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Abstract: Lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen associated
with aseptic meningitis, severe systemic infections in immunocompromised persons, and congenital
anomalies. Data on the prevalence of LCMV infections are scarce. We analyzed the seroprevalence
of LCMV in continental Croatian regions. A total of 338 serum samples of professionally exposed
(forestry workers, hunters, agriculture workers in contact with rodents) and non-exposed populations
(general population, pregnant women) were tested for the presence of LCMV antibodies using indirect
immunofluorescence assay. No participants reported recent febrile disease. LCMV IgG antibodies
were detected in 23/6.8% of participants: 9.8% exposed persons and 5.1% non-exposed persons (6.1%
in the general population and 3.9% in pregnant women). No participants were LCMV IgM positive.
Although higher seropositivity was found in males compared to females (8.9% vs. 4.7%), inhabitants
of suburban/rural areas compared to inhabitants of urban areas (9.2% vs. 4.6%), and persons who
used well as a source of water compared to those who used tap (11.4% vs. 5.6%), these differences did
not reach statistical significance. Results of logistic regression showed that the presence of rodents in
the house/yard and cleaning rodent nests were associated with an elevated risk for LCMV infection
(OR = 2.962, 95% CI = 1.019–8.607).

Keywords: lymphocytic choriomeningitis virus; seroprevalence; general population; professionally
exposed; pregnant women; Croatia

1. Introduction

Lymphocytic choriomeningitis virus (LCMV) is a neglected zoonotic virus associated
with aseptic meningitis in immunocompetent individuals, life-threatening systemic in-
fections in immunocompromised patients as well as spontaneous abortions in pregnant
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women and severe congenital infections [1]. LCMV is a rodent-borne virus that belongs
to the Arenaviridae family, genus Mammarenavirus. The natural rodent host and principal
reservoir for LCMV is the house mouse (Mus musculus, Mus domesticus), but antibodies
were detected in some other rodent species such as the bank vole and yellow-necked
mouse [2]. Pet hamsters may be competent alternative reservoirs. LCMV infections in
rodents are often subclinical; however, rodents maintain high concentrations of virus in
many organs [3]. Humans become infected by inhaling infectious aerosolized particles of
dried rodent excreta, ingesting of food contaminated with the virus or by contamination of
mucus membranes with infected body fluids [4]. Human-to-human transmission does not
seem to occur, except through organ transplantation [5] and transplacental transmission
from an infected mother to fetus [6].

The clinical spectrum of disease in immunocompetent individuals varies from asymp-
tomatic infection or a mild self-limiting illness to aseptic meningitis and rarely, meningoen-
cephalitis. Other reported neurological complications associated with LCMV include trans-
verse myelitis, hydrocephalus and sensorineural hearing loss [4,7,8]. Rare non-neurological
manifestations of LCMV infection such as pancreatitis, orchitis, arthritis, parotitis, and peri-
carditis have also been reported [4]. However, in immunocompromised patients such as
transplant recipients, LCMV infection may show a different clinical course that resembles
viral hemorrhagic fever. Several clusters of fatal transplant-associated LCMV infection
with multiorgan failure have been described [9–11]. In contrast to adult infection in which
severe disease is rare, LCMV infections in pregnant women often have a severe negative
impact on the fetus [4]. Infection during the first trimester of pregnancy is associated
with an increased risk of spontaneous abortion [12]. Infection during the second and third
trimesters has been linked to congenital LCMV infection characterized by hydrocephalus,
macrocephaly, or microcephaly, psychomotor retardation, periventricular calcifications, and
chorioretinitis [13–16]. Approximately 35% of infants die from complications of congenital
LCMV infection [4].

Because of the cosmopolitan distribution of its reservoirs, LCMV most likely circulates
globally (except Antarctica) [1]. However, since many infections are asymptomatic or
present as a mild self-limiting illness, the prevalence of clinically significant LCMV infection
in humans is unknown and probably underestimated. Seroepidemiological studies revealed
that up to 15% of the population is LCMV seropositive [17–22]. While some studies showed
higher seroprevalence rates in specific population groups such as forestry workers or
hunters, others did not find differences in the seropositivity between persons professionally
exposed to rodents and the general population [23,24].

