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Abstract

During aging of human skin, a number of intrinsic and extrinsic factors cause the alteration

of the skin’s structure, function and cutaneous physiology. Many studies have investigated

the influence of the skin microbiome on these alterations, but the molecular mechanisms

that dictate the interplay between these factors and the skin microbiome are still not fully

understood. To obtain more insight into the connection between the skin microbiome and

the human physiological processes involved in skin aging, we performed a systematic study

on interconnected pathways of human and bacterial metabolic processes that are known to

play a role in skin aging. The bacterial genes in these pathways were subsequently used to

create Hidden Markov Models (HMMs), which were applied to screen for presence of

defined functionalities in both genomic and metagenomic datasets of skin-associated bacte-

ria. These models were further applied on 16S rRNA gene sequencing data from skin micro-

biota samples derived from female volunteers of two different age groups (25–28 years

(‘young’) and 59–68 years (‘old’)). The results show that the main bacterial pathways associ-

ated with aging skin are those involved in the production of pigmentation intermediates, fatty

acids and ceramides. This study furthermore provides evidence for a relation between skin

aging and bacterial enzymes involved in protein glycation. Taken together, the results and

insights described in this paper provide new leads for intervening with bacterial processes

that are associated with aging of human skin.

Introduction

In the past decade, there has been increased appreciation of the influence of the host micro-

biome composition and functionalities on human cellular processes, such as gut and skin

health and immunity, but also visible aging of the skin. During aging, the human skin changes
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both macroscopically and microscopically. Wrinkle formation, reduced elasticity and wound

healing, as well as a reduced barrier function are hallmarks of this process. These phenotypic

changes can be caused by intrinsic factors, such as pigmentation, anatomical variations and

hormonal changes, and extrinsic factors, such as temperature, life style and exposure to smoke

and sunlight. The molecular processes in human cells that are triggered by these signals range

from immune related processes to molecular pathways that affect the structural integrity of the

skin and the potential for rejuvenation [reviewed in 1].

The human skin is inhabited by a large number and variety of microorganisms, including

bacteria, fungi and viruses. The impact of these organisms on skin health and skin aging

becomes more and more evident with the maturation of 16S rRNA gene and metagenomics

sequencing techniques that allow for the assessment of changes in the skin microbiome upon

aging, onset of disease or therapeutic intervention. Recently, a number of studies have investi-

gated the changes in the skin microbiome associated with skin aging and therapeutic interven-

tion [2–14]. In general, the findings of these studies showed that the skin microbiome consists

of a number of microbial genera that are consistently found in all humans (notably species

from Staphylococcus, Cutibacterium, Corynebacterium and Acinetobacter) but that the exact

composition is influenced by, amongst others, body site, gender, geographic location and age.

In the study by Kim et al (2019), an overrepresentation of Alistipes, Prevotella, Porphyromonas,
Sphingobacterium, Lactobacillus, Aerococcus, Oscillospira and Ruminococcus was found in the

younger group (25–35 years old) of healthy female volunteers and an overrepresentation of

Micrococcus, Corynebacterium, Dermacoccus, Actinomyces Streptococcus, Lysinibacillus and

Bacillus in the older group (56–63 years old) [4]. Dimitriu and co-workers described an

increase in Corynebacterium, Neisseriaceae, Chryseobacterium, Prevotella, Veillonella in older

skin and also showed a direct correlation of a number of representatives of these bacterial fam-

ilies with wrinkles and the number of pigmented spots in skin [3]. Similarly, Juge and cowork-

ers described higher levels of Corynebacterium and reduced levels of Propionibacterium in

older skin (54–69 years old) [9].

Although over- and underrepresented bacterial taxa can be readily associated with younger

or older skin, the limiting step and challenge in the analysis of these data is the interpretation

of biological relevance in context of the research question or hypothesis. Specifically, little

insight is currently available in literature on the interplay between microbial functionalities

and human cellular processes (referred to as co-metabolism). In order to do this correctly, pro-

found knowledge of the physiology of bacterial skin residents needs to be combined with

knowledge on the physiology of the host that is related to the skin condition of interest.

Currently, analysis of such multidimensional data is performed by mapping to canonical

knowledge that is stored in databases, for instance to determine enriched biological processes

that are modified upon intervention or during the progression of a disease [15]. Whereas this

is a valid approach, the value of the outcome is intrinsically limited by the lack of databases

that store cross-domain knowledge on co-metabolism between microbiological and human

cellular processes (e.g. KEGG and GMM) [16–18].

To increase our understanding of the influence of microbial functionalities (represented by

the skin microbiome) on molecular processes involved in aging of human skin, there is a need

for improved computational data analysis workflows that allow for integration of knowledge

and data on both aspects. In this paper, we describe a conceptual framework to substantiate

functional links between the human skin microbiome (cheek area) and cellular processes

involved in age-related skin appearance. Similar workflows have previously been successfully

employed [19, 20].

First, we constructed an expert-curated set of bacterial functionalities (genes) linked to skin

aging-related intrinsic processes that was obtained through an extensive literature study. We
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applied bioinformatics approaches to identify these genes in publicly available bacterial

genome sequences. To substantiate literature findings and confirm the link between specific

microbial taxa to aging skin, skin microbiota compositional data was generated through 16S

rRNA gene amplicon sequencing of microbial DNA isolated from cheek skin samples of

female subjects with different age-related skin appearance. The functional potential of the

defined microbial communities was inferred by combining compositional data with gene con-

tent information from reference genomes of skin bacteria. Finally, the described methodology

was validated on a publicly available skin-related shotgun metagenomics dataset.

