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To better understand and ultimately predict both the metabolic activities as well

as the signaling functions of metabolites, a detailed understanding of the physical

interactions of metabolites with proteins is highly desirable. Focusing in particular on

protein binding specificity vs. promiscuity, we performed a comprehensive analysis of

the physicochemical properties of compound-protein binding events as reported in the

Protein Data Bank (PDB). We compared the molecular and structural characteristics

obtained for metabolites to those of the well-studied interactions of drug compounds

with proteins. Promiscuously binding metabolites and drugs are characterized by low

molecular weight and high structural flexibility. Unlike reported for drug compounds, low

rather than high hydrophobicity appears associated, albeit weakly, with promiscuous

binding for the metabolite set investigated in this study. Across several physicochemical

properties, drug compounds exhibit characteristic binding propensities that are

distinguishable from those associated with metabolites. Prediction of target diversity

and compound promiscuity using physicochemical properties was possible at modest

accuracy levels only, but was consistently better for drugs than for metabolites.

Compound properties capturing structural flexibility and hydrogen-bond formation

descriptors proved most informative in PLS-based prediction models. With regard

to diversity of enzymatic activities of the respective metabolite target enzymes, the

metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and

resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan,

succinate, and glutathione were identified to possess broad enzymatic reaction scopes.

Promiscuous metabolites were found to mainly serve as general energy currency

compounds, but were identified to also be involved in signaling processes and to

appear in diverse organismal systems (digestive and nervous system) suggesting specific

molecular and physiological roles of promiscuous metabolites.

Keywords: metabolites, drugs, protein binding, promiscuity, physicochemical properties, partial least squares

(PLS), pathway enrichment analysis
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Introduction

Metabolic conversion processes require a close physical contact
between metabolite substrates and their cognate protein enzymes
acting on them. Substrate specificity and the kinetics of the
substrate-enzyme encounter are encoded by the details of
the molecular recognition process, which are determined by
the physicochemical properties of both interaction partners
(Volkamer et al., 2013).

Beyond being involved in enzymatic conversion processes,
evidence is accumulating that metabolites can serve signaling
functions as well (Yang et al., 2012; Li et al., 2013). Early findings
uncovered the metabolite-binding mediated allosteric effects of
metabolites on enzymatic activity (Monod et al., 1965). Specific
signaling roles of metabolites have furthermore been established
in a broad array of processes ranging from riboswitches in
bacteria [i.e., interaction with RNAs (Mandal and Breaker, 2004)]
to the regulation of flowering in plants (Wahl et al., 2013), and to
hormonal regulations in human (Aranda and Pascual, 2001). To
what extend metabolites in general exert a signaling role remains
a central research question.

As putative signaling roles of metabolites can be assumed to be
mediated by physical interactions with other molecules (proteins,
DNA, RNA), understanding the interactions of metabolites
with proteins, in particular, may provide clues for potential
signaling activities. Here, gauging target specificity based on
physicochemical properties is of central interest. Metabolites
with a broader protein target range may more likely also
fulfill signaling functions in addition to their role as substrate
in biochemical reaction. In a seminal experimental study, the
potential of interactions of metabolites with proteins implicated
in signaling (kinases) has been demonstrated in yeast (Li
et al., 2010). Binding promiscuity may also be associated
with unspecific metabolic conversions or cross-reactivities, in
which enzymes process metabolites other than their canonical
substrates. This “accidental” reactivity has also been discussed
as a mode of metabolic network evolution (Carbonell et al.,
2011). Thus, approaching promiscuity from the perspective
of protein binding sites rather than regarding promiscuity
a property of compounds alone may allow predicting non-
canonical enzymatic reaction and may thus contribute to
furthering our understanding of metabolic reactions and the
resulting set of naturally occurring metabolic compounds in
biological systems. In fact, results from computational docking
studies on metabolite-enzyme interactions in E.coli suggest
that promiscuity may indeed originate from both substrates
and enzymes properties (Macchiarulo et al., 2004). As a
long term goal, the prediction of enzymatic reactions based
on the structure of enzymes and compound substrate alone
may also prove instrumental for the annotation of recorded
mass-spectra associated with detected metabolites in biological
samples, whose identity presently remains unknown (Anari
et al., 2004). Furthermore, understanding metabolite-protein
binding events may provide clues for the mechanisms that
underlie observed correlated metabolomic and transcriptomic
changes in cellular systems exposed to stress conditions
(Bradley et al., 2009; Walther et al., 2010). If it proves

possible to correctly predict target proteins of metabolites, the
signaling cascade leading to transcriptional changes may become
decipherable.

Thus, a detailed survey and characterization of experimentally
observed and structurally resolved metabolite-enzyme binding
events as reported in the Protein Data Bank (PDB) appears
worthwhile andmotivated this study. Toward achieving themore
general goal of understanding the physicochemical determinants
of compound-protein binding events leading ultimately to the
ability to predict metabolite-protein binding events, the inclusion
of all protein binding events—including metabolites bound to
non-catalytic sites—as well as considering compounds other
than metabolites alone will allow broadening the available
dataset and may uncover general principles of compound-
protein encounters.

The study of compound-protein interactions has been
at the core of drug development programs for decades.
As high specificity of protein target binding is considered
desirable for the therapeutic success, the factors influencing
binding specificity of drug compounds have been investigated
intensively, and their continued study remains a central
research objective in both academia and pharmaceutical
industry. As it may cause adverse side effects, promiscuous
binding of drugs to many off-target proteins is of particular
concern (Lounkine et al., 2012; Hu and Bajorath, 2013;
Rudmann, 2013; Hu et al., 2014). Experimental as well as
computational studies have generated a wealth of knowledge
on the rules that govern the association of physicochemical
properties of drug compounds and their target protein
spectrum (Tarcsay and Keserű, 2013). On the other hand,
unexpected binding to off-targets may also help to position
established drugs for novel medicinal indications (for review
of positive and negative effects of promiscuity see Peters,
2013). To probe for promiscuity and other ADME (absorption,
distribution, metabolism, and excretion) properties, appropriate
representative protein panels have been established, with
which compound promiscuity can be assayed experimentally
(Krejsa et al., 2003). Because detailed computational all-
against-all docking studies proved prohibitive (for lack of
structural information or limiting computational power), such
experimental binding surveys have been analyzed to establish
general rules that associate physicochemical properties of
compounds with binding promiscuity of drugs. For example,
it was found that lipophilicity (logP) and basic character (pKa)
appear positively correlated with promiscuous binding behavior
(Tarcsay and Keserű, 2013).

In this study, we performed a systematic analysis of
metabolite-protein interactions and compared them with the
characteristics of drug-protein binding events. We based our
analysis on observed interactions of small compounds with
proteins in the PDB as has been done for drugs (Haupt et al.,
2013) and drug-like compounds (Sturm et al., 2012) before.
Here, we extended the analysis to include naturally occurring
metabolites and to reveal possible similarities and differences
between the two compound sets with regard to protein binding
behavior thereby examining the transferability of approaches,
algorithmic concepts, and physiochemical principles from the
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rich drug development field to the realm of metabolomics. A
large number of physicochemical properties was profiled and
their influence on the binding characteristics investigated. In
particular, we assessed the degree of specificity/promiscuity of
compounds with respect to their underlying chemical structure.
We studied promiscuity from the perspective of compound-
based as well as protein-target-based properties applying both
descriptive and predictive statistical approaches. A plethora
of studies has been devoted to the computational analysis
and prediction of compound-protein interactions. However,
given their pharmacological relevance, such studies have mainly
focused on drug-protein interactions (Carbonell and Faulon,
2010; Yabuuchi et al., 2011; Yu andWild, 2012; Haupt et al., 2013;
Ding et al., 2014). Computational studies on metabolite-protein
contacts were mostly concerned with predicting substrate-
enzyme interactions (Macchiarulo et al., 2004; Carbonell and
Faulon, 2010) and specific metabolites (Stockwell and Thornton,
2006; Kahraman et al., 2010) rather than to also investigate
generic bindingmodes of metabolites. The present study presents
a broader, integrative survey with the aim to elucidate common
as well as set-specific characteristics of compound-protein
binding events and to possibly uncover specific physicochemical
compound properties that render metabolites candidates to serve
as signals.