In Croatia, there are only two published studies on the seroprevalence of LCMV
infection in humans conducted in 2006 in limited geographic areas and specific population
groups. A study conducted among forestry workers in Posavina, a geographic region along
the Sava River Basin, found a seropositivity of 5.1% [25]. The other study conducted in the
rural population of Vir, a small island at the Croatian littoral, which is an endemic region
for murine typhus, showed a very high seroprevalence rate of 36% [26]. Additionally, one
study analyzed the presence of zoonotic viruses in rodents and small mammals trapped
between 2003 and 2011. LCMV was detected in 0.8% of rodent samples from continental
Croatia [27].

The aim of this study was to analyze the seroprevalence and risk factors for LCMV
infection in exposed and non-exposed persons in the Croatian mainland.

2. Materials and Methods
2.1. Study Participants

During a one-year period (June 2016–May 2017), a total of 338 serum samples collected
from professionally exposed and non-exposed persons in continental Croatian regions
were tested for the presence of LCMV antibodies using indirect immunofluorescence assay
(IFA). The exposed group consisted of 42 forestry workers, 36 hunters, and 44 agriculture
workers who reported contacts with rodents in house/resting house (mean age 44.9 ± 11.1,
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range 20–72 years). The non-exposed group consisted of 115 subjects from the general
population (mean age 45.6 ± 16.5, range 18–84 years) and 101 pregnant women (mean
age 33.4 ± 4.5, range 20–44 years). Samples from the exposed population were collected
during their regular systematic examinations at the Sv. Rok Polyclinic, while participants
in the non-exposed group were volunteers coming to the Outpatient Department of the
Croatian Institute of Public Health. Since pregnant women represent a specific population
for LCMV infection because of possible transplacental transmission of virus to the fetus,
they were analyzed as a separate group. All participants were asymptomatic at the time
of testing and did not report recent febrile disease. After obtaining informed consent, all
participants were interviewed to collect information regarding their sociodemographic
characteristics (age, gender, education, occupation) and potential risk factors (place of
residence, source of drinking water, contact with rodents, household animals). Data
were collected using a modified Health-Environment-Life Style (HELS) questionnaire
created by the Environmental Health Department, Andrija Stampar School of Public
Health, University of Zagreb.

2.2. Geographic Features of the Study Area

Based on the geographic features of the studied area, two regions were defined: central
(Zagreb macro-region) and eastern (Slavonia). The Zagreb area is an urban zone located
on the slopes of the Medvednica Mountain (the highest peak is Sljeme which reaches
an altitude of 1032 m). Zagreb surrounding areas (Hrvatsko Zagorje, Kordun, Banovina,
Moslavina, and Prigorje) are formed of hills with many villages and small towns spread
across the hillside. Slavonia (Baranja, Srijem) is a geographical region in eastern Croatia
which is generally known as lowland, mostly up to 200 m above sea level. Mountains
higher than 500 m are rare and of an insular character. A wide area of continental Croatia
is covered by forests.