Materials and methods

Literature searches

Literature searches were carried out in June 2019 by running multiple searches on MedLine

using the following search term " "skin aging" OR "skin rejuvenation" OR (skin AND "extrinsic

aging") OR (skin AND "intrinsic aging") ". This yielded 8616 abstracts that were subsequently

evaluated. Evaluation was done by manually screening the abstracts for statements on molecu-

lar pathways, metabolites, microorganisms and microbial genes. For a selected number of

abstracts containing such statements, full text papers were collected and evaluated. From these

full text papers, citations were screened and, where relevant and not yet retrieved in the first

search, added to the set of references. Finally, from this set of literature references, gene sym-

bols and/or locus tags encoding microbial functionalities were retrieved to be used as input for

the generation of Hidden Markov Models (HMMs) (see below).

Hidden Markov Models

Reference genomes. For the relevant microbial functionalities that were retrieved from

literature, reference genomes were collected from the NCBI sequence repository. Selection was

based on availability of genome sequences of specific strains mentioned in the literature refer-

ences. If the genome sequence of the strain mentioned was not available, a sequence from a

representative strain from the same species was included in the reference genome set as an

alternative. Alternative strains for which the source of isolation was marked as ‘skin’ were

given priority over strains from a non-skin related or unknown origin. The final list of refer-

ence genomes is provided in S1 Table. A maximum-likelihood phylogenetic tree of selected

reference genomes was generated with FastTree [21], based on concatenated multiple

sequence alignment of all genes with exactly one copy on each of the genomes, as determined

with OrthAgogue [22].

Generation of Hidden Markov Models. Bacterial functionalities with a common evolu-

tionary origin in the reference genome set (see section ‘Reference genomes’) were identified

using OrthAgogue. Multiple sequence alignments were generated with Muscle [23] for each

orthologous group containing one or more genes deemed relevant for skin aging processes, as

described under “Literature searches”. From these multiple sequence alignments, HMMs were

constructed using hmmbuild (https://hmmer.org). The HMMs were designed specifically for

skin microorganisms (in contrast to already existing signatures in publicly available databases

that are based on a generic and broad range of microorganisms), which limits the application

of these models to this specific application. For each model, a score threshold (GA) was deter-

mined through a heuristic approach and manual curation by taking the average of the lowest-

scoring true positive and the highest-scoring true negative, using all proteins from the ortholo-

gous group as true positives and all other proteins from the reference genome set as true nega-

tives. These scores were included in the individual HMM files as gathering threshold (GA). A
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workflow description for generating the HMMs, including the python script used for this

study, are provided in a Github repository.

Relative abundance of bacterial functionalities associated with skin aging. To assess

the abundance of bacterial genes in the identified pathways through application of the gener-

ated HMM’s (see section ‘Generation of Hidden Markov Models’), publicly available metage-

nomics datasets of a skin-derived and gut-derived microbial population was collected from

literature [24, 25]. From these studies, samples were chosen based on the provided metadata of

the subjects and/or sampling site that were included in these studies. The skin samples were

chosen based on healthy volunteers collected through a similar sampling technique (swabs) on

a similar sampling site (facial skin) as applied in this study (see section below). The gut samples

were chosen based on healthy individuals who did not recently use antibiotics. Assembly of

these reads was done using Spades (version 3.11.1) with the “—meta” flag enabled. Genes were

called using Prodigal (version 2.6.2) [26]. Read mapping was performed by first making a

nucleotide database using Bowtie2 (version 2.2.3) and then mapping the reads to the called

genes usingHUMANn2 (version 0.9.9) with the “—bypass-nucleotide-index", “—bypass-trans-

lated-search" and “—nucleotide-database" flags enabled. Bacterial functionalities associated

with cellular processes involved in skin aging were identified in the bacterial genomes and

shotgun metagenomics datasets by scanning protein-coding sequences (either as provided

genome annotations, or as described above) using hmmsearch (version 3.1b2) (https://hmmer.

org) with HMMs and score thresholds as described above. Overview tables with per-sample

counts (either of genome sequences or shotgun metagenomics samples) of each HMM were

generated using Python (https://python.org) and HUMANn2. Model level counts were gener-

ated by summing up the counts for the individual members in the model. By using two addi-

tional HUMANn2 functions (humann2_join_tables and humann2_renorm_table) the relative

abundance was calculated between all samples, to diminish the differences in read number

between samples and between the two different datasets. Finally, the relative abundance was

normalized for each individual module by dividing all gut and skin samples within one module

by the sample with the highest value. Through this approach, all samples within one module

are relative to each other, between 0 and 1.

Sample collection and phenotypic assessment

To substantiate literature findings, skin microbiota compositional data was generated through

16S rRNA gene sequencing of microbial DNA isolated from skin swab samples (cheek area) of

2 x 25 healthy female volunteers of two different age groups (20–28 years old (‘young’) and

59–68 years old, (‘old’)).

Study design and skin swab collection. A human trial was performed for single sample

collection of cheek samples from two groups of female subjects from the general European

descent population (n = 25 per group) in Belgium. The subject age was between 20 and 28

years (younger population group), and between 59 and 68 years (older population group).