Materials and Methods

Compound-protein Target Datasets
Metabolites
Initial metabolite sets were obtained from (i) the Chemical
Entities of Biological Interest database (Degtyarenko et al.,
2008) (ChEBI, version 2014/07/07) comprising 5771 metabolite
structures classified under ChEBI ID 25212 ontology term
“metabolite,” (ii) the Kyoto Encyclopedia of Genes and Genomes
(Kanehisa and Goto, 2000) (KEGG, version 2014/12/07,
15,519 compounds), (iii) the Human Metabolome Database
(Wishart et al., 2007) (HMDB, version 3.6, 2014/04/13, 41,498
compounds), and (iv) the MetaCyc database (Caspi et al.,
2014) (version 18.0, 2014/06/18, 12,713 compounds). KEGG
compounds structures were downloaded using the KEGG API
(http://www.kegg.jp/kegg/docs/keggapi.html). Metabolites from
KEGG and MetaCyc were converted from MDL Molfile to SDF
format using OpenBabel (O’Boyle et al., 2011). The union of all
four sets was shortlisted for those metabolites contained also in
the Protein Data Bank (PDB).

Drugs
Chemical structures of all non-nutraceutical small molecule
drugs (approved and experimental) were downloaded as
structure-data files (SDF) from the DrugBank database (Wishart
et al., 2006) (version 4.1, 2014/09/08) comprising a total of 6858
drug molecules.

Protein Targets and Co-crystallized Compounds
To generate the protein target set associated with all compounds,
all available protein structures with at least one co-crystallized,
non-covalently bound compound and a X-ray crystallographic

resolution of 2Å or better were downloaded from the Protein
Data Bank (Berman et al., 2000) (PDB, version 2014/07/31).
In case of protein structures with multiple amino acid chains,
every chain was considered separately as potential compound
targets. Targets bound only by very small (<30 Da), very large
compounds (>1000 Da), common ions (e.g., Na+, Cl−, SO−

4 ),
solvents (e.g., water, MES, DMSO, 2-mercaptanol, glycerol),
chemical fragments or clusters were removed from the dataset
(Powers et al., 2006).

Compound Binding Pockets
Compound binding pockets were defined as compound-protein
interaction sites with at least three separate target protein amino
acid residues engaging in close physical contacts with a given
compound. Contacts were defined as any heavy protein atom to
any heavy compound atom within a distance of 5Å.

Redundant or highly similar binding pockets resulting from
multiple binding events of the same compound to a particular
target protein were eliminated. All binding pockets of the
same compound found on the same protein were clustered
hierarchically (complete linkage) with regard to their amino acid
composition using Bray-Curtis dissimilarity, dBC,calculated as:

dBC =

∑n
i= 1

∣

∣ai − bi
∣

∣

∑n
i= 1 (ai + bi)

, (1)

where ai and bi represent the counts of amino acid residues
i = 1, ..., n (n = 20) of two individual pockets. The clustering
cut-off value was set to 0.3 keeping one representative binding
pocket of each cluster.

To remove redundancy between protein targets, the set
of all protein targets associated with each compound was
clustered according to 30% sequence similarity cutoff using
NCBI Blastclust (Dondoshansky and Wolf, 2002) keeping
one representative of each cluster (parameters: score coverage
threshold = 0.3, length coverage threshold = 0.95, with required
coverage on both neighbors set to FALSE). As a result,
each compound was associated to a non-redundant and non-
homologous target pocket dataset.

The chemical structures of those 7385 compounds, for which
a target protein was identified in the PDpB, were downloaded
as ideal CCD (Chemical Compound Dictionary) coordinates
(http://www.wwpdb.org/ccd.html).

Compound Promiscuity
Compounds bound to three or more non-redundant target
pockets were defined “promiscuous,” all others “selective.”

Compound Classification and Property
Calculation
Molecular weights and SMILES strings (“Simplified Molecular
Input Line Entry Specification”) of all compound structures
were calculated using the Instant JChem software (version
14.7.7.0, ChemAxon, http://www.chemaxon.com). Very small
or large compounds (molecular weight <30 Da or >1000
Da), variable compound structures comprising R-groups and
compounds without computable SMILES were not considered
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for further analysis. The chemical development kit (CDK)
extended fingerprints from the rcdk R-package (Guha, 2007) was
used for similarity analysis of compound structures. Drugs or
metabolites were mapped to PDB compounds requiring identical
molecular weights (at± 1 Da tolerance) and identical fingerprint
(Tanimoto distance, T, T > 0.95; 91% of all compounds
mapped with T = 1.0). PDB compounds assigned to both
drug and metabolite compounds were labeled as “overlapping
compounds.”

Physicochemical properties of those the compound
class considered here (drugs, metabolites, and overlapping
compounds) were calculated by using Instant JChem and
KNIME (Berthold et al., 2008) (version 2.9.4) (The list of all
computed properties is provided in Supplementary Figure 1).
Properties based on actual 3D-structures were based on the ideal
Chemical Compound Dictionary (CCD) compound coordinates
(http://www.wwpdb.org/ccd.html).

Compound-promiscuity Propensity Ratio
Calculation
Physicochemical properties preferentially associated with either
promiscuous or selective compounds (Table 1B) were judged
based on propensity values, P, calculated for each property type t
and compound class c as:

Pt,ci =
fi

gi
=

qi/
∑n

i= 1 qi

si/
∑n

i= 1 si
, (2)

where q is the frequency of promiscuous compounds within a
property range interval i divided by the sum of promiscuous
compound counts over all intervals i = 1, ..., n. This term is
divided by the relative frequency of selective compounds s within
interval i divided by the sum of all compound counts over the
intervals i = 1, ..., n. The intervals were chosen to ensure that
all intervals contain nearly the same compound count. Standard

errors, se, of the obtained propensities were calculated as defined
in Levitt (1978) with:

sei =
1

gi

√

fi(1− fi)
∑n

i= 1 qi
(3)

Propensity values were log10-transformed to produce
symmetrical distributions.

Amino Acid Residue Compositional Propensities
of Protein Binding Pockets
Compound binding pocket amino acid composition propensities
were calculated using Equation (2), followed by log10-
transformation and with qi representing the number of
amino acid residues of type i = 1, ..., 20 in binding pockets and
si the number of amino acid residues i = 1, ..., n in non-binding
site parts of proteins.

Enzyme Classification Entropy and Pocket
Variability Analysis
The degree of target set variability associated with
each promiscuous compound was characterized by two
measures, the entropy of EC numbers of target proteins
and the variability of amino acid composition of binding
pockets.

EC Entropy
For every compound, the number of target-protein-associated
EC numbers was counted. The six top-levels of the EC
number classifications were used only, where “EC 1” represents
oxidoreductases, “EC 2” transferases, “EC 3” hydrolases, “EC
4” lyases, “EC 5” isomerases, “EC 6” ligases (http://www.chem.
qmul.ac.uk/iubmb/enzyme/). The label “None” was introduced
for target proteins without EC number assignment. The resulting

TABLE 1 | Overview of the drug and metabolite compound sets used in this study.