2.3. Serological Testing

Serological testing was performed using IFA (Figure 1). The assay was developed
by modification of an already described method [19]. L929 cells infected with the LCMV
Armstrong strain were used as antigen. After the cells reached 80% confluence, 1 mL of the
virus was transferred to a 25 cm2 tissue culture flask and incubated at 37 ◦C with 5% of CO2
for 1 h. Cells in the control flask, at the same confluence level, were incubated with 1 mL of
Eagle’s Minimum essential medium (MEM) (Capricorn Scientific GmbH, Ebsdorfergrund,
Germany). After adding MEM that included 5% fetal calf serum (Capricorn Scientific
GmbH, Ebsdorfergrund, Germany), flasks were kept at 37 ◦C with 5% of CO2 and checked
daily for the cytopathic effect (CPE). At the first sign of CPE in infected cells, the supernatant
was removed. In both flasks, cells were detached by trypsin. After cell counting, uninfected
and infected cells were mixed in a ratio of 2:3 (to discriminate the nonspecific binding of
antibodies to cells) to a final concentration of 1 × 106 cells/mL and washed three times with
phosphate-buffered saline (PBS). Cell suspensions were spotted onto 16-well glass slides
at a volume of 10 µL per well, air-dried and stored at −20 ◦C until use. Ice cold acetone
(Kemika, Zagreb, Croatia) was used for cell fixation. Successful infection and the presence
of LCMV were confirmed in the supernatant of infected cell cultures using a reverse
transcriptase-polymerase chain reaction (RT-PCR) [28]. Diluted serum samples were
added to slides and incubated in a moist chamber at room temperature for 30 min. After
washing of slides in PBS, three times and once with distilled water, anti-human IgG FITC
conjugate containing Evans Blue as a counterstain for reducing background fluorescence
(Vircell, Granada, Spain) was added and incubated for 30 min at room temperature. After
washing, as above, the slides were examined independently by two researchers under a
Leitz Laborlux fluorescence microscope. Serum samples were diluted to 1:16 in PBS for
initial screening, and repeat testing with two-fold serial dilutions was performed on all
positive samples to determine the endpoint titer. Positive and negative control serum
samples were included in each test run. The intensity of fluorescence was compared with
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the positive control reaction. Patterns of reactivity different than those seen in the positive
control were considered nonspecific. IFA titer ≥1:16 was considered positive [26]. In
addition, IgG positive samples were further tested for the presence of IgM antibodies
to confirm/rule out recent LCMV infection. All serum samples were pre-absorbed with
anti-IgG antibodies (Eurosorb, Euroimmun, Lübeck, Germany) prior to testing for IgM
antibodies. This prevents rheumatoid factor of IgM class present in the sample from
reacting with specifically bound IgG (false positive IgM result), or specific IgG displacing
IgM from antigen (false negative IgM result).
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Figure 1. IFA-LCMV IgG positive sample (left), negative sample (right); 400× magnification. Evans
Blue dye was used as a counterstain. Positive reaction is seen as apple-green fluorescence in the
cytoplasm. Negative reaction is seen as red-counterstained cells.

2.4. Statistical Analysis

LCMV seroprevalence rates were expressed as a percentage with 95% confidence
intervals (CI). X2 or Fischer’s exact test were used to compare differences between groups.
Strength of association between dependent variables (LCMV IgG positivity and a priori
selected potential risk factors: age, gender, place of residence, educational level, water
sources, food storage, contact with rodents, pet ownership) were assessed using logistic
regression. Statistical analysis was performed using STATA/IC version 14.1 (StataCorp. LP,
College Station, TX, USA). The level of statistical significance was α = 0.05.

3. Results

LCMV IgG antibodies were detected in 23/338; 6.8% (95% CI = 4.4–10.0) of partic-
ipants, with seroprevalence rates of 9.8% (95% CI = 5.2–16.6) in exposed persons, 6.1%
(95% CI = 2.5–12.1) in the general population, and 3.9% (95% CI = 5.2–16.6) in pregnant
women (Table 1). LCMV IgG titers ranged from 1:16 to 1:128. No participants were LCMV
IgM positive.

Table 1. Seroprevalence of LCMV in continental Croatia.

Population Group N Tested (%) LCMV IgG N (%) 95% CI

Overall 338 (100) 23 (6.8) 4.4–10.0
Exposed persons 122 (36.1) 12 (9.8) 5.2–16.6

General population 115 (34.0) 7 (6.1) 2.5–12.1
Pregnant women 101 (29.9) 4 (3.9) 1.1–9.8

Prevalence of LCMV antibodies according to demographic data and potential risk
factors is presented in Table 2. In addition to contact with rodents through work activities
(professional exposure; 36.1%), many participants reported some other risk factors such as
cat/dog ownership (51.2%), suburban/rural place of residence (48.2%), well as a source
of drinking water (20.7%), food storage in the basement (17.2%), and the presence of
rodents in their house/cleaning rodents’ nests (9.5%). According to age, the highest
seropositivity (12.1%) was detected in the 41–50 year old group compared to 3.9–7.9% in
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the other age groups. Although higher seropositivity rates were found in males compared
to females (8.9% vs. 4.7%) and persons with primary school compared to those with high
school/university education (10.9% vs. 6.8%/4.6%), these differences were not significant.
In addition, there was no difference in the seropositivity in inhabitants of suburban/rural
areas compared to inhabitants of urban areas (9.2% vs. 4.6%), persons who used well as a
source of water compared to those who used tap (11.4% vs. 5.6%), and participants who
reported food storage in the basement compared to those who did not (8.6% vs. 6.4%).
Furthermore, dog and cat ownership were not associated with the LCMV seroprevalence.