Exclusion criteria were: nodulo-cystic lesions/acne or sebaceous gland condition; eczema, pso-

riasis, atopy; prescribed or unprescribed use of skin treatment within 1 month prior to inclu-

sion (oral or topical antibiotic, antifungal or topical steroids); smokers or having smoked in

the past 2 years; recent history of chronic alcohol consumption defined as more than 15 stan-

dard servings per week or more than 3 servings per day; tanning bed usage less than 1 month

prior to inclusion; sunbathing 1 month prior to inclusion; habitual exposure to sun or use of a

tanning bed; clear UV light effects in the younger subjects that might be related to aging

(inspected by the principal investigator during the recruitment procedure); primary immuno-

deficiency patients known to have dysbiosis in community diversity; use of tanning
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dihydroxyacetone (DHA) less than 1 month prior to study start; excessive habitual caffeine use

(more than 6 small/medium cups of coffee or soda daily); body mass index higher than 30;

pregnancy or lactation. At the moment of inclusion, subjects were requested to: refrain from

using OTC products for any kind of skin treatment 7 days prior to the sampling; refrain from

any facial creams and make-up on the day of the sampling; refrain from swimming in a chlori-

nated pool, using a hot tub, sauna/steam baths, 48 hours prior to sampling visit; refrain from

any facial treatments, facial masks, scrubs/peelings 2 weeks prior to the sampling visit; to fol-

low specific bath/shower procedures (showering with plain water only, soap should be avoided

as much as possible, and no scrubbing of the skin with a towel) during 24 hours prior to sam-

pling visit–on the day of sampling showering was avoided completely (also with plain water).

The study was conducted according to the principles of the Declaration of Helsinki latest

version Fortaleza, Brazil, October 2013. The candidates were informed verbally on the aim of

the study and the study procedures. All participating subject signed the informed consent

form. Data was analyzed anonymously. No IRB approval was requested for this study, for two

reasons. Firstly, the study was carried out in Belgium, where IRB approval for this type of stud-

ies is not required. Secondly, there was no intervention or invasive procedure involved for the

collection of the skin swab samples. Participants were requested to fill out a questionnaire (not

considered as a psychological burden), and were only subjected to mild skin characteristics

measurements.

During site visit information on the following parameters/metadata was collected: skin

hydration (Corneometer, Courage&Khazaka); transepidermal water loss (TEWL) (Aquaflux,

Biox); skin pH (Metrhom); skin smoothness, scaliness, sebum spots (Visioscan, Courage&-

Khazaka); standardized images were taken from the face (frontal and left view) with the Visia-

CR (Canfield) to assess invisible and visible spots, red features, pores, porphyrins, color, fine

lines, wrinkles and roughness. Additional metadata on skin properties was collected during

the study by means of a questionnaire.

Samples were collected by means of swab sampling from the intact cheek skin. In short,

skin sampling was performed using a standard custom-made sampling template, which allows

for consistent sampling of 2 cm2 of the cheek areas (both sides used). Before sampling of each

subject, the template was cleaned with ethanol (70%) and air dried. To further minimize sam-

ple cross-contamination, a fresh pair of sterile gloves was worn by the person sampling each

individual. The area within the template was swabbed with a sterile HydraFlock collection

swab (3206H-25; Puritan Diagnostics, USA). The collection swab was soaked in sterile PBS

+ solution (PBS of pH 7.0 with 0.5% Tween-20). Next, the swab was dried very briefly on a

sterile gauze before the start of the sampling. Samples were taken by direct swabbing of the

cheek skin. The shaft of the swab was held parallel to the skin surface and it was rubbed back

and forth 10 times applying firm pressure. Immediately after swabbing, each swab was swirled

in a 1.5 ml collection tube with 0.25 ml of sterile PBS+ solution with 2.5 μl of 1 mM EDTA

(DNase inhibitor). The swab was left in the solution and the samples were stored on ice before

freezing and shipment on dry ice for further processing at NIZO (The Netherlands).

16S rRNA gene sequencing and bioinformatics. A detailed description of the DNA isola-

tion, 16S rRNA gene sequencing, bioinformatics and statistical methods is provided in S1

Appendix. In short, sequencing data was analysed with a bioinformatics workflow based on

Qiime 1.8 [27] and functional potential of the bacterial communities was inferred using a

method analogous to PICRUSt [28]. Correlation of specific microbial taxa to skin age was pri-

marily based on the skin aging score of the samples collected. This skin aging score was deter-

mined using eight skin age-related physiological measurements and was calculated as

described in S1 Appendix. Raw sequencing data is available from the European Nucleotide

Archive (ENA) with accession number PRJEB45035.
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Results

To define the influence of microbial functionalities represented by the skin microbiome on

molecular processes involved in aging of human skin, a multistep bioinformatics and data

analysis approach was applied (Fig 1). First, scientific literature was evaluated to identify

shared metabolic biological pathways involved in skin aging between humans and skin micro-

organisms. Based on the microbial pathways, Hidden Markov Models (HMMs) were con-

structed that were subsequently used to analyze the reference genomes from skin organisms,

metagenomic data and 16S rRNA gene profiling data. The details of each step are described in

the Materials and Methods section. Together, conceptual framework substantiates functional

links between the human skin microbiome (cheek area) and cellular processes involved in age-

related skin appearance as described in the sections below.