(A)

Drugs Metabolites

Number of compounds after

Database
Drugbank ChEBI KEGG HMDB MetaCyc

Download 6858 5771 15,519 41,498 12,713

Filtering 6566 5405 15,031 34,785 10,250

Assignment to PDB compounds 2227 217 1304 1100 1013

(B)

Number of target pockets

Compound class
Drugs Metabolites Overlapping compounds All compounds

>= 1 1226 (3271) 659 (2600) 1001 (6551) 2886 (12,422)

>= 2 250 (2295) 226 (2167) 562 (6112) 1038 (10,574)

>= 3 114 (2023) 129 (1973) 395 (5778) 638 (9774)

>= 4 65 (1876) 85 (1841) 298 (5487) 448 (9204)

>= 5 44 (1792) 56 (1725) 232 (5223) 332 (8740)

(A) Number of drug and metabolite structures downloaded from DrugBank, ChEBI, KEGG, HMDB, and MetaCyc, filtered according to molecular weights and SMILES computability,

and assigned to PDB compounds. (B) Number of PDB compounds categorized as drugs, metabolites or overlapping compounds that are bound to at least 1, 2, etc. non-redundant

protein target pockets. The numbers of interacting target pockets are listed in parentheses.
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counts were normalized to the total number of elements in every
EC class and the total number of EC assignments within each
compound’s target set. The entropy H was computed from these
probabilities pi of the EC classes i = 1,..,n (n = 7) for each
compound as:

H = −

n
∑

i= 1

piln(pi). (4)

For compounds with highly diverse EC classification numbers,
the entropy tends toward the maximum value of log2 (n), and
toward 0 for compounds with only few EC classes. Note that
for the entropy calculation, the number of different targets was
based on protein target counts, not binding pockets leaving 545
promiscuous compounds for analysis.

Protein Binding Pocket Variability, PV
The variability of binding pockets associated with a given
compound was assessed based on the variation of amino acid
composition of binding pockets across all binding events and
termed “pocket variability.” The pocket variability, PV, was
calculated for each compound’s target pocket set as:

PV =

n
∑

i= 1

σ
2
i

µi
, (5)

where σ
2
i represents the variance and µi the mean of the count

of amino acid residue i = 1, ..., n (n =number of different
amino acid residue types involved in binding) within the target
pocket set associated with a given compound. Six hundred and
thirty-eight compounds with at least three non-redundant target
pockets were included in these calculations (see Table 1B). Please
note that PV is independent of the size of the compound and
associated number of amino acid residues types involved in
binding.

Binding Mode Prediction Models
Partial least squares regression models (PLSR) were built
using the pls R-package (Mevik and Wehrens, 2007) for the
target variables EC entropy, pocket variability, and number of
compound target pockets (log10) for all compounds jointly and
separately for the three compound classes drugs, metabolites, and
overlapping compounds. The set of physicochemical properties
was used as predictor variables. The optimal number of principal
components was selected using the component number with the
lowest root mean squared error of prediction (RMSEP) of the
initially maximally allowed 10 components.

Support Vector Machines were created using the kernlab R-
package (Karatzoglou et al., 2004). The variables were scaled and
a 5-fold cross-validation was performed on the training data to
assess the quality of the model.

Classification and regression trees were created using the rpart
and partykit R-packages (Therneau and Atkinson, 1997; Hothorn
and Zeileis, 2012), where each tree was pruned according to the
lowest cross-validated prediction error within a range of 3–10
tree splits.

Metabolite Pathway, Process, and Organismal
Systems Enrichment Analysis
Pathway mappings used in the enrichment analysis were
obtained from KEGG (http://www.genome.jp/kegg/pathway.
html, 2014/08/12). In total, 323 of the 659 available metabolite
compound structures (see Table 1B) were also present in KEGG
pathway maps. Pathway maps were partitioned into seven
generic classes, of which only “Metabolism,” “Environmental
Information Processing,” and “Organismal systems” comprised
a sufficient number (>= 20) of unique metabolic compounds,
and thus were used for analysis. The enrichment analysis
was performed using both the collective map terms, which,
for instance, sum up all carbohydrate pathways in the
“Metabolism” class or all membrane transport systems in
the “Environmental information processing” class, and the
detailed pathway names, e.g., glycolysis, citrate cycle, and
pentose phosphate pathway, which are part of the collective
map of “Carbohydrate metabolism” in “Metabolism” class. The
maps of “Metabolism,” “Environmental Information Processing,”
and “Organismal Systems” comprised 14, 4, 10 collective
terms and 165, 24, 64 detailed terms, respectively. The set
of compounds used in this study was mapped to 12, 4,
and 8 collective terms and 125, 16, and 23 for detailed
terms.

Enrichment or depletion of specific pathway annotations
found in a particular compound set relative to another was
tested by applying Fisher’s exact test (Fisher, 1929). The
resulting p-values were corrected for multiple testing applying
the Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995).

Results

Compound-protein Target Dataset
For the characterization of physical and structurally resolved
interactions of metabolites with proteins and comparing them
with drug-protein binding events, first a suitable dataset
comprising compounds and their target proteins had to be
assembled. We downloaded all available protein-compound
complex structures from the Protein Data Bank (PDB) with
a crystallographic resolution of 2Å or better and removed all
binding events involving particularly small or large compounds,
common ions, solvents, chemical clusters, or fragments. We
rendered the protein target set non-redundant by clustering them
according to a sequence identity of 30% using NCBI Blastclust
to get for each of those PDB-derived 7385 compounds a non-
homologous and non-redundant target set (see Materials and
Methods).

We treated PDB compounds as drugs or metabolites based
their match to compounds contained in DrugBank or metabolite
databases (ChEBI, KEGG, HMDB, and MetaCyc), respectively.
Matches were established based on near identical molecular
weights and chemical fingerprints. PDB compounds that could
be assigned to both drugs and metabolites were labeled as
“overlapping compounds” (see Materials and Methods). We
considered a compound promiscuous, if it binds to three or
more target protein binding pockets, whereas compounds with
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one or two binding events were classified as “selective.” The
final dataset comprised 2886 PDB compounds with at least
one non-redundant target pocket and 1226 of them classified
as drugs, 659 as metabolites, and 1001 as both and thus are
termed “overlapping compounds” (Table 1A). 638 compounds
(22%) of those PDB compounds are promiscuous. They include
114 drugs, 129 metabolites, and 395 overlapping compounds,
which altogether interact with 9774 target pockets (Table 1B).
As already evident from the statistic, drug compounds are
much more selective, with 9.3% qualifying as promiscuous, than
metabolites (19.5% promiscuous).

Physicochemical Properties of Metabolites and
Drugs Bound to Proteins
In order to characterize metabolites, drugs, and overlapping
compounds with regard to specific physicochemical properties
governing their protein binding behavior, we computed a
range of relevant properties typically used in the field of
cheminformatics (Supplementary Table 1 contains a list along
with definitions) for all compounds in the respective sets and
tested them for significant frequency distribution differences
using the two-sample Kolmogorov-Smirnov test (Figure 1)
(Lilliefors, 1967).

Across the set of physicochemical properties examined, drug
compounds possess distinctive characteristics compared to both
metabolites and overlapping compounds, whereas the set of
compounds classified as both drugs andmetabolites (overlapping
compounds) are more similar to metabolites than to drugs
(Figure 1). On average, the drug compounds used here are
larger than metabolites with higher values for molecular weight
(medians of 330.2Da vs. 238.7Da for drugs and metabolites,
respectively, pWilcox = 1.2E-19), atom count (38 vs. 30, p =

6.7E-12), ring atom count (12 vs. 6, p = 2.0E-35), accessible
surface area (ASA) (514.6Å2 vs. 394.4Å2, p = 3.7E-23), have
fewer hydrogen bond donors (0.12 vs. 0.18, p = 1.7E-15), and
acceptors (0.23 vs. 0.3, p = 5.2E-09) when normalized for size,
and carry both weaker acidic and basic functional groups [higher
strongest acidic (8.89 vs. 4.36, p = 9.7E-06) and basic (2.28
vs. −1.53, p = 4.4E-09) pKa] and can therefore be assumed
less charged at physiological pH. Reduced polarity and charge of
drugs is also mirrored by their increased hydrophobicity [higher
logP (octanol partition coefficient)] relative to metabolites (1.43
vs. -0.3, p = 3.2E-13). A relatively large number of drugs
appears to be positively charged at neutral pH (secondary peak
of the isoelectric point distribution around pI = 9), while
metabolites predominantly carry negative charges at neutral
pH. The topological polar surface area (TPSA) appears similar
for all compound classes (median of ∼90 Å2). However, as
drugs are, on average, bigger and have larger ASA, the reduced
polarity of drugs relative to metabolites is evident again. Even
though the mode of the relative rotatable bond count density
distribution is similar for all three compound classes, drugs
possess distinctly more ring atoms relative to their size (higher
relative ring atom count: 0.56 vs. 0.46, p = 8.6E-18) and
relatively fewer sp3-hybridized carbon atoms (0.33 vs. 0.53, p =

2.6E-16). Various graph-based measures have become popular
in the field of cheminformatics to describe the topologies of

compounds (see Supplementary Table 1 for brief descriptions).
The Balaban index is smaller for drugs than for metabolites
reflecting the increased ring atom count (1.69 vs. 2.12, p =

1.9E-29). Other graph indices are increased for drugs [Wiener
index (1149 vs. 461, p = 8.9E-19), vertex adjacency information
magnitude (5.46 vs. 5, p = 3.7E-19)]. However, as these indexes
are positively correlated with atom count - in a non-linear
fashion—the observed difference appears largely a consequence
of size rather than topological differences. The normalized Platt
index, the sum of the edge degrees of the graph representing
the chemical structure of a compound divided by the number
of atoms, reveals a similar mode of the distribution for all
three compound classes, but a narrower distribution for drugs,
while metabolites are more diverse in their topologies. Across
all investigated properties, overlapping compounds show similar
distributions as metabolites rather than drugs (Figure 1).

As drugs and metabolites display distinct physicochemical
property profiles (Figure 1), it seems possible to classify them
using those properties as predictor variables. Applying a
classification and regression tree algorithm (rpart R-package),
prediction of compound class was possible, albeit with limited
purity (28.5% error rate for models with (without) size-
dependent properties, Supplementary Figure 1). As already
implied by the observed property profiles ASA, logP, and relative
sp3-hybridized carbons proved as most informative predictors.

Characterization of Compound Binding
Promiscuity
Next, we explored, which physicochemical properties impart
compound binding promiscuity vs. selectivity and whether these
properties may be different for metabolites and drugs.

For the set of different physicochemical properties
characterized above, we tested whether compounds associated
with a particular value range are more likely specific (fewer than
three binding pockets) or promiscuous (three or more binding
pockets) expressed as propensity values. Positive values denote
that a particular property and interval range is likely associated
with promiscuous compounds and negative values are preferably
found for selective compounds (see Materials and Methods).
All 2886 compounds were tested as a combined set as well as
for drugs, metabolites, and overlapping compounds separately
(Figure 2).

For the combined compound set, all properties generally
follow a monotonic trend with regard to being associated
with either selective or promiscuous binding behavior (bars
in Figure 2). Small values are associated with promiscuity for
properties molecular weight (<150 Da), atom count (<20),
ring atom count (<6), accessible surface area (<292 A2),
logP (<0.1), strongest acidic (<1.6), or basic (<-3) pKa,
vertex adjacency information magnitude (<4.81), Wiener index
(<305), and relative ring atom count (<0.01). Conversely,
large values of the same property are associated with selective
binding behavior. The opposite trend (small values indicative
of selective and large values of promiscuous behavior) is
apparent for the properties (with threshold values indicating
promiscuous binding) hydrogen bond donor count (>4), relative
sp3 hybridized carbons (>0.67), Balaban index (>2.32), relative
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FIGURE 1 | Compound-class specific density distributions of various physicochemical properties. The density plots were generated separately for drugs

(red), metabolites (green), and overlapping compounds (blue). Statistical significance (p-value) was computed for drugs vs. metabolites (p_DM), drugs vs. overlapping

compounds (p_DO), and metabolites vs. overlapping compounds (p_MO) by Kolmogorov–Smirnov test.
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FIGURE 2 | Logarithmic promiscuity propensity ratios of all compounds (bars) and individual compound classes (lines) for diverse physicochemical

properties. Positive propensity values (red color gradient) denote that a given property interval is characteristic for promiscuous compounds. Negative values (blue

color gradient) show that a property interval is biased in favor of selective compounds, which have only one or two target pockets. Differently colored lines and

associated error bars correspond to drugs (red), metabolites (green), and overlapping compounds (blue). Error bars denote the estimated standard error of the mean

values.
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rotatable bond count (>0.4), relative hydrogen bond acceptor
(>0.36)/donor (>0.22) count. In addition, high isoelectric points
(>6.6) appears to promote selectivity.

When inspected separately for the three compound classes
(lines in Figure 2), drugs stand out as exhibiting the most
pronounced propensity profiles across all properties with largest
absolute propensity values compared to both metabolites and
overlapping compounds with more shallower profiles. Unlike
the monotonic profiles observed for the whole compound set,
drugs display minimum/maximum propensity curves for several
properties. As drugs can be assumed to have been selected
specifically against high promiscuity, the minima for molecular
weight (278–459 Da), TPSA (topological polar surface area
around, 95–120 A2), strongest acidic pKa (4.9–10.1), relative sp3

hybridized carbons (0.11–0.3), relative Platt index (2.91–3.06),
relative rotatable bonds (0.09–0.16), relative hydrogen
bond acceptor (0.14–0.21)/donor (0.06–0.11) count may
correspond to optimal physicochemical properties imparting
selectivity.

In summary, promiscuous compounds with many binding
divers events observed in the PDB tend to be rather small,
hydrophilic, and of low complexity allowing a good fit to more
diverse and small binding pockets. Also a flexible backbone (e.g.,
high relative rotatable bond count and high sp3-hybridization
level) enhances the ability of compounds to bind to different
target pockets. In addition, the increased number of hydrogen
bond acceptors and donors in those compounds is advantageous
for formation of interactions with target proteins. Drug
compounds exhibit more pronounced property propensities with
regard to their promiscuity revealing also “sweet spots” associated
with selective binding behavior. By contrast, metabolites and
overlapping compounds exhibit shallow profiles with almost no
apparent correlation with promiscuity.

LogP and Compound Binding Promiscuity
For metabolites, no dependency of binding promiscuity on
compound hydrophobicity as measured by logP was detected,
whereas for drugs, our analysis suggests that increasing
hydrophobicity is negatively correlated with promiscuity
(Figure 2, LogP), which is contrary to literature reports that
describe hydrophobic drugs as less selective regarding their
binding to proteins (Peters, 2013). To further scrutinize our
result, we analyzed the relation between hydrophobicity (logP)
and promiscuity (pocket count) for the different compound
classes using all 2886 compounds and only those that are
promiscuous (three or more binding pockets).

Considering all compounds (selective and promiscuous
compounds), hydrophobicity and promiscuity are negatively
correlated for all three compound classes, albeit at very
low correlation coefficient levels (Figure 3). By contrast,
using promiscuous compounds only, drugs show a weak
positive correlation, which is in agreement with literature,
whereas metabolites maintain a negative correlation, which
is significantly different (p = 0.0026) compared to drugs
(Supplementary Figure 2). Thus, the reported dependency of
binding behavior on logPmay be set-dependent (see Discussion).
Again, as seen above (Figure 2), drugs and metabolites display
distinctive relationships of physicochemical properties and
binding behavior.

Protein Target-centric Investigation of Binding
Events
So far, we focused on compound properties relevant for
their interaction with proteins. Next, we shall examine the
characteristics of their cognate proteins, and specifically, of the
binding pockets/sites involved in the physical compound-protein
binding event. Again, we wished to examine whether metabolites

FIGURE 3 | Compound-type specific relationships between hydrophobicity (logP) and promiscuity (pocket count). The scatter plots show the three

compound classes drugs (red), metabolites (green), and overlapping compounds (blue) including their linear regression curves and 95% confidence region (gray) for

(A) both selective and promiscuous compounds together and (B) promiscuous compounds only with at least three non-redundant target pockets. Corresponding

Pearson correlation coefficients for drugs (r_D), metabolites (r_M), and overlapping compounds (r_O) are also displayed.
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and drugs are associated with similar or different binding
pocket properties and whether binding sites of promiscuous
compounds are different from those bound by specific
compounds.

We determined the amino acid composition of binding
pockets relative to non-binding site regions of proteins and
computed composition propensity values (see Materials and
Methods) of binding pockets dependent on bound compound
class and compound promiscuity using 12,422 protein pockets
interacting with the 2886 compounds (see Table 1B). Positive
propensity values represent a bias of specific amino acid residue
types to occur more frequently in binding pockets, while amino
acid residues with negative composition propensity are less
frequent in binding pockets than in other parts of proteins.

Aromatic amino acids (histidine-H, phenylalanine-F,
tryptophan-W, and tyrosine-Y) tend to occur more frequently
in binding pockets than in other protein regions, which was
also shown by Binkowski et al. (2003) and explained—at least in
part—by the observed high catalytic propensity of histidine and
tryptophan (Bartlett et al., 2002) (Figure 4A). Of the charged
amino acid residue types, arginine (R) appears preferred,
glutamate (E), and lysine (K) depleted, while aspartate (D)
seems indifferent with regard to their propensity to occur in
binding sites. Cysteine (C) occur more frequently in binding
pockets, while other small hydrophobic amino acids (alanine-A,
valine-V, leucine-L) occur less often than expected. Proline (P)
was found to be least preferred binding pockets. Other polar
or hydrophobic residues (serine-S, threonine-T, asparagine-N,

FIGURE 4 | Logarithmic propensities of amino acid binding pocket composition. Propensities were calculated for the amino acid composition of binding

pockets in relation to other protein regions with respect to (A) the three bound compound classes drugs (red), metabolites (green), and overlapping compounds (blue),

and (B) binding pockets associated with all bound compounds (gray), promiscuous compounds (red), and selective compounds (green), respectively. The background

shading refers to the physicochemical properties of amino acids according to Taylor (1986). Error bars denote the estimated standard error of the mean values.

(Connecting lines between propensity values serve improved traceability only).
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Korkuć and Walther Compound-protein interactions

glycine-G, methionine-M, isoleucine-I) show inconsistent
preferences (across all compound classes) for binding pocket
locations.

Overall, the three different compound classes display similar
compositional propensity profiles (Figure 4A). Noteworthy
differences between drugs and metabolites are evident for polar
amino acids with metabolite-binding sites showing increased
frequencies (serine-S, threonine-T, asparagine-N), while drug-
sites show depleted levels. Tryptophan (W) is found relatively
more often in drug-sites than in metabolite-binding sites,
with the latter showing a bias against negatively charged
glutamate (E) compared to drug-sites. Surprisingly, overlapping
compounds appear to display a preference for binding sites with
depleted frequencies of branched hydrophobic amino acid types
(isoleucine-I, leucine-L, and valine-V).

The amino acid composition propensities calculated
for protein sites bound by either selective or promiscuous
compounds follow similar general trends as described above
(Figure 4B). Nonetheless, small but significant differences are
apparent between the two compound categories. Protein binding
sites interacting with selective compounds are associated with
more pronounced amino acid propensities (larger values) than
sites binding promiscuous compounds. Selective compounds
tend to bind to pockets with increased frequencies of aromatic
residues and methionine (M) in their binding pockets, but
decreased occurrences of polar and positively charged amino
acid residue types and depleted proline (P). By contrast,
promiscuous compounds display a preference for sites with
decreased (branched) hydrophobic residues (methionine-M,
isoleucine-I, leucine-L, valine-V). The propensity profile of
sites binding selective compounds is more similar to that of
drugs (correlation coefficient between the two profiles r = 0.98)
rather than metabolites (r = 0.91) and overlapping compounds
(r = 0.89) (Figure 4A). This similarity of profiles is consistent
with the notion that drugs are rather selective, which fits the
requirements of a targeted pharmaceutical intervention (Peters,
2013). Please note that the displayed error bars in Figure 4

representing the estimated errors of mean values are very small
because of high counts entering the calculation.

Functional and Compositional Diversity of Target
Proteins and Binding Sites
After examining general amino acid propensities in binding
pockets of proteins bound by the different compound classes and
their promiscuity level, we studied the protein target diversity
associated with promiscuous compounds based on the EC
(Enzyme Commission) number classification scheme as well as
on the amino acid composition of target pockets. While the
EC-based diversity of targets captures its functional relevance
from ametabolic viewpoint, the composition-associated diversity
aims to establish whether promiscuity is caused by repeated use
of the same binding site in otherwise different proteins (Haupt
et al., 2013) or rather due to flexible binding modes to different
target pockets. In the former scenario, pocket diversity would
be low, while in the latter, it would be high for promiscuous
compounds.

Enzymatic Biochemical Target Diversity, EC
Entropy
For every compound from all three compound classes, we
calculated its EC entropy, H, based on the six top-level EC
numbers that classify enzymes by the reactions they catalyze,
e.g., enzymes with “EC 1” represent oxidoreductases, with “EC 2”
transferases, “EC 3” hydrolases, “EC 4” lyases, “EC 5” isomerases
and “EC 6” ligases, where the label “None” was introduced
for proteins without EC number assignment (see Materials and
Methods).

Compounds with low EC entropy show a preference for
specific enzyme biochemical classes, while those with high
EC entropy bind to proteins engaging in a broader range of
enzymatic reaction types. In the following, we shall discuss a
few selected biologically relevant metabolites and those with
extreme entropy values. Their EC diversity is also displayed
graphically (Figure 5). Benzylsuccinate (PDB ID: BZS) was
detected with very low entropy (H = 0.48) and binds mainly
to enzymes with the EC class “3,” i.e., hydrolases. In fact,
BZS is described as an intermediate in benzoate degradation,
which can be converted to benzylsuccinyl-CoA via the enzyme
benzylsuccinate CoA-transferase and is classified as a transferase
(EC 2.8.3.15) (Leutwein and Heider, 2001). Hypoxanthine (HPA)
is very specific as well and prefers oxidoreductases (EC 1) and
transferases (EC 2) as targets. The metabolite trimethylamine N-
oxide (TMO), an oxidation product of trimethylamine catalyzed
by the enzyme dimethylaniline monooxygenase (Treacy et al.,
1998) (EC 1), binds preferably to hydrolases (EC 3). Further,
oleoylglycerol (OLC) and resorcinol (RCO) have low EC entropy
and target oxidoreductases (EC 1) and lyases (EC 4), respectively.
Being associated with a high percentage (>30%) of target
proteins without EC classification, the metabolites TMO, OLC,
and RCO bind also to proteins without catalytic function like
membrane proteins (Efremov and Sazanov, 2012), hormones
(Tang et al., 1999), or to enzymes, which are not yet classified.
By contrast, the amino acids glycine (GLY) and tryptophan
(TRP) interact nearly equally with every EC class enzyme. This
applies also to succinate (SIN), a common organic acid, imidazole
(IMD), and glutathione (GSH), an important antioxidant and
redox-state regulator. The so-called energy currency metabolites
adenosine mono-, di- and triphosphate (AMP, ADP, ATP)
have a medium entropy and bind to all enzymes classes,
but also show a preference for ligases, which catalyze the
formation molecular bonds upon hydrolyzing ATP. NAD (NAD,
nicotinamide adenine dinucleotide) and NADH (NAI, reduced
form of NAD) preferably bind to enzymes catalyzing oxidations
or reductions, which in turn are often accompanied by such
redox equivalents, but have also a preference for isomerases
(EC 4). NAD has a broader EC range than NAI. The cofactors
coenzyme A (COA) and acetyl- coenzyme A (ACO) bind mainly
to transferases (EC 2), whereby COA frequently also binds to
all other enzyme classes and ACO to lyases (EC 4). Thiamine
(vitamin B1, VIB) and riboflavin (vitamin B2, RBF) are involved
in reactions catalyzed by transferases (EC 2). Lastly, pyridoxal 5′-
phosphate (PLP), also known as B6 vitamin phosphate, interacts
with lyases (EC 4), transferases (EC 2), and oxidoreductases (EC
1) (listed in decreasing percentage order of EC classes).
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FIGURE 5 | EC entropies of metabolites with at least five target proteins. (A) The top five metabolites with the lowest EC entropy: benzylsuccinate (PDB ID:

BZS), hypoxanthine (HPA), trimethylamine N-oxide (TMO), oleoylglycerol (OLC), and resorcinol (RCO). (B) The bottom five metabolites with highest entropy: Glycine

(GLY), imidazole (IMD), tryptophan (TRP), succinate (SIN), and glutathione (GSH). (C) The general energy currency metabolites adenosine mono-, di- and triphosphate

(AMP, ADP, ATP) and redox equivalents NAD (NAD) and NADH (NAI). (D) The cofactors and vitamins coenzyme A (COA), acetyl- coenzyme A (ACO), thiamine (VIB,

vitamin B1), riboflavin (RBF, vitamin B2), and pyridoxal-5′-phosphate (PLP, vitamin B6 phosphate).

Protein Binding Pocket Variability
We assessed the diversity of binding pockets associated with
every compound. As a metric of pocket diversity, we used
a measure of amino acid compositional variation, the pocket
variability, PV (see Materials and Methods).

Among the 20 selected compounds presented in Figure 5,
the largest PVs were determined for succinate (SIN), AMP,
and glycine (GLY), while the smallest PVs were found for
benzylsuccinate (BZS), hypoxanthine (HPA), and thiamine (VIB)
(Figure 6).

As can be expected, there is an overall positive correlation
between PV and EC entropy (Figure 7). Compounds that tolerate
different binding pockets as judged by their amino acid residue
compositional diversity can bind to more proteins allowing a
broader EC spectrum. Thus, from high PV, high EC entropy
follows naturally as observed for the nucleotides AMP, ADP, ATP,
or the amino acid glycine. By contrast, low PV should generally
be associated with low EC entropy as indeed detected for
benzylsuccinate (BZS) and hypoxanthine (HPA). However, it is

conceivable that some compounds have stringent binding pocket
requirements (low PV), but the preferred binding pocket is
found on many different proteins involved in different enzymatic
processes entailing high EC entropy. For example, glutathione
(GSH) and pyridoxal-5′-phosphate (PLP) have relatively low PV,
but high EC entropy and fall into this category. By contrast,
high PV and associated low EC entropy should be associated
with compounds that have a specific biochemical role, but
tolerate different binding sites. Decanoic acid (DKA) and 1-
Hexadecanoyl-2- (9Z-octadecenoyl)-sn-glycero-3-phospho-sn-
glycerol (PGV), both lipid associated metabolites exhibit this
behavior.

Table 2 shows all 4 combinations PV (high/low), EC entropy
(high/low) and representative compounds falling into the
respective categories taking from the whole compound sets.

On average, among the sets of compounds used in this
study, drugs have lower EC entropy and pocket variability
than metabolites or overlapping compounds (Table 3), albeit
significance could not be generally established (t-test p-values
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FIGURE 6 | Binding pocket variability for metabolites with at least five target pockets. The same set of metabolites is displayed as in Figure 5, showing the

top/bottom five metabolites with lowest/highest EC entropy, the energy currencies, redox equivalents, cofactors, and vitamins.

FIGURE 7 | Relationship between EC entropy and pocket variability. Linear Pearson correlation coefficients and associated p-values were calculated for all

compounds (lightblue) and the 20 selected compounds (darkblue) as displayed in Figure 5. Loess function was used to smooth the distribution (lines) including a

95% confidence region (gray).

for the comparison of drugs vs. metabolites/overlapping
compounds, EC entropy: 0.09/2.16E-03, PV: 0.15/3.03E-04). This
indicates again the higher specificity of drug-target interactions,
not only from the compound side, but also from the protein
target side.

Prediction of Compound Promiscuity Using
Physicochemical Properties
Predicting compound selectivity/promiscuity is a central goal
in cheminformatics. We applied Partial Least Square regression
(PLSR) and Support Vector Machines (SVMs) to predict from
physicochemical properties both the number of different binding
pockets and the tolerance to bind to different binding pockets

as measured by the pocket variability. Applying PLSR allows for
the prediction of a continuous outcome variable and efficient
handling of correlated predictor variables, while SVM was used
for the binary promiscuous/selective call and allows applying
non-linear functional relationships between predictor and target
variables. The models were generated for all compounds
jointly and the three compound classes drugs, metabolites, and
overlapping compounds separately.

Regarding the predictability of promiscuity captured by target
pocket count, best results were achieved for drugs (Figure 8,
“Pocket count, drugs”) with nine principal components
(nComp = 9) and a Pearson correlation coefficient of
0.391 between measured and predicted pocket counts in a
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TABLE 2 | Compounds with extreme pocket variability (PV) and enzymatic target diversity (EC entropy) and combinations thereof.

EC high (>=2) EC low ( <1)

PV high (>=1.2) Guanosine-5′-monophosphate (5GP), bis (adenosine)-5′-tetraphosphate (B4P),

Guanosine-5′-triphosphate (GTP), Palmitic acid (PLM)

Decanoic acid (DKA), 1-Hexadecanoyl-2-

(9Z-octadecenoyl)-sn-glycero-3-phospho-sn-glycerol (PGV)

PV low (<0.8 ) Fructose-1,6-biphoshate (FBP), Oxamic acid (OXM) 172 compounds

Thresholds were chosen arbitrarily to retrieve a small number of exemplary compounds derived from the whole compound set.

TABLE 3 | Compound-type specific target protein diversity.

Diversity

measure

Compound

class Drugs Metabolites Overlapping

compounds

Enzymatic target diversity,

EC entropy

0.900 (0.746) 1.080 (0.696) 1.183 (0.681)

Pocket variability, PV 0.776 (0.220) 0.816 (0.198) 0.860 (0.187)

EC entropies and pocket variabilities were calculated for each compound separately

and averaged across all compounds of identical class (drug, metabolite, overlapping

compound). Listed are the respective mean values with associated standard deviations

in parentheses.

leave-one-out cross-validation setting. The associated loadings
that indicate how much a physicochemical property contributes
to the prediction of pocket count associated with the first
component show high covariances for Balaban index, relative
hydrogen bond acceptor and donor count, sp3-hybridization
level and relative rotatable bond count. The latter two properties
capture compound flexibility found to be positively correlated
with promiscuity. Large negative loadings on the first component
comprise the properties ring atom count, logP, relative Platt index
and relative ring atom count. Although the predictive models
for metabolites, overlapping compounds, and all compounds
taken together resulted in only modest correlations of measured
to predicted pocket counts (r = 0.2, 0.303, 0.364, respectively),
the tendencies of the first component loadings were similar as
for drugs, whereas those of the second component differ for each
compound class (Supplementary Figure 3).

Similar prediction results were obtained for EC entropy as the
chosen target variable with comparable correlations of measured
to predicted pocket variabilities for all compounds (r = 0.342),
drugs (r = 0.324), metabolites (r = 0.368), and overlapping
compounds (r = 0.327) (Figure 8, “EC entropy,metabolites” and
Supplementary Figure 4).

While the resulting PLS model for pocket variability, PV,
yielded poor correlations of measured and predicted values for
all compounds, metabolites, and overlapping compounds (rall =
0.246, rM = −0.04, rO = 0.095), the model for drugs returned
good results with a high correlation (r = 0.588) between
measured and predicted values (Figure 8, “Pocket variability,
drugs”). Large positive loadings of the first component indicate
high covariances with PV of logP, strongest acidic pKa, isoelectric
point, relative sp3-hybridization, Balaban index, and relative
rotatable bond count. Negative loadings were associated with
size- and complexity dependent descriptors (molecular weight,
ring atom count, hydrogen acceptor/donor count, TPSA, Wiener

index, Vertex adjacency information magnitude) as well as other
descriptors such as relative Platt index and relative ring atom
count.

We also applied SVMs for the binary classification of
compounds into promiscuous vs. selective binding behavior.
Unlike the linear PLS approach, SVMs allow for non-linear
relationships as may appear promising given the non-linear
relationships of selected properties with promiscuity, especially
for drugs (Figure 8). However, performance in cross-validation
was similar across various applied linear and non-linear kernel
functions (Supplementary Table 3). The lowest cross-validation
error for drugs was determined at 26.1%, while it was 44.3% for
metabolites. For comparison, random predictions would result in
50% error.

Taken together and in line with previous reports (Sturm
et al., 2012), the set of physicochemical properties used here
proved informative for the prediction of target diversity and
compound promiscuity with properties capturing flexibility
(relative rotatable bond count and sp3-hybridization level)
and hydrogen-bond formation descriptors (relative hydrogen
bond acceptor and donor count) being most predictive, albeit
prediction accuracies reached modest accuracy levels only.
Prediction models were consistently better for drugs than
for metabolites, reflected already by the more pronounced
correlation of the various physicochemical properties and
promiscuity (Figure 2).

Metabolite Pathway, Process, and Organismal
Systems Enrichment Analysis
To investigate whether selective or promiscuous metabolites
serve specific biological functions, we performed an enrichment
analysis using pathway maps obtained from the KEGG pathway
database (http://www.genome.jp/kegg/pathway.html). We used
collective and detailed pathway ontologies for the categories
“Metabolism,” “Environmental Information Processing,” and
“Organismal Systems,” to which the metabolites were assigned
using chemical structure fingerprints (see Materials and
Methods), and calculated the significance of enrichment and
depletion for the set of promiscuous and selective metabolites by
applying the Fisher’s exact test (Table 4).

Regarding metabolism, promiscuous metabolites were found
enriched in energy, nucleotide, and amino acid metabolism
pathways. Among the 14 promiscuous metabolites associated
with energy pathways were energy currency compounds and
redox equivalents ADP, ATP, NADH, NAD+ as well as
the central metabolites pyruvate, succinate, and the amino
acid glycine. Partly overlapping with energy metabolism,
promiscuous compounds were also found associated with
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FIGURE 8 | Partial least squares regression (PLSR) using physicochemical properties. PLSR prediction models were built for drug promiscuity (logarithmic

pocket count), drug pocket variability and EC entropy of metabolites. (A) Cross-validated (CV) RMSEP (root mean square error of prediction and adjusted CV) curves

as function of the number of components in the model, (B) loading plot of the physicochemical properties for the first two components, and (C) measured against

predicted values including the number of components used in the final prediction model (nComp) and correlation coefficient, r, in a leave-one-out cross-validation

setting. PLS models for the respective additional compound classes resulting in inferior performance relative to the one shown here are presented in Supplementary

Figures 3, 4.
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Korkuć and Walther Compound-protein interactions

TABLE 4 | Metabolite pathway, process, organismal system ontology enrichment with respect to compound promiscuity.

Promiscuous metabolites Selective metabolites

PFDR-value Pathway name PFDR-value Pathway name

METABOLISM

Collective 4.96E-02 Energy metabolism 6.72E-02 Carbohydrate metabolism

4.96E-02 Nucleotide metabolism 9.06E-02 Metabolism of terpenoids and polyketides

7.73E-02 Amino acid metabolism

Detailed 6.69E-02 Polyketide sugar unit biosynthesis

PFDR-value Process PFDR-value Process

ENVIRONMENTAL INFORMATION PROCESSING

Collective 6.79E-03 Signal transduction 1.63E-03 Not assigned

Detailed 3.14E-02 AMPK signaling pathway 1.94E-05 Not assigned

4.52E-02 HIF-1 signaling pathway

PFDR-value System PFDR-value System

ORGANISMAL SYSTEMS

Collective 4.41E-05 Digestive system 1.67E-11 Not assigned

5.42E-04 Nervous system

Detailed 2.68E-02 Vitamin digestion and absorption 3.05E-13 Not assigned

7.64E-02 Synaptic vesicle cycle

Enrichment analysis was performed for “Metabolism,” “Environmental Information Processing,” and “Organismal Systems” categories using both collective and detailed ontology terms

obtained from the KEGG pathway database. Displayed are the enriched pathways for promiscuous and selective metabolites with Benjamini-Hochberg procedure corrected p-values

(<0.1). Note that the category “Not assigned” was introduced for all metabolites lacking a specific annotation in the respective category.

nucleotide metabolism. The AMP, ADP, ATP, dAMP, dGMP,
glycine were among those metabolites. By contrast, selective
compounds were preferentially found in carbohydrate metabolic
processes, which are predominantly sugar derivatives, as well
as metabolic processes involving terpenoids and polyketides
including sugar derivatives/phosphates as dTDP-4-amino-4,6-
dideoxyglucose (0FX) or dTDP-4-oxo-2,6-dideoxy-D-glucose
(DWN), but also abscisic acid (A8S), which is a central
plant hormone involved in many plant development processes.
Correspondingly, the term “Polyketide sugar unit biosynthesis”
was found enriched among in detailed term list for selective
metabolites.

In the environmental KEGG category, promiscuous
metabolites were detected significantly enriched in signal
transduction pathways comprising both general energy currency
metabolites and more specific compounds such as serotonin
(SRO)—a common neurotransmitter, zeatin (ZEA)—a cytokinin
acting as a plant growth hormone, and phytate (IHP)—an
important phosphorus storage in plants. Supplementary Figure 5
shows the chemical structure of those three compounds. Phytate
has been reported to also have roles in neurotransmission
(Vallejo et al., 1987), in protein activation or inhibition (Efanov
et al., 1997; Larsson et al., 1997), in the process of DNA
reparation (Hanakahi et al., 2000) or in mRNA export from the
nucleus to the cytosol (York, 1999), and other processes (Shears,
2001). The AMPK signaling pathway, in particular, is enriched
with promiscuous compounds.

Regarding organismal systems, promiscuous metabolites were
found enriched in the digestive (e.g., the metabolites choline,

serotonin, glutathione, pantothenate, vitamins A, B1, and others)
and nervous systems (e.g., ATP, choline, succinate, acetyl-CoA
(ACO), histamine and others). More specifically, promiscuous
metabolites were detected associated with vitamin digestion and
absorption pathways.

As a set, selective metabolites were not found specifically
enriched in any environmental or organismal system. This result
seems expected as specific metabolites are by definition less likely
to accumulate in specific processes as they are only bound to very
few target proteins/enzymes.

In summary, promiscuous metabolites found associated
with specific pathway enrichments in the “Metabolism,”
“Environmental Information Processing,” and “Organismal
systems” categories are mainly energy currency compounds,
redox equivalents, cofactors or vitamins and other amino acids.
Thus, although promiscuous, they can be found preferentially
in specific metabolic and signaling processes. By contrast,
despite their reduced promiscuity, as a set, selective metabolites
do not accumulate in specific pathways, but are found across
many different metabolic processes. Noticeable exception is the
carbohydrate metabolism with mainly selective sugar derivatives.
A detailed overview of all metabolite sets and their pathway
associations is provided Supplementary Table 2.