Table 2. Prevalence of LCMV antibodies according to sociodemographic characteristics and risk factors.

Characteristic N Tested (%) N Positive (%) 95% CI p Value

Population group Exposed 122 (36.1) 12 (9.8) 5.2–16.6
0.116Non-exposed 216 (63.9) 11 (5.1) 2.6–8.9

Gender
Male 169 (50.0) 15 (8.9) 4.6–13.5

0.338Female 169 (50.0) 8 (4.7) 2.5–9.9

Age group

≤30 years 66 (19.5) 4 (6.1) 1.7–15.0

0.102
31–40 years 127 (37.6) 5 (3.9) 0.9–7.9
41–50 years 56 (16.6) 7 (12.5) 5.3–22.4
50+ years 89 (26.3) 7 (7.9) 3.3–15.7

Education
≤Elementary school 46 (13.6) 5 (10.9) 3.6–12.3

0.405High school 205 (60.7) 14 (6.8) 3.8–11.1
University 87 (25.8) 4 (4.6) 1.3–11.4

Place of residence
Urban 175 (51.8) 8 (4.6) 2.0–8.8

0.129Suburban/rural 163 (48.2) 15 (9.2) 5.2–14.7

Water source
Tap 268 (79.3) 15 (5.6) 3.2–9.1

0.107Well 70 (20.7) 8 (11.4) 5.1–21.3

Food storage in
basement

Yes 58 (17.2) 5 (8.6) 2.9–19.0
0.392No 280 (82.8) 18 (6.4) 3.9–10.0

Contact with rodents *
Yes 32 (9.5) 5 (15.6) 5.3–32.8

0.054No 306 (90.5) 18 (5.9) 3.5–9.1

Companion animals
(dog, cat)

Yes 173 (51.2) 12 (6.9) 3.6–11.8
0.922No 165 (48.8) 11 (6.7) 3.4–11.6

* Presence of rodents in house/yard, cleaning rodents’ nests.

Results of logistic regression showed that the presence of rodents in the house/yard and
cleaning rodent nests were significant predictors for LCMV seropositivity. Persons who re-
ported the presence of rodents in house/yard and cleaning of the rodent nests showed almost
three times higher risk for LCMV infection (OR = 2.962, 95% CI = 1.019–8.607) (Table 3).

Table 3. Logistic regression risk for LCMV IgG seropositivity.

Characteristic OR 95% CI (OR)

Male vs. female gender 1.605 0.675−3.817
Age (one-year increase) 1.017 0.986–1.049

≤Elementary school education 1
High school education 0.601 0.205–1.761
University education 0.395 0.100–1.550

Area of residence (suburban/rural vs. urban) 2.114 0.872–5.128
Food storage in basement (yes vs. no) 1.373 0.488–3.861

Water source (well vs. tap) 2.176 0.883–5.363
Presence of rodents in house/yard; cleaning rodents’

nests (yes vs. no) 2.962 * 1.019–8.607 *

Companion animals: cat/dog (yes vs. no) 1.043 0.447–2.435

* Statistical significance.
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Geographic distribution of LCMV seropositive participants is presented in Figure 2.
According to the geographical region, LCMV antibodies were detected in 21/266 (7.9%)
of participants from central Croatian regions and 2/72 (2.8%) of participants from eastern
Croatian regions.
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4. Discussion

There are very few recently published serological surveys of LCMV infection. In this
study, the overall seroprevalence rate was 6.8% which is similar to the seropositivity in
an Iraqi study conducted in 2012–2013 (6.4%) [20] and an Italian study conducted in 2015
(7%) [29]. In the 1990s, several studies were conducted in the Americas. The reported
seroprevalence rates in the general population were found to be 2.3% (1.54–6.06%) in
Argentina [30], 2.4% in San Antonio (Texas) [31], 4% in Nova Scotia (Canada) [32], and
4.3–5.1% in Birmingham (Alabama) [31]. In the 2000s, seropositivity was reported to be
1.7% in Spain [17] and 3.3% in Argentina [18]. A very low seroprevalence rate was found
in blood donors from Marseilles, France in 2007 (0.33%) [33] and blood donors from New
York in 2009 (0.2%). Since blood donors were volunteers, the population tested did not
necessarily reflect the population at risk for LCMV exposure [34]. A more recent study
from Vietnam (2015) also showed a low LCMV seropositivity of 0.8% [21].

A significant increase in the seroprevalence of LCMV was documented in the province
of Trento, Italy from 2.46% in 2002 to 7% in 2015 [29], but no risk factors including occu-
pation and many outdoor activities such as gardening, having a woodshed, having a pet
rodent, and collecting mushrooms were significantly correlated with this increase. The
only factor that appeared to be more important was woodcutting [29].

Two studies analyzed the seroprevalence of LCMV in patients with neurological
symptoms. A study from Finland conducted in 2013–2014 found 5.0% of patients were
positive for LCMV IgG antibodies. Seropositivity was equally distributed between female
and male patients, with the highest rate being in 5–10 year olds (16%), and from patients in
the Helsinki and Uusimaa Hospital District (southern Finland). Seroprevalence was much
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lower in older age groups (1.8–4.0%) [22]. A recently published study from southern Iraq
analyzed the seroprevalence of LCMV in patients with fever and neurologic manifestations
and healthy persons (control group) tested during 2012–2016. The overall LCMV IgG
seroprevalence was 8.8%. In the control group, 12.2% of participants were seropositive
compared to 7% in the group of acute febrile patients [23]. Additionally, LCMV RNA
was detected in 5.1% of cerebrospinal fluid samples from patients with a neuroinvasive
infection in southern Iraq [20].

Several studies found that seroprevalence rate differs in some population groups with
higher seropositivity in persons exposed to rodents [24,29]. Forestry workers, hunters,
agricultural workers, and persons who reported frequently visiting forest areas represented
exposed populations in our study. In this group, the LCMV seroprevalence was 9.8%
compared to 5.1% in non-exposed groups (6.1% in the general population and 3.9% in
pregnant women). A similar seroprevalence of 5.31% was reported in a low-risk group
in Italy [29]. An Austrian study found that 13% employees of the zoological garden of
Vienna, Schönbrunn were seropositive to LCMV [24]. In two studies conducted in northern
Italy (the Province of Trento), seroprevalence among forestry workers was low in 2005
(2.5%) [19], but it was significantly higher in 2015 (8.02%). In addition, seroprevalence
was high in hunters (12.9%) [29]. These results are similar with the seroprevalence of the
exposed population in our study. In a Dutch study, pig farmers and veterinarians were
tested for the presence of LCMV. The seroprevalence results showed LCMV antibodies in
2.6% of pig farmers, while none of the veterinarians were LCMV seropositive [35].

Although not significant, our results showed a difference in the seropositivity between
genders with higher seroprevalence in men (8.9%) compared to women (4.7%). Men are
more often in contact with rodents due to professional exposure (forestry workers, hunters,
fishermen) which could explain this difference. However, a previously published Croatian
study conducted among inhabitants of the Vir Island showed no gender difference [26].
In Argentina, significantly higher LCMV seroprevalence was found in men [18,23], while
in Canada seroprevalence was higher in women [32]. The possible reason for this gender
distribution is that women are more frequently exposed to dust contaminated with the
excreta of house mice during the cleaning of the house and yard. In one Iraqi study
(2012–2013) [20], a higher seroprevalence was found in women (9.7% vs. 3.5%), while in
another one (2012–2016), men were more often seropositive compared to women (7.9% vs.
5.6%). However, in patients with acute febrile illness, the gender ratio was reversed (3.9%
in women, 2.8% in men) [23].

This study showed the highest seroprevalence rate (12.7%) in the 41–50 year old age
group compared to 3.1–7.9% in other groups. In a Croatian study conducted on the Vir
Island, seropositivity was high in all age groups ranging from 32% to 40% [26]. In a study
conducted in Iraq, an increase in seropositivity with age was found ranging from 1.6%
in persons younger than 30 years to 10.3% in those older than 50 years [20]. A higher
seropositivity in older people could be explained by longer exposure to the virus during
the lifetime.

Our results showed that although not significantly, seropositivity was higher among
inhabitants of suburban and rural areas compared to inhabitants of urban areas (9.2%
vs. 4.6%). In contrast, in an Iraqi study seroprevalence was higher in urban areas (10.1%
vs. 4.4%) [20], while a Spanish study found no difference in the seropositivity among
residents of rural and urban areas [17]. Crowding in cities may explain the increased
LCMV seropositivity among the urban population [20].

Similar to results of a study from Vietnam [21], our study showed no difference in
seropositivity between persons owning a cat or dog and those who did not have household
contacts with animals.

This study showed that contact with rodents in the house/yard and cleaning rodents
nests correlated strongly with LCMV seroprevalence. Persons who reported these risk
factors had an almost three times higher risk for LCMV seropositivity compared to non-
exposed persons. A Dutch study compared the seroprevalence in active forestry workers
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(high-risk group) and supervisory forestry staff (low-risk group). Supervisory forestry staff
had a three times higher risk, while active forestry workers had a five times higher risk
for LCMV seropositivity compared to office workers (control group) [36]. A previously
conducted study in Croatia among forestry workers showed that for one working year
probability for LCMV seropositivity increased 9% [25].

Very few published studies analyzed the prevalence of LCMV in pregnant women.
In Argentina, 1.6% of pregnant women were found to be LCMV positive, but the absence
of LCMV antibodies in the newborns indicated that the mothers were infected before
pregnancy [18]. In this study, 3.9% of pregnant women showed antibodies to LCMV;
however, IgM antibodies were not detected suggesting previous LCMV infection. Since
commercial serological assays for LCMV are not widely available, the number of congenital
infections is probably underestimated. It is essential to emphasize that LCMV should
be considered in the differential diagnosis for infants and children with unexplained
hydrocephalus, micro- or macrocephaly, intracranial calcifications, chorioretinitis, and
nonimmune hydrops [16,37].

LCMV seropositive participants were distributed in both central and eastern Croatian
regions. The same geographic area is endemic for some other rodent-borne pathogens such
as hantaviruses. Since 2002, sporadic hantavirus infections as well as large outbreaks (2012,
2014, 2017) are regularly reported in continental Croatian regions [38–42]. Hantaviruses
Puumala (PUUV) and Dobrava (DOBV) were documented in humans, while Saaremaa
virus and Tula virus were recorded in rodents [43–46]. In 2017, a seroprevalence study was
conducted in exposed and non-exposed persons from continental Croatia. Seroprevalence
rates of PUUV were 13.5% in forestry workers, 3.9% in hunters, and 2.5% in the general
population. In addition, in 4.5% of forestry workers DOBV IgG antibodies were found. The
highest seropositivity of both PUUV (28.2%) and DOBV (5.1%) was detected in agriculture
workers who reported frequent contact with rodents [47]. The presented results indicate
that endemic areas for LCMV and PUUV overlap.

The main limitation of this study is a small number of seropositive participants which
might reduce the possibility to demonstrate significant differences for some potential risk
factors and LCMV seropositivity. Therefore, the results should be interpreted with caution.
Furthermore, IFA results are not confirmed using other serological methods. The plaque
reduction neutralization test is the gold standard serological test that distinguishes different
arenaviruses; however IFA is a very specific and widely used method for detection of both
LCMV IgM and IgG antibodies [48]. Although limited by the small sample size, our results
suggest that LCMV is present in Croatia and provide some new data on the epidemiology
of this neglected viral zoonosis. Further studies on large samples are needed to confirm
the role of LCMV in the etiology of neuroinvasive infections in the Croatian population.
In addition, the detection of 3.9% seropositive pregnant women highlights the need for
surveillance of LCMV as a potential cause of congenital infections.
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