Co-metabolic processes involved in skin aging

Through an extensive literature study, we selected molecular processes in human cells that are

involved in skin aging for which associations with microbial functionalities in the skin micro-

biome were described. Host pathways were designated after the literature search and were

used for a targeted investigation of samples from subjects included in this study. An overview

is provided in Table 1 and detailed descriptions of each process and co-metabolism pathways

involved are provided in S2 Appendix.

The pathways listed in Table 1 are centred around a single metabolite (e.g. urocanic acid),

entire pathways (e.g. histidine conversion, ceramide biosynthesis) or a more general group of

Fig 1. Schematic overview of the workflow applied this study. The description of the multistep approach is linked to

the results obtained and described in this manuscript (figure numbers).

https://doi.org/10.1371/journal.pone.0258960.g001
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molecules (e.g. fructokinases that may play a role in glycation of multiple distinct proteins). It

should be noted that this table is not a comprehensive reflection of the entire spectrum of met-

abolic pathways that play a role in bacterial-host interaction. For example, it is well known that

skin bacteria interact with the host immune system by activation of Toll like receptors (TLRs)

[29]. However, some important ligands for these TLRs, such as dsDNA, ssDNA or cell wall

fragments, cannot be linked to specific bacterial genes or operons and are therefore not

included in this overview.

Genomic distribution of genes involved in skin aging

To study the distribution of microbial functionalities defined in Table 1 across a set of relevant

skin microbiota-specific microorganisms, genome sequences of such bacteria were obtained

from NCBI as described in the Materials and Methods section (S1 Table). The proteins

encoded by these genomes were scanned with HMMs representing the aging-related function-

alities described above. For each organism the number of genes predicted to encode these

functions was identified (Fig 2).

This analysis shows that subsets of related species are responsible for specific functionalities

of interest, instead of equal distribution of the functionalities across the species. For example,

species from the Anaerococcus and Lactobacillus group do in general score low on all the mod-

ules; they do not contain the full pathways for porphyrins metabolism or that code for proteins

that are involved in proteolysis on the skin. This is in line with the fact that porphyrin metabo-

lism has not been described in literature for species of these groups. In contrast, the porphyrins

metabolism pathways are fully represented in species of Corynebacterium and Cutibacterium
(formerly known as Propionibacterium) species (Fig 2). Another notable feature is the relative

lack of genes for fatty-acid beta oxidation in Staphylococcus species, which is in agreement

Table 1. Co-metabolic process involved in skin aging.

Host Process Rationale Targets for co-metabolism Bacterial genes/ functionalities

UV-B induced immune

suppression

UVB radiation causes immune suppression, mediated by

urocanic acid.

urocanic acid hutH

Histidine conversion Histidine and other amino acids act as natural moisturizers

on the skin and display antimicrobial activity.

histidine, other amino acids hut-operon

Protein glycation Glycation of collagen type 1 and other structural proteins is

a major cause of loss of skin elasticity.

collagen, vimentin, elastin fructokinases

Pigmentation Production of melanin via the conversion of tyrosine and

phenylalanine is a major pathway in pigmentation.

tyrosine, phenylalanine tyrosinase

Ceramide metabolism Incorrect ceramide metabolism has been associated with a

decreased barrier function.

ceramides, sphingolipids,

fatty acids

ceramide metabolism (cerN, sphR).

Fatty acid metabolism Fatty acids are of major importance as carbon source,

antimicrobial compounds and signalling molecules.

Fatty acids, in particular long

chain fatty acids

Fatty acid metabolism, fatty acid

biosynthesis, beta-oxidation, Fad operon.

Lipoteichoic acid signaling LTA interacts with TLR2 and influences the recruitment of

immune cells.

lipoteichoic acids LTA biosynthesis (tag operon, LtaS)

Porphyrin synthesis Increased porphyrin levels are often used as an indicator of

skin aging.

porphyrins, heme porphyrin biosynthesis, deoRHem-operon

Proteolysis Bacterial proteases can degrade structural proteins in the

skin

collagen, elastin lasA, lasB, sspA, sspB, sspC

Oxygen radical production

and scavenging

Increased production of ROS and reduced capacity to

scavenge these radicals.

oxygen radicals, glutathione catalase, superoxide dismutase

Most important host processes involved in skin aging, including targets for assumed microbiome co-metabolism and associated bacterial genes or functionalities, as

further described in S2 Appendix. The targets for co-metabolism can either be metabolites that are produced by human or bacterial cells, or human proteins (e.g.

receptors) that can be targeted by the metabolites.

https://doi.org/10.1371/journal.pone.0258960.t001
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with the large differences previously described for fatty acid uptake and metabolism between

Gram-negative and Gram-positive organisms and among Gram-positive organisms [30].

The illustration in Fig 2 highlights the fact that the skin microbiome as a whole performs

functions that cannot be performed by a single species and that complex cross-interactions

play a crucial role in understanding host-related processes.

Metagenomic distribution of genes involved in skin aging

To assess the abundance of the identified bacterial genes in the pathways, the HMMs were also

applied on metagenomic datasets derived from gut [24] and skin samples [25] (Fig 3). The

most notable differences observed between both dataset types are those in the modules related

to histidine metabolism, porphyrin metabolism and proteolysis. Importantly, none of the

modules is consistently fully covered within a single sample, and especially the fatty acid beta-

oxidation is not well represented on the skin. This implicates that not all functionalities are yet

fully presented in the current collection of HMMs.