Discussion

We performed a systematic comparative analysis of metabolite
and drug compound sets regarding their physicochemical
properties and associated protein binding promiscuity. It
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may be questioned whether making a distinction between
metabolites and drugs with regard to their binding behavior
is reasonable. After all, both are sets of small chemicals
whose interactions with other molecules ought to be governed
by the same physicochemical principles. However, drugs
constitute a special class of compounds that were man-
selected for a particular purpose. Therefore, the relationships of
physicochemical properties and binding behavior reported for
drugs may neither be representative for all compounds in general
nor metabolites in particular. Furthermore, metabolites have
their own specific functional implications, i.e., to be involved
in enzymatic reactions. Thus, phenomena related to enzymatic
diversity are relevant for metabolites, but not necessarily for
drugs. Indeed, we found significant differences not only with
regard to property profiles (Figure 1), but also concerning
the association of properties and binding behavior (Figure 2).
Drugs exhibit pronounced dependencies, whereas metabolites
show much weaker correlations of properties and binding
promiscuity. While reasonably successful for drugs, predicting
promiscuous metabolite binding behavior proved less reliable
(Figure 8, Supplementary Figures 3, 4). Again, because the
governing physicochemical principles can be assumed identical,
drugs should be regarded as a special subset in chemical space.
As they have been selected for their very property of binding
selectively to reduce adverse side effects, departures from this
behavior resulting in promiscuous binding can be attributed
to distinct physicochemical properties. By contrast, metabolites
function both as selective and promiscuous compounds. As our
results suggest, both binding characteristics can be accomplished
by compounds of diverse physicochemical characters. Very
likely, the evolutionary selection pressure acting on metabolites
mediated by the evolutionary forces that shaped the organismic
genomes and the set of encoded enzymes operated under
constraints other than those proving ideal for drugs and their
protein interaction range. Therefore, our results also imply
that protein binding prediction results obtained for a particular
compound class cannot be transferred directly to others.
Evidently, our results are valid of the set of physicochemical
properties selected here, albeit a broad range of different
parameters was included in this study. Conceivable alternative
properties may result in different conclusions.

Despite the marked differences of binding characteristics
between the metabolite and drug compound sets, including
both compound classes in a joint analysis may still prove
useful toward achieving the goal of building prediction models
of binding specificity. Rather than whole-compound based
approaches, the concept of breaking down structures into sets
of distinct pharmacophores and functional chemical groups and
investigating their protein binding preferences may prove useful
(Meslamani et al., 2012). It can be expected that the inclusion of
asmany compounds as possible regardless of the compound-class
will help establishing statistical robustness.

We based our analysis on the comprehensive structural
information on protein-compound interactions present in the
PDB and the subsequent classification of bound compounds into
drugs and metabolites with the aid of the public data resources
DrugBank, ChEBI, HMDB, and MetaCyc. While successful in

generating a dataset of sufficient size for the investigation
of similarities and differences of compound classes and their
promiscuity, it must be cautioned, however, that the PDB
is not free from selection bias, in particular with regard to
selection of protein type and covered enzyme classes (Mestres,
2005). However, as we implemented very strict requirements
on tolerated sequence and structural similarities of proteins and
binding pockets respectively, improper bias from redundancy
seems safely excluded. Alternative approaches toward assessing
binding promiscuity are conceivable. For example, a metabolite’s
promiscuity could also be gauged as the number of diverse
chemical reactions it is involved in. However, we wished to
base our study specifically on structurally determined binding
events as this approach allowed to better cope with binding
mode redundancy, which is unclear from chemical reaction
annotations alone.

Another cautionary remark is warranted regarding the
binding affinities of compounds contained in the PDB to their
respective target protein. Depending on compound solubilities
and concentrations as well as the experimental conditions applied
during crystallization, binding affinities (Kd) can be relatively
high (up to 102µmol/l). However, for a set of 367 compound-
target interactions used in this study for which binding affinities
to the actual proteins have been reported in BindingDB (Liu et al.,
2007), the median binding affinity is Kd = 0.21µmol/l and
third quartile (75% of all compounds with known Kd) with Kd <

8.2µmol/l. Furthermore, by requiring close physical contacts
between at least three separate amino acid residues with any given
compound to be included in this study and therefore, in effect,
filtering for large interaction surfaces, loose binding events will
have been discarded. Thus, a large number of compound-protein
interactions examined here can be assumed to correspond to tight
binding events.

Despite the limitations of using the PDB, as ultimately, we
wish to predict compound-protein binding events based on
structural properties of both the ligand compound and the
target protein, basing the survey presented here on structural
information as captured in the PDB represents a necessary step
toward achieving this goal.

For the profiling of drugs with regard to binding promiscuity,
experimental binding assays such as the proprietary BioPrint
database (http://www.cerep.fr) proved useful. Based on
results obtained from BioPrint and also other studies,
lipophilicity/hydophobicity (logP) was found positively
correlated with increased promiscuity of drug compounds
(Krejsa et al., 2003), while another study that also used PDB
structures found no impact of hydrophobicity on promiscuity
(Haupt et al., 2013). Across all compounds, we found logP to be
weakly negatively correlated with promiscuity. However, when
applied to promiscuous drug compounds only, i.e., grading the
degree of promiscuity, but excluding selective compounds, a
weak positive correlation was detected for drugs in line with
previous reports (Figure 3). The observed differences may in
part be explained by the use of the PDB as the data source, or
may reflect that, indeed, the reported positive correlation of
lipophilicity with binding promiscuity is not universally valid.
Similarly, molecular weight is often but not always reported
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negatively correlated with promiscuity (Tarcsay and Keserű,
2013). We observed a negative correlation (Figure 3). Again,
the same caveats on data sources apply. Furthermore, as seen
before in the context of other properties, metabolites displayed
a deviating association of logP and promiscuity maintaining
an overall weak negative correlation, yet again underlining the
differences between the compound classes examined.

For most physicochemical properties and value ranges studied
here, an optimum curve exhibiting intervals of maximal/minimal
propensity rather than monotonic relationship of property value
and binding specificity was observed for drug compounds
(Figure 2). Thus, the present study may help to guide the
identification of lead compounds to fall into the sweet spot for
desirable binding specificity.

On the technical side of our study, we based the mapping
of compounds, which was necessary for the categorization of
PDB compounds, on comparing fingerprints. Thus, our approach
did not consider isomeric similarities such as stereoisomers or
tautomers. Therefore, similar compounds such as diastereomers
could be inadvertently mapped to each other, although they
may have different physical and chemical properties. However,
given the use of CDK-extended fingerprints (1024 bits), the
frequency of false-positive matches can be expected to be small
and, furthermore, most compound-related properties used here
are relatively insensitive to isomeric and tautomeric differences.

In the present study, we made no distinction with regard
to functional role of the actual binding site. In particular for
metabolites, it is conceivable that the canonical binding of
metabolites as substrates into their respective catalytic binding
site on the enzymes acting on them may be subject to
different constraints than auxiliary binding sites, e.g., allosteric
sites.

The performed enrichment analysis on the association of
promiscuous or selective metabolites with specific biological
processes revealed that promiscuity may indeed possess a
functional relevance. Promiscuous compounds, in particular,

were found associated with specific processes (Table 4). Thus,
as opposed to the desired selectivity of drug compounds,
promiscuous binding may have proved evolutionarily
advantageous. Here, the property of being universally usable
as evident for energy currency metabolites such as ATP etc.,
may explain the observed tendency. However, as we also
found signaling processes to be preferentially associated with
promiscuous metabolites, of which the actual compounds proved
to be known signaling molecules (Table 4, Supplementary Figure
5), suggests that broad protein targeting may have played a
role in shaping molecular signaling processes deserving further
investigation.

As the study of regulatory effects of metabolites mediated
via specific binding events to signaling proteins is a central
research question in functional metabolomics, we believe this
comprehensive and systematic survey of metabolite-protein
binding events may prove helpful for designing future studies on
this subject.
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