 (25) . B lineage precursors are en-
riched from fetal liver at different times of gestation by FAGS with the help of a
recently developed mAb, G-5-2, specific for pre-B cells (26, 27). Enrichment ofpre-
B cells is monitored by an in situ hybridization analysis for the expression of the
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pre-B cell-specific gene X5 (28, 29) in these FAGS-enriched cell populations . We
interfere in the contacts of these purified B lineage precursors with the stromal cell
environment with two mAbs raised against primary embryonic stromal cells from
fetal liver. We terminate the interactions of precursors with stromal cells by plating
them under limiting dilutions in tissue culture systems that allow the development
to clones of IgM PFC in a foreign environment (1-3) . Our results define two times
of B lineage development in fetal liver, the first dependent, the second independent
of interactions with stromal cells . They also suggest that B lineage cell development
occurs in one synchronous wave in fetal liver.

Materials and Methods
Animals.

	

Adult female C57BL/6 mice, male DBA/2 mice, and 3-6-wk-old Lewis rats were
obtained from the Institute fur Biologisch-Medizinische Forschung AG, Fiillinsdorf, Swit-
zerland . (C57BL/6 x DBA/2) F, (BDF,) embryos from timed pregnant C57BL/6 females
were provided by breeding facilities at the Basel Institute for Immunology. The day of ap-
pearance of vaginal plug was counted as day 0 of gestation . Birth occurred at day 19 .

Cell Lines.

	

Sources of pre-B lymphomas 40E1, 220-8, and 204-1-8 (5), and the B lym-
phomas WEHI 231 (30) and WEHI 279 (31) used in this paper are provided in reference
30 . The T cell hybridoma K62 was generated in our laboratory. All cell lines were cultured
in Iscove's modified Dulbeccds medium (IMDM) supplemented with kanamycin (100 U/ml)
5 x 10 - s M 2-ME, and 5% heat-inactivated FCS .

ILs.

	

Murine rIL-2, -3, -4, and -5 were obtained as described (25) and used at a concen-
tration of 5%, i .e ., at N5-50 U/ml . Human rIL-6, produced by a cell line transfected with
the human IL-6 gene (kindly provided by Dr. W. Fiers, Biogent, Gent, Belgium), was used
at a dilution of 5% (i .e., at 5-50 U/ml) . IL-7 (18, 19) (kindly given to us by Drs. S . Gillis
and Ch. Henney, Immunex, Seattle) was used at concentrations between 100 and 1,000 U/ml .

Tissue Culture.

	

Fetal liver cells were prepared as described earlier (1-3, 26, 27). Total fetal
liver cells and G-5-2+ fetal liver cells isolated by cell sorting (see below) were cultured in
serum-substituted IMDM (32), in the presence or absence of stromal cells and in the pres-
ence or absence of IL-2 through IL-7 (19, 20, 25), as indicated in Results . Cultures were
set up at 0.2 ml in 96-well flat-bottomed plastic culture plates (Costar, Cambridge, MA) .
Primary fetal liver stromal cell layers were established from 13-d-old BDF, embryos by over-
night culture at a density of 5 x 10 6 to 10' cells/ml in IMDM containing 5% FCS. Nonad-
herent cells were thereafter removed by extensive washing with serum-free medium . This
stromal layer was subjected to 3,000 rad gamma irradiation before coculture with G-5-2'
fetal liver cells.

Limiting dilution experiments were performed in 96-well culture plates in serum-substituted
medium in the presence of 3 x 106 rat thymocytes/ml and 50 p.g/ml LPS, (S form ofSalmonella
abortus equii; a kind gift of Drs . G. Galanos and O. Luderitz, Max-Planck-Institut fur Im-
munobiologie, Freiburg, FRG) as described earlier (1-3, 26, 27) . Threefold dilutions of fetal
liver cells between 5 x 106 and 5 cells/ml were set up with 24 cultures of 200 pl for every
cell concentration in rat filler cells and LPS. A positive culture with a clone of IgM-secreting
cells arising from one mitogen-reactive B cell contained between 30 and 120 IgM PFC at
the day of assay, i .e., at the equivalent time of day 5 after birth in all fetal liver cell experi-
ments . The peak of IgM PFC responses at that day with the various fetal liver cell suspen-
sions cultured in various ways was ascertained in pilot experiments, and reaffirmed earlier
results showing that all fetal liver cell responses, regardless from which day ofgestation and
regardless oftreatment in tissue culture, showed apeak ofIgM PFC development at the equiva-
lent time ofday 5 afterbirth (2, 3) . Poisson's distribution was used to calculate the frequencies
of mitogen-reactive, Ig-expressing cells yielding clones of IgM PFC. Cultures were scored
as negative if they contained three IgM PFC or less .