Distribution of genes in aging skin

To define bacterial microorganisms that are associated with younger or aging skin, we gener-

ated a microbiota compositional data set based on 16S rRNA gene sequencing obtained from

microbial DNA isolated from skin samples (superficial layer, cheek area) from healthy, female

subjects of two different age groups, as described in S1 Appendix. Analysis of this dataset

shows a significant link between samples of subjects from different age groups (‘young’ and

‘old’) and bacterial composition on the OTU (Operational Taxonomic Unit) level (Fig 4).

Inspection of the redundancy analysis (RDA) for variation in microbiome composition

between the samples of both age groups, shows that, amongst others, Corynebacterium, Acine-
tobacter, Leptotrichia, Veillonella and Chryseobacterium associate with older skin.

To further quantify the correlation between microbiome composition and skin age, a skin

aging (SA) score was calculated for each sample based on eight clinical measurements that rep-

resent phenotypic appearance of aging skin (namely pores number, roughness, wrinkles num-

ber, porphyrins number, red features number, skin color evenness, spots-visible number, and

spots-invisible number) as described in S1 Appendix. In short, a high SA score means that

there is a high score on the above parameters that are in general associated with an aging skin.

This approach is similar to the methodology used by Dimitru and co-workers [3], with the

exception that in the SA score more parameters are included. Fig 5A shows the link between

the SA score and the microbiome composition for skin swab samples from female volunteers

of the ‘young’ age group. Interestingly, this analysis already shows a significant link between

the microbiota composition and SA scores. We only included the samples of the ‘young’ group

in this analysis in order to remove the large effect of chronological age on the microbiome (Fig

3). This analysis thus shows a relation with the microbiome that is purely based on actual (age-

related) appearance of the skin and not the defined chronological age. Interestingly, a higher

SA score in this subject group is mainly driven by Propionibacterium and not by the organisms

that were shown to be associated with chronological age (Fig 4).

Next, the functional potential of the defined skin microbiota was predicted by combining

data on the presence and absence of bacterial genes linked to skin aging processes using the

compositional profiles derived from the 16S rRNA gene sequence data. As shown in Fig 5B, a

Fig 2. Skin aging module scores in reference genomes. Different functionalities are shown in columns, the reference genomes are shown in rows. The

columns are clustered based on modules within a known pathway (color-coded) and the individual modules from that pathway are shown on the x-axis. The

number of genes predicted to encode the specified functions is shown on a scale from white to red, with red showing the highest number.

https://doi.org/10.1371/journal.pone.0258960.g002
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number of genes are significantly linked to the SA score, These genes mostly belong to i) the

fatty acid beta-oxidation pathway (fadI, fadJ and fadB genes) and ceramide pathway (cerN),

which are negatively correlated to the SA score, ii) the genes related to fatty acid biosynthesis

(fabI, fabH and fabG genes) and iii) genes from histidine metabolism (hutH, hutU and hutL),

which are positively correlated to the SA score. In addition, genes involved in response to oxi-

dative stress (sodA, katA, katG) are related to the SA score, but the direction of this response is

Fig 3. Hits for the HMM modules on metagenomic datasets from gut and skin samples. Different functionalities are shown in

columns whereas the publicly available metagenomic datasets from gut and skin samples are shown in rows. The columns are clustered

based on modules within a known pathway (color-coded) and the individual modules from that pathway are shown on the x-axis. The

relative abundance of each functionality is shown on a scale from white to red, with red showing the highest level of abundance.

Abundance was normalized to values between 0 and 1 within each module (columns) by dividing all gut and skin samples within one

module by the sample with the highest value.

https://doi.org/10.1371/journal.pone.0258960.g003
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ambiguous; katG is associated with low SA score and the functionally overlapping katA is asso-

ciated with a higher SA score.

Human pathways related to skin aging were identified for which metabolites were also pres-

ent in molecular pathways of skin commensals. However, this does not necessarily imply that

all bacterial pathways are also operational on the skin, or active in such a way that they actually

influence the process of skin aging. Therefore, based on the counts for the individual genes of

all skin aging associated pathways, a pathway score was calculated by adding up all the individ-

ual counts for each gene in a pathway. These pathway scores were subsequently compared to

the SA score for the individual subjects by creating a linear model for each pathway (Fig 6 and

S2 Table). This analysis revealed that only in the ‘young’ subjects there was a significant corre-

lation between a number of pathways and the skin aging score of these subjects. For subjects in

Fig 4. Variation in microbiome composition of cheek skin samples from female volunteers of ‘young’ and ‘old’ age groups, based on OTUs. Samples were

taken from the superficial layer of the cheek. Age group (‘young’ and ‘old’) explains 1.1% of the variation in the microbiome. Separation of samples by age group

was significant (p = 0.044). Samples from the ‘young’ and ‘old’ age group are indicated by black circles and blue squares, respectively. Arrows are plotted

supplementary and represent 20 bacterial genera that are associated most with the age groups. The length and direction of the arrows indicate the relative strength

of the association with either group.

https://doi.org/10.1371/journal.pone.0258960.g004

PLOS ONE Charting host-microbe co-metabolism in skin aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0258960 November 10, 2021 11 / 16

https://doi.org/10.1371/journal.pone.0258960.g004
https://doi.org/10.1371/journal.pone.0258960


the ‘old’ age group, such a relation was not found (S2 Table). The microbial pathways for radi-

cal protection, histidine metabolism and fatty acid biosynthesis are significantly more preva-

lent in skin with a high SA score (i.e. older looking skin of young female subjects, S2 Table).

Fig 5. RDA at the OTU and gene level for all cheek samples derived from subjects of the young age group. A] RDA on OTU level. The SA score explains 6% of the

variation in the microbiome. Separation of samples by SA score was statistically significant (p = 0.002). Blue gradient of the sample symbols indicates relative SA score

value (dark blue = high SA score). B] RDA on microbial genes involved in skin aging processes for all cheek samples (superficial layer) derived from subjects of the

‘young’ age group. The SA score explains 7.7% of the variation in the predicted skin aging-related genes of the microbiome. Separation of samples by SA score was

statistically significant (p = 0.026). Grey arrows represent the 15 predicted genes that show the highest association with low or high SA score.

https://doi.org/10.1371/journal.pone.0258960.g005

Fig 6. Normalized functional pathway level scores for subjects of the young age group. All subjects are in columns and were ordered based on SA score, in

which a low SA score represents a young-looking skin and a high score corresponds to older-looking skin (from left to right). Functional pathways involved in

skin aging (derived from Table 1) are in rows and were normalized to the maximum score per row.

https://doi.org/10.1371/journal.pone.0258960.g006
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This higher level pathway integration is in agreement with the redundancy plots in Fig 5 that

show that the abundance of a number of the individual genes from these pathways were associ-

ated with the SA score.

Discussion

This study focused on an approach for biological interpretation of 16S rRNA gene and metage-

nomic profiling data in relation to the intrinsic and extrinsic processes that define skin aging.

This approach is an addition to the large number of tools that currently exist for the analysis of

community sequence data, including methods for sequence read mapping, statistical compari-

sons of multi-dimensional data and functional inference [reviewed in 31]. Our approach

addresses the challenge of translating a list of OTUs and associated taxa to a description of

functional pathways and molecules that can shed light on the actual mode of action of skin

aging processes. Although we have exemplified its use on bacterial genomes, 16S rRNA gene

and bacterial community sequencing data, the HMMs presented in this paper can also directly

be used on metatranscriptomic data. The use of HMMs in sequence-based approaches has

been used before [19, 20] but the construction of a HMM set for multiple skin aging-related

pathways is new.

Application of the models described in this manuscript on a set of skin-related reference

genomes shows that there is a clade-specific distribution of these functional pathways.

Together with the fact that some essential pathways, such as fatty acid conversion, are not

found in typical skin organisms such as S. epidermidis and S. warneri. This finding indicates

that the set of modules described in this study is not yet complete and extension towards more

clade-specific modules is warranted. The process described in this paper uses a manual process

for creating these HMMs based on manual curation of a set of scientific articles. Integrating

automated text mining methods [32] and automated HMM construction [33] could facilitate

this process.

In this study, in which 16S rRNA gene sequencing data was profiled from a cohort of female

subjects of ‘young’ and ‘old’ age groups, an association of (amongst others) Corynebacterium,

Veillonella and Chryseobacterium with the old age group was found, which is in agreement

with earlier reports [3, 4, 9]. However, when the microbiome was correlated with a set of phe-

notypic read outs aggregated in a skin aging (SA) score based on eight clinical parameters asso-

ciated with older skin appearance, predominantly a higher relative abundance of

Propionibacterium was associated with older-looking skin. This underscores the importance of

selecting the most relevant phenotypic variable when running the statistical analysis.

When aggregating to a pathway level, the data from this study demonstrate that skin with a

higher SA score is associated with an increased presence of bacterial metabolic pathways

involved in radical protection and protein glycation, and underrepresentation of genes related

to pigmentation and LTA synthesis. Based on these data, we assume that these microbial path-

ways play a role in the physiological processes for skin aging. However, inferring a causal rela-

tionship, or even inferring that these pathways are also functionally more active than other

pathways in these groups, can only be justified when more data are available on the actual lev-

els of metabolites and transcripts of these genes. Moreover, a more sophisticated method for

scoring could be developed that takes into account the dependence and redundancy of gene

functions in pathways, rather than simply counting the number of instances of these genes.

Taken together, the approach described in this study (Fig 1) should be regarded as a useful

approach for generation of hypotheses with respect to the involvement of bacterial pathways

in human physiological process, and as such generate leads for dedicated follow-up experi-

ments. This approach can also be applied on data derived from other body sites (e.g. gut, oral
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cavity, etc), although the set of reference organisms to include should be adapted to reflect rele-

vance to that particular body site. In case of application of the approach on different site on

skin, the same reference organisms can be used as described in this manuscript as these are a

relevant representation of organisms that can be found at multiple sites on the skin. In all

cases, targeted verification in wet-lab studies will be required. These experiments could be

directed at measuring the transcript levels of bacterial genes, profiling the metabolite profiles

or in depth (intervention) assessment of the effect of host-related processes [34]. Together

with an improved and extended collection of HMMs for skin aging-related processes, these

experiments will provide the next step in understanding the molecular processes in skin aging

and the role of the microbiome in these processes.

Supporting information

S1 Table. Reference genome list. List of reference genomes used for the generation of Hidden

Markov Models.

(XLSX)

S2 Table. Significant relationship between SA scores and pathway level scores in skin swab

samples of ‘young’ and ‘old’ subjects.