Cultures ofFetal Liver Cells Containing Various Combinations ofILs .

	

rIL-2, -3, -4, -5, -6, and
-7, except for human IL-6, all of murine origin (25), were used at concentrations between
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5 and 50 U/ml. 20-p1 cultures were set up in moist Terasaki plates with all possible combina-
tions, i .e ., 37 different combinations ofsingle, double, triple, quadruple, quintruple ILs and
the one total combination of all six ILs with 2 x 10 5 mAb G-5-2* fetal liver cells of day 13
or 14 of gestation .per milliliter in Iscove's medium containing either serum substitutes (see
above) or 5°Jo FCS. Cells were counted under the microscope using a Burker hemocytometer.

PlaqueAssay.

	

The total number ofIgM-secreting PFC in a population of cells was deter-
mined by the protein A SRBC plaque assay (24) using a rabbit anti-mouse IgM (MOPC
104E IA/X) antiserum .

Production ofStromal Cell mAbs and Testing their Effects on the Adherence of the Pre-B Lymphoma
40E1 to Stromal Cells. Lewis rats were immunized on day 0 with 2 x 101 stromal cells
emulsified in CFA in the hind foot pad . On day 4 and 7 the rats were boosted with 2 x 10 1
stromal cells in PBS in the same foot pad . On day 8 the regional lymph nodes were removed
and fusion was performed as described (33) .

Individual hybridoma clones were then tested for the production of antibodies that inter-
fere with the adherence ofthe pre-B lymphoma 40E1 to the fetal liver stromal cell layers (pre-
pared as described above) . Stromal cell layers were therefore cocultured with 5 x 104/m1 40E1
cells and 20% final concentration of the different hybridoma clone culture supernatants. Ad-
herence of the 40E1 cells to the stromal cells was read after 24-36 h of coculture using an
inverted microscope . Two mAbs called STR4 and STR10 were found that interfered with
the adherence of 40E1 to the stromal cells .

Purification ofmAbs. mAbs G-5-2 (26), STR4, STR10, 14.8 (anti-B220), and 5 .1 (anti-mouse
p ; reference 34) were purified from hybridoma supernatant on aprotein G or protein A column
(35) (Pharmacia Fine Chemicals, Uppsala, Sweden).

Immuno,Jluorescence Analysis and Cell Sorting.

	

Immunofluoreseence staining and analysis, as
well as cell sorting, were done as described earlier (26) using biotinylated (Calbiochem-Behring
Corp., La Jolla, CA) mAbs and FITC-streptavidin (Amersham International, Amersham,
UK) as secondary reagents .

Results
Development of Precursors of LPS-reactive B Cells in Cultures of Unseparated Fetal Liver

Rpulations. Tissue culture conditions have been developed in which resting ma-
ture B cells from a variety of lymphoid organs of the mouse can be stimulated by
polyclonal activators such as LPS under conditions of limiting dilution to develop
in high frequencies to clones ofPFC (1-3, 26, 27). These culture conditions, in which
single B cells are plated in serum-substituted medium (32), in the presence of rat
thymus cells known as "fillers," are also suitable to stimulate in vitro those B cells
that have developed, or will develop in this foreign environment, to the stage of a
mitogen-reactive, Ig+ B cell . When cells are taken from fetal liver at different days
of gestation between days 13 and 19 of embryonic development of the mouse and
directly cultured with LPS and rat thymus cells under limiting dilutions, the peak
of the PFC response occurs always at the same time, i.e ., at the day equivalent to
day 5 after birth . Therefore,, fetal liver cells of day 13 (Fig. 1, circles) and of day 14
(Fig. 1, triangles) of gestation were cultured in high density suspensions (see legend
to Fig. 1), and then transferred after various days under limiting dilution conditions
into cultures containing rat thymus filter cells and LPS. This was done for fetal liver
cells of day 13 at the equivalent of days 14, 15, 16, 17, 18, and 19 (Fig. 1, circles) and
for cells of day 14 at the equivalent of days 15, 16, 17, 18, and 19 (Fig. 1, triangles) .
All limiting dilution cultures were assayed for the development of IgM PFC at the
time equivalent to day 5 after birth . High density cultures ofday 14 fetal liver were
also kept in the presence of IL-6 and -7, and their limiting dilutions in rat thymus
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FIGURE 1 . Frequencies of precursors developing to
LPS-reactive B cells . Fetal liver cells ofdays 13 (O) and
14 (0, V, 0) of gestation were plated in tissue culture
at high densities (1.7 x 10 6 cells/ml) and in the presence
ofL-6 and IL-7 underconditions described in Materials
and Methods. After various days in tissue cultures
( . . ./ / . . . ), cells were plated under limiting dilution
in rat thymus filler cells and LPS and assayed for the
development of IgMPFC clones at the equivalent time
ofday 5 after birth . In parallel tissue culture experiments,
IL-6 and IL-7 were omitted from the day 14 fetal liver
cell cultures (") . Limiting dilution cultures in the pres-
ence of rat thymus cells and LPS were set up, either to
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contain (0) or not to contain (0) IL-6 and IL-7 .
Time of,or equivalent to embryonic development

	

The frequencies ofprecursors developing into LPS-
(days of gestation)

	

reactive B cells were also measured in vivo in fetal liver
at various times ofembryonic development, by directly
plating fetal livercells of various days of gestation under

limiting dilution in rat thymus filler cells and LPS and assaying the development of IgM PFC clones
at the equivalent of day 5 after birth, and were found to be I in 3 x 10 7 at day 13, 1 in 3 x 10 4 at
day 16, and 1 in 100 at day 18 .
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filter cells and LPS were done in the presence of IL-6 and -7 . As can be seen from
the data in Fig. 1, filled and dotted triangles, IL-6 and -7 did not show any significant
effects on the frequencies of pre-B cells capable of development to mitogen-reactive
B cells and to clones of IgM PFC. The frequencies of precursors that can develop
in this environment increases from N1 in 10 7 at day 13 to N1 in 30 at day 19 of gesta-
tion (1-3). The change in precursor frequency is particularly high, i.e ., -100-fold,
between days 16 and 17 (Fig. 1) .
When fetal liver cells of early times of gestation (days 13-15) are cultured at high

density, e.g., when the progenitors and precursors are not diluted in rat thymus cells
but kept in contact with each other until the time equivalent to day 19 and then
plated in limiting dilution with LPSand rat thymus cells, the frequency ofprecursors
ofLPS-reactive cells increases . Over 100-fold more LPS-reactive B cells have devel-
oped in high density cultures in contact with each other (Figs . 1, open circles and tri-
angles, at day 19). This indicates that their own environment is favorable for the de-
velopment of precursors to mature, sIg+ B cells, while that of rat thymus cells is
not. The change in precursor frequencies capable of development to IgM PFC be-
tween days 13 and 19 is, in fact, as high in the equivalent time in vitro as it is in
vivo (compare Figs. 1 and 2) and reaches frequencies comparable with those in vivo,
i.e., ti 1 in 30 cells . Theculture conditions of fetal liver cell suspensions at high den-
sities, thus, appear as good as those of cells in vivo in fetal liver. They make it further
unlikely that exogenously added IL-6 and -7 could show any stimulatory effects.

When fetal liver cells of either day 13 (Fig . 1, circles) or 14 (Fig . 1, triangles) of
gestation are removed at different times of tissue culture from their own environ-
ment into that ofrat thymus cells, the 100-fold change in LPS-reactive cells developing
in the second environment (observed above) occurs within 24 h, between the time
equivalent to days 16 and 17 ofembryonic development (Fig. 1) . This sudden change
indicates that pre-B cells in fetal liver change from dependence to independence on
their own environment to develop to LPS-reactive cells at that time .
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FIGURE 2.

	

Precursor frequencies in G-5-2' fetal
liver cells from different times of embryonic devel-
opment. Fetal liver cells were sorted at the day of
gestation indicated and directly plated under lim-
iting dilution in rat thymus filler cells and LPS, and
assayed for the development of IgM PFC clones at
the equivalent time ofday 5 after birth. (O) Results
of individual limiting dilution experiments .

Failure of Purified Fetal Liver B Cell Precursors to Develop Outside their Own Environ-
ment. Pre-B cells express a lineage- anddevelopmental stage-specific glycoprotein,
PB76, on their surface that is recognized by mAb G-5-2 (26, 27). B cell precursors
of fetal liver can be enriched by FAGS using this mAb, as shown by the concomitant
enrichment of cells expressing the pre-B cell-specific gene X5 (27, 28). Thus, mAb
G-5-2' fetal liver cells of day 14 were -30%, of day 16 -60%, and ofday 18 -85%
X5' . In the same G-5-2' cells, w H chain mRNA-positive B cell precursors were
present at 1 % (at day 13), 6% (at day 14), 50 % (at day 16), and 85 % (at day 18) .
When plated in limiting dilutions with rat thymus cells immediately after FACS,
these cell populations proved to be enriched for precursors of LPS-reactive B cells
(26, 27). Although between 30 and 85% of all G-5-2' cells expressed X5 at days
14-18 and could, therefore, be regarded as pre-B cells, only a very small fraction
of all G-5-2' cells before days 15 and 16 of gestation could develop into clones of
IgM PFC in the foreign environment of rat thymus cells . The frequencies of these
precursors in the enriched populations increased from N1 in 3 x 103 at day 14 to
ti 1 in 10 at day 19 of gestation . The highest increase in frequency was detected
within 24 h of gestation, between days 15 and 16 (Fig . 2) (see also Discussion).
When high concentrations (5 x 104 to 5 x 105 cells/ml) of mAb G-5-2' day 14

fetal liver cells were cultured in rat thymus filler cells (5 x 106/ml) plus LPS, no
significant cell death was observed between day 14 and the time equivalent to day
19 of gestation, indicating that rat thymus cells had no adverse effect on the viability
of precursor cells. Lower concentrations of the fetal liver cells, as those used in the
limiting dilution analyses, cannot be monitored for survival, due to the vast excess
of rat thymus cells in culture .

The Influence ofIL-2, -3, -4, -5, -6, and -7.

	

The inability of early fetal liver cells
(day 14) to develop in high frequencies to LPS-reactive B cells did not change when
IL-2, -3, -4, -5, -6, and -7, either alone or in all possible combinations of one, two,
three, four, five, or all six ILs, i.e ., 37 different sets of ILs (data not shown), were
added to the cultures of G-5-2' cells (shown only for IL-6 and -7 in Fig. 1 and for
IL-3 and IL-7 in Fig. 4) . All ILs were used in concentrations (5-50 U/ml or more)
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that would be expected to suffice for occupancy of high avidity receptors for these
ILs. We conclude that neither rat thymus cells with LPS nor these six ILs, by them-
selves or in combinations, induce the development to mitogen-reactive B cells under
conditions of high avidity IL-R occupancy.

The Influence ofEmbryonic Stromal Cells.

	

Since the own environment of fetal liver
precursors of theB lineage appeared beneficial for their development to mature cells,
i.e ., since high density suspensions of fetal liver cells allowed the development of
mitogen-reactive B cells, while limiting numbers of fetal liver cells in the foreign
environment of high density rat thymus filler cells and LPS did not, the influence
of adherent "stromal" cells on this development was investigated .

Cultures of primary embryonic stromal cells were established from day 13 fetal
liver cells . Cells that adhered to the plastic tissue culture wells in overnight culture
were either trypsinized and replated for various periods oftime up to 2 wk, or were
used directly after removal ofthe nonadherent cells in the primary culture as sources
of embryonicstromal cells . They were irradiated before coculture with FACS-sorted
G-5-2' B cell precursors .

In the presence of such irradiated embryonic stromal cells, G-5-2' precursors
were now induced to the development of mitogen-reactive B cells in high frequen-
cies . The frequencies increased from ti1 in 3 x 10 3 at day 14 to N1 in 30 when
precursors of day 14 and stromal cells were cocultured until the time equivalent to
day 19, before they were replated in LPS and rat thymus cells (Fig. 3) . Addition
ofthe various ILs led to no significant increase in the frequencies of mitogen-reactive
B cells, although addition of IL-6 plus IL-7 tended to increase the size of a single
LPS-reactive B cell clone by one quarter to one half (data not shown) . For all subse-
quent experiments these two ILs were included in the cultures, unless specified other-
wise . We conclude from these results that irradiated embryonic stromal cells provide
an environment in culture that is inductive for B cell differentiation to mitogen-
reactive B cells. Exogenously added IL-2 through IL-7 are not needed .
A Stromal Cell-dependent, Followed by a Stromal Cell-independent PeriodofBCellDevelop-

ment. Experiments with unseparated and FACS-sorted G-5-2 + fetal liver cells de-
scribed above had indicated that the environment of stromal cells in fetal liver pro-
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FIGURE 3 . Frequencies of precursors in G-5-2'
fetal liver cell populations ofdays 13 and 14 of gesta-
tion developing into LPS-reactive B cells under var-
ious conditions of culture. Fetal liver cells were cul-
tured either in the presence (" , 7) or absence (O)
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ofalayerofirradiated fetal liver stromal cells, either
in the presence (") orabsence (V) of IL-6 and IL-7
(see Materials and Methods), in some cultures in the
presence ofthe mAb, STR4 (0) or STRIO (N). Fre-
quencies of G-5-2' precursors of LPS-reactive B
cells ex vivo of fetal liver at days 14 and 19 of gesta-
tion for comparison are 1 in 7 x 10'4 and 1 in 50,
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were done at the equivalent time ofday 5 after birth.
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vides the conditions for development to mitogen-reactive Bcells at high frequencies.
Thus, we investigated howlong this environmenthad to be present for the precursors
to reach the mitogen-reactive stage as assayed in the presence of rat thymus cells
and LPS in limiting dilution analysis . Previous experiments have shown that the
LPS-reactive stage is reached in culture at the time equivalent to day 19 of gestation
(1-3, 26, 27).

G-5-2+ precursors of day 14 fetal liver were cocultured with irradiated stromal
cells for either 1, 2, 3, 4, or 5 d, and then replated in limiting dilutions with LPS
andrat thymus cells. The results in Fig. 3 show that the frequencies of LPS-reactive
B cells remained low (between 1 in 3,000 and 1 in 1,000) until the time equivalent
to day 16 when it changed to between 1 in 100 and 1 in 30 within 24 h. This indicates
that B cell development is stroma cell dependent until day 16 of gestation, and be-
comes independent thereafter. This change occurs at the time when adherence of
precursors to stromal cells is lost and when pre-B cells become sIg+ in these cul-
tures (see below) . The rapid change in frequencies of precursors indicates that this
development is synchronous for the majority of the precursors .
The same rapid change from stromal cell dependence to independence was ob-

served in experiments where G-5-2' cells at various stages of development in vivo
in fetal liver were cultured in limiting dilutions with LPS and rat thymus cells im-
mediately after FACS. Results in Fig. 2 show that G-5-2 + fetal liver cells from days
14 and 15 of gestation did not develop in high frequencies to mitogen-reactive B
cells, while from day 16 onwards they did, indicating achange in their independence
of the fetal liver cell environment, e.g., as shown above in vitro on stromal cells.

Limited Proliferation ofPrecursors in the Presence of Stromal Cells and/or ILs, but Change
in Adherence. When G-5-2+ B cell precursors from day 14 fetal liver were plated on
layers of adherent irradiated embryonic stromal cells, they adhered in clusters to
the stromal cells. They remained adherent for 2 d, then became enlarged and detached
from the stromal cell layer. At best, only a twofold increase in the number of cells
cultured in the absence or presence ofeither IL-3 or IL-6 plus IL-7, with or without
stromal cells, was observed over a 5-d culture period (Fig . 4, top) . These results pro-
vide evidence that G-5-2+ B cell precursors do not proliferate polyclonally at a high
rate . They suggest that the precursors change their interactions with stromal cells
at a time equivalent to day 16 of gestation from adherent to nonadherent.

Inhibition of the Influence ofStromal Cells by Specific mAbs .

	

Adherence to embryonic
stromal cell layers could also be observed with Abelson murine leukemia virus-trans-
formed B cell lymphomas, but not with mature B orT cells (data not shown) . This
indicated that transformed pre-B cell lines could be used to assay inhibition of ad-
herence by specific ligands such as mAbs. mAbs were raised against embryonic stromal
cells from day 13 fetal liver expanded for 2 wk. Two of them, STR4 and STR10,
interfered with the binding of the Abelson murine leukemia virus-transformed pre-
B cell line 40E1 to stromal cells and stained stromal cells as well as pre-Blymphoma
cells, as detected by FACS. These mAbs were then tested in cocultures of G-5-2*
precursors of day 14 fetal liver with embryonic stromal cells for their capacity to
influence the development to mitogen-reactive B cells . Both mAbs inhibited the ad-
herence ofthe precursor to the stromal cell layer. Both mAbs also inhibited the de-
velopment to mitogen-reactive B cell, but did not influence the number of cells in
culture. As controls, the isotype-matched progenitor, pre-B cell-, and B cell-specific
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(Top) Growth of G-5-2* cells in the pres-
ence ofmIL-3 (O) and mIL-7 (A) on layers of adherent,

13 14 1 1 17 1 19
Time equivalent to embryonic development

(days of gestation)

irradiated fetal liver stromal cells . No growth was de-
tectable in the absence of mILs and/or in the absence
of stromal cells. The concentration of cells in the ab-
sence ofany ILs and in the absence ofstromal cells was
8 x 104/ml at the time equivalent to day 19 of gestation .
(Bottom) Appearance of sIg' cells in cultures of G-5-2-
sorted precursors after coculture with irradiated fetal
liver stromal cells. Two experiments (O, ") are shown.

rat mAb 14.8 (anti-B220), as well as the nonmatched, but pre-B cell-specific mouse
mAb G-5-2, at the same concentrations and under the same conditions, did not
inhibit this stromal cell-dependent development to mitogen-reactive B cells . So far,
we have not yet obtained an isotype-matched, stromal cell-binding mAb with no
inhibitory effect, an antibody that couldbe used as another negative control in these
experiments.

Development of sIg' Cells.

	

Cultures of G-5-2 + precursor cells of day 14 fetal liver
on irradiated stromal cells were assayed each consecutive day for the development
of sIg' cells . The results in Fig. 4 (bottom) show that within 24 h, in the time be-
tween the equivalent of days 16 and 17 of gestation, 5-10% of all cultured cells be-
came sIg' and remained in that state for the next 2 d. Both mAbs STR4 and STR10
inhibited the development of sIg' cells (data not shown) . These results indicate that
the change to sIg' cells occurs in amajority of G-5-2 +-sorted cells, and does so syn-
chronously for the majority of them . This change occurs at the same time that
precursors become independent of stromal cells in their development to mitogen-
reactive B cells. Based on these results, a model of B lymphocyte lineage develop-
ment (Fig . 5) is discussed below.

Discussion
Development of B lineage cells from pluripotent stem cells and committed pro-

genitors hasbeen found to be dependent on interactions with so called stromal cells
in organs where B cells are generated, e.g ., mainly in fetal liver and bone marrow
ofthe mouse. Tissue culture conditions and stromal cells lines have been developed
with which the contributions ofstromal cells to B lineage development can be studied
in vitro (7-15) . Once B lineage development has become stromal cell independent,
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single cells can be followed in limiting dilutions with rat thymus filler cells (1-3) or
other feeder cells (4), and under the stimulating influence of LPS in their develop-
ment to clones of IgM-secreting PFC (24) . In fetal liver this later development is
programmed in time, so that the majority of all cells in vivo or in vitro gain mitogen
reactivity at the same time, i.e ., at day 19 of gestation (1-3, 26, 27). It then takes
another 5 d to stimulate these mature B cells to the peak of clonal proliferation and
maturation to IgMPFC (24) . The results presented in this paper confirm the obser-
vations that two phases are distinguishable, one stromal cell dependent, the other
independent (36) . Our results specify the time ofembryonic development when this
change occurs, i.e., between days 15 and 16 of gestation . They show that the change
occurs in the majority of all cells at the same time . The two mAbs able to interfere
with the interactions of B cell precursors and stromal cells that we have developed
should be useful in studies ofthe molecular and cellular requirements ofsuch inter-
actions necessary to induce the precursor to become sIg`, and then mitogen-
reactive. Our results further support the idea that specific cellular contacts between
the progenitors/precursors and the stromal cells mediate the induction to the devel-
opment of mature B cells .
Whenever G-5-2+ precursor cells of day 13, 14, or 15 fetal liver were plated im-

mediately in rat filler cells, the change from stromal cell dependence to indepen-
dence was observed to occur between days 15 and 16 . On the other hand, when these
purified precursor cells were first plated on stromal cells and then replated in the
time equivalent until day 19 of gestation in rat filler cells, the change occurred al-
most 24 h later (compare Figs . 1-3) . This suggests that a second handling of the
precursors (washing, cooling down, etc.) might delay the normal development. There-
fore, we think that the time of change to stromal cell independence in vivo is be-
tween days 15 and 16 of gestation in fetal liver.
None of the exogenously added ILs had any influence on the purified precursor

cells that would replace the requirement for stromal cells in the development to-
wards mature B cells. Similar findings have been reported for adult bone marrow
precursors (21). It, however, does not exclude that ILs, notably IL-7 (18-20) and
IL-1 (21), could play a role in this development . The stromal cells that we use could
well synthesize these ILs and thereby provide, endogenously and locally, the neces-
sary growth and differentiation signals.
Thecontacts with stromal cells, and any IL that may be produced endogenously

in this interaction, do, however, not induce extensive pre-B cell proliferation (Fig.
4, top) . This is in line with many observations (37, 38) that point to a very limited
proliferation of precursors between days 14 and 19 of gestation in fetal liver. In this
time of gestation, all rearrangements of V gene segments of H and L chain genes
take place in a time-ordered fashion (5, 6). If rearrangements occur when cells di-
vide, then it is tempting to speculate that every division at this time of development
in fetal liver is critical . The first division might rearrange DH to J., the second V�
to DJ � , the third VK to J,,, and afourth VX to JX . A very well ordered machinery
for these rearrangement processes should exist, controlled in its activity by the inter-
actions with stromal cells (Fig. 5) .
At the end of the rearrangement processes, sIg+ cells appear, provided that these

rearrangements were functional, and provided that the Ig could be transported to
and inserted into the surface membrane . The rearrangement process is known to
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A proposed scheme of B lymphocyte lineage development in fetal liver. Stroma 1
and stroma 2 are two types of fetal liver stromal cells proposed to either induce proliferation
of progenitors without differentiation to Ig gene rearrangements (stroma 1), or to induce Ig gene
rearrangements in critical steps of divisions (stroma 2) .

lead not only to productive, but also to nonproductive Ig genes, due to incomplete,
out-of-frame, and pseudogene rearrangements in either the H and/or Lchain genes.
Consequently, no sIg can be made . It is difficult to estimate howhigh the percentage
of nonproductive rearrangements should be, since we do not know whether the rear-
rangement processes are purely stochastic, or guided by molecular interactions that
favor productive rearrangements . We also do not know how many pseudogenes par-
ticipate in these rearrangement processes . Our findings that between 5 and 10%
of all G-5-2+ precursors develop to sIg' cells (Fig . 4, bottom) suggests that such non-
productive rearrangements could happen in 90% or more of all precursors . This
number is, at least, within the range of frequencies ofproductive vs . nonproductive
rearrangements expected from a stochastic process of rearrangements .
The appearance of Ig on the surface of pre-B cells at day 16 of gestation is obvi-

ously dependent on successful rearrangements of V gene segments, and on tran-
scription and translation of the genes. The deposition of Ig in the surface mem-
brane, however, could also be dependent on interactions with neighboring molecules,
like mb-1 (39), which could have functions similar to the CD3 complex associated
with TCRa and -S, respectively, and y and 6 chains (reviewed in reference 40).
mb-1 is expressed from the earliest stages of pre-B cell development, i .e ., when D�
segments rearrange to JH segments, and continues to be expressed to the stage of
the mature B cell . While this is true for mRNA expression, a protein with CD3
line functions might only be expressed at a given, later stage of precursor develop-
ment . This could, then, also control expression of surface Ig on pre-B cells and its
transition from a stromal cell-dependent to an independent stage .

Particularly striking is the synchrony of B cell development in one wave in fetal
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liver. This indicates that stem cells and progenitors may populate the fetal liver at
anytime in development, but are induced only within atime window of 24 h, around
day 13 of gestation, to enter the pathway of B cell development by Ig gene rearrange-
ments and other processes connected with this program of differentiation. Before
and after this time, progenitors may exist but they are not drawn. It is reasonable
to assume as a working hypothesis that the environment of stromal cells is compe-
tent only for this short period of time to convey the necessary interactions with pro-
genitors . Synchrony of Bcell development in this wave is high foraremarkably long
period of time in embryonic development, i.e., for 6 d between days 13 and 19 of
gestation, pointing to an ordered process all along theway. It is, therefore, not very
likely that normal cells at any one ofthese stages ofB cell development would, without
transformation, be capable of extensive cell proliferation.
Other waves oflymphocyte development are known. In mice, the wave of B cell

development in fetal liver is preceded by one in fetal placenta and embryonic blood
(41) . In sheep(and maybe in other species), a late wave has been observed in Peyer's
patches (42) . In chicken, colonization of the bursa occurs at a specific time before
hatching (43). Development of T cells in the thymus of birds occurs in three waves
(44) . Initially, these waves are initiated by asimilar short 24-h period of competence
ofthe organs for immigrationandinduction to development ofthe precursors . Whether
these waves of lymphocyte development use the total repertoire ofV gene segments
or prefer, as in fetal liver, only part of it (V � 7183), and whether different environ-
ments actually select the expressed V genes according to their binding specificities
for self determinants in the special environments, remains to be seen .

In bone marrow, throughout life, the generation of B cells is continuous . At the
same time, turnover of the mature, primary B cell is high (43, 44). Therefore, if
pre-B cells in bone marrow are equally limited in their capacity to proliferate as
they rearrange their V segmcnts, become sIg' and, finally, mitogen and antigen
reactive, a pool of progenitor cells before rearrangements must proliferate very ac-
tively. This progenitor pool, possibly reactive to another stromal cell and to IL-7
(45), should continuously generate by stem cell-like proliferation those cells that
can then be drawn into the pathway of B cell development at rates that keep up the
pool of primary mature B cells (Fig . 5) .

Summary
Precursor cells of the B lineage can be enriched from mouse fetal liver by FAGS

with the aid of the pre-B cell-specific mAb G-5-2. The cells are concomitantly en-
riched for cells expressing the pre-B cell-specific gene X5, and for cells developing
to LPS-reactive mature B cells . The enriched purified precursors are not influenced
by rIL-2 through -7, alone or in combination, to develop to mitogen-reactive, sIg+
cells . Marginal proliferation of-the precursors is observed in response to IL-3 plus
-4, and IL-6 plus -7, and this does not change in the presence of stromal cells. Devel-
opment to mitogen-reactive, sIg+ cells is dependent on interactions with embryonic
stromal cells from fetal liver. Two mAbs raised against the stromal cells inhibit this
development. Twophases ofprecursor cell development canbe distinguished in fetal
liver. Between days 13 and 15 of gestation, it is dependent on stromal cell interac-
tions, thereafter, from days 16 to 19, it is independent. A sudden increase in the
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number of mitogen-reactive, sIg+ B lineage cells occurs within 24 h between days
16 and 17 . All these results indicate that B cell development occurs in one wave with
synchronous steps of changes from a mitogen-insensitive, sIg - , stromal cell depen-
dent to a mitogen-reactive, sIg+, stromal cell-independent B lineage line.
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