(DOCX)

S1 Appendix. Materials and methods for phenotypic assessment. Detailed description of

materials and methods applied for the generation of a 16S rRNA gene dataset on the micro-

biota of cheek skin samples.

(PDF)

S2 Appendix. Co-metabolic processes involved in skin aging. Detailed description of co-

metabolic processes in human cells that are involved in skin aging with links to microbial func-

tionalities in the skin microbiome.

(PDF)

S1 Dataset. Raw data HMM scripts.

(HMM)

S2 Dataset. Raw data HMM input file with gene symbols, locus tags, organisms and func-

tions.

(XLSX)

S3 Dataset. Raw data file with metadata and relative abundances of OTUs, taxa and pre-

dicted functionalities.

(XLSX)

Acknowledgments

The authors would like to thank Shannon Sanacora and Andrei Prodan for their contributions

to this manuscript.

Author Contributions

Conceptualization: Wynand Alkema, Jos Boekhorst, Sabina Lukovac, Guus A. M. Kortman.

Data curation: Wynand Alkema, Jos Boekhorst, Sabina Lukovac, Guus A. M. Kortman.

Formal analysis: Wynand Alkema, Jos Boekhorst, Fini De Gruyter, Sabina Lukovac, Guus A.

M. Kortman.

PLOS ONE Charting host-microbe co-metabolism in skin aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0258960 November 10, 2021 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258960.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258960.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258960.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258960.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258960.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258960.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258960.s007
https://doi.org/10.1371/journal.pone.0258960


Investigation: Wynand Alkema, Jos Boekhorst, Sabina Lukovac, Guus A. M. Kortman.

Methodology: Wynand Alkema, Jos Boekhorst, Guus A. M. Kortman.

Project administration: Robyn T. Eijlander, Sabina Lukovac.

Supervision: Robyn T. Eijlander, Sabina Lukovac.

Validation: Wynand Alkema, Guus A. M. Kortman.

Visualization: Wynand Alkema, Jos Boekhorst, Fini De Gruyter, Guus A. M. Kortman.

Writing – original draft: Wynand Alkema, Jos Boekhorst, Fini De Gruyter, Guus A. M.

Kortman.

Writing – review & editing: Robyn T. Eijlander, Steve Schnittger, Sabina Lukovac, Kurt Schil-

ling, Guus A. M. Kortman.

References
1. Vukmanovic-Stejic M, Rustin MH, Nikolich-Zugich J, Akbar AN (2011) Immune responses in the skin in

old age. Curr Opin Immunol 23: 525–531. https://doi.org/10.1016/j.coi.2011.05.008 PMID: 21703840

2. Chng KR, Tay AS, Li C, Ng AH, Wang J, et al. (2016) Whole metagenome profiling reveals skin micro-

biome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 1: 16106. https://doi.org/10.

1038/nmicrobiol.2016.106 PMID: 27562258

3. Dimitriu PA, Iker B, Malik K, Leung H, Mohn WW, et al. (2019) New Insights into the Intrinsic and Extrin-

sic Factors That Shape the Human Skin Microbiome. mBio 10. https://doi.org/10.1128/mBio.00839-19

PMID: 31266865

4. Kim HJ, Kim JJ, Myeong NR, Kim T, Kim D, et al. (2019) Segregation of age-related skin microbiome

characteristics by functionality. Sci Rep 9: 16748. https://doi.org/10.1038/s41598-019-53266-3 PMID:

31727980

5. Kong HH, Oh J, Deming C, Conlan S, Grice EA, et al. (2012) Temporal shifts in the skin microbiome

associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22: 850–

859. https://doi.org/10.1101/gr.131029.111 PMID: 22310478

6. Oh J, Conlan S, Polley EC, Segre JA, Kong HH (2012) Shifts in human skin and nares microbiota of

healthy children and adults. Genome Med 4: 77. https://doi.org/10.1186/gm378 PMID: 23050952

7. Zeeuwen PL, Boekhorst J, van den Bogaard EH, de Koning HD, van de Kerkhof PM, et al. (2012) Micro-

biome dynamics of human epidermis following skin barrier disruption. Genome Biol 13: R101. https://

doi.org/10.1186/gb-2012-13-11-r101 PMID: 23153041

8. Huang S, Haiminen N, Carrieri AP, Hu R, Jiang L, et al. (2020) Human Skin, Oral, and Gut Microbiomes

Predict Chronological Age. mSystems 5.

9. Juge R, Rouaud-Tinguely P, Breugnot J, Servaes K, Grimaldi C, et al. (2018) Shift in skin microbiota of

Western European women across aging. J Appl Microbiol 125: 907–916. https://doi.org/10.1111/jam.

13929 PMID: 29791788

10. Wu L, Zeng T, Deligios M, Milanesi L, Langille MGI, et al. (2020) Age-Related Variation of Bacterial and

Fungal Communities in Different Body Habitats across the Young, Elderly, and Centenarians in Sar-

dinia. mSphere 5.

11. Zhai W, Huang Y, Zhang X, Fei W, Chang Y, et al. (2018) Profile of the skin microbiota in a healthy Chi-

nese population. J Dermatol 45: 1289–1300. https://doi.org/10.1111/1346-8138.14594 PMID:

30183092

12. Wilantho A, Deekaew P, Srisuttiyakorn C, Tongsima S, Somboonna N (2017) Diversity of bacterial com-

munities on the facial skin of different age-group Thai males. PeerJ 5: e4084. https://doi.org/10.7717/

peerj.4084 PMID: 29177119

13. Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, et al. (2017) Aging-related changes in the

diversity of women’s skin microbiomes associated with oral bacteria. Sci Rep 7: 10567. https://doi.org/

10.1038/s41598-017-10834-9 PMID: 28874721

14. Somboonna N, Wilantho A, Srisuttiyakorn C, Assawamakin A, Tongsima S (2017) Bacterial communi-

ties on facial skin of teenage and elderly Thai females. Arch Microbiol 199: 1035–1042. https://doi.org/

10.1007/s00203-017-1375-0 PMID: 28391505

PLOS ONE Charting host-microbe co-metabolism in skin aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0258960 November 10, 2021 15 / 16

https://doi.org/10.1016/j.coi.2011.05.008
http://www.ncbi.nlm.nih.gov/pubmed/21703840
https://doi.org/10.1038/nmicrobiol.2016.106
https://doi.org/10.1038/nmicrobiol.2016.106
http://www.ncbi.nlm.nih.gov/pubmed/27562258
https://doi.org/10.1128/mBio.00839-19
http://www.ncbi.nlm.nih.gov/pubmed/31266865
https://doi.org/10.1038/s41598-019-53266-3
http://www.ncbi.nlm.nih.gov/pubmed/31727980
https://doi.org/10.1101/gr.131029.111
http://www.ncbi.nlm.nih.gov/pubmed/22310478
https://doi.org/10.1186/gm378
http://www.ncbi.nlm.nih.gov/pubmed/23050952
https://doi.org/10.1186/gb-2012-13-11-r101
https://doi.org/10.1186/gb-2012-13-11-r101
http://www.ncbi.nlm.nih.gov/pubmed/23153041
https://doi.org/10.1111/jam.13929
https://doi.org/10.1111/jam.13929
http://www.ncbi.nlm.nih.gov/pubmed/29791788
https://doi.org/10.1111/1346-8138.14594
http://www.ncbi.nlm.nih.gov/pubmed/30183092
https://doi.org/10.7717/peerj.4084
https://doi.org/10.7717/peerj.4084
http://www.ncbi.nlm.nih.gov/pubmed/29177119
https://doi.org/10.1038/s41598-017-10834-9
https://doi.org/10.1038/s41598-017-10834-9
http://www.ncbi.nlm.nih.gov/pubmed/28874721
https://doi.org/10.1007/s00203-017-1375-0
https://doi.org/10.1007/s00203-017-1375-0
http://www.ncbi.nlm.nih.gov/pubmed/28391505
https://doi.org/10.1371/journal.pone.0258960


15. Ebrahimpoor M, Spitali P, Hettne K, Tsonaka R, Goeman J (2019) Simultaneous Enrichment Analysis

of all Possible Gene-sets: Unifying Self-Contained and Competitive Methods. Brief Bioinform.

16. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on

genomes, pathways, diseases and drugs. Nucleic Acids Res 45: D353–D361. https://doi.org/10.1093/

nar/gkw1092 PMID: 27899662

17. Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Garcia Yunta R, et al. (2016) Species-function rela-

tionships shape ecological properties of the human gut microbiome. Nat Microbiol 1: 16088. https://doi.

org/10.1038/nmicrobiol.2016.88 PMID: 27573110

18. Prestat E, David MM, Hultman J, Tas N, Lamendella R, et al. (2014) FOAM (Functional Ontology

Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus.

Nucleic Acids Res 42: e145. https://doi.org/10.1093/nar/gku702 PMID: 25260589

19. Chaudhari NM, Gautam A, Gupta VK, Kaur G, Dutta C, et al. (2018) PanGFR-HM: A Dynamic Web

Resource for Pan-Genomic and Functional Profiling of Human Microbiome With Comparative Features.

Front Microbiol 9: 2322. https://doi.org/10.3389/fmicb.2018.02322 PMID: 30349509

20. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, et al. (2019) The neuroactive potential of

the human gut microbiota in quality of life and depression. Nat Microbiol 4: 623–632. https://doi.org/10.

1038/s41564-018-0337-x PMID: 30718848

21. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large

alignments. PLoS One 5: e9490. https://doi.org/10.1371/journal.pone.0009490 PMID: 20224823

22. Ekseth OK, Kuiper M, Mironov V (2014) orthAgogue: an agile tool for the rapid prediction of orthology

relations. Bioinformatics 30: 734–736. https://doi.org/10.1093/bioinformatics/btt582 PMID: 24115168

23. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.

Nucleic Acids Res 32: 1792–1797. https://doi.org/10.1093/nar/gkh340 PMID: 15034147

24. Sankaranarayanan K, Ozga AT, Warinner C, Tito RY, Obregon-Tito AJ, et al. (2015) Gut Microbiome

Diversity among Cheyenne and Arapaho Individuals from Western Oklahoma. Curr Biol 25: 3161–

3169. https://doi.org/10.1016/j.cub.2015.10.060 PMID: 26671671

25. Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, et al. (2015) The human skin double-

stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associa-

tions with the host microbiome. mBio 6: e01578–01515. https://doi.org/10.1128/mBio.01578-15 PMID:

26489866

26. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, et al. (2010) Prodigal: prokaryotic gene recogni-

tion and translation initiation site identification. BMC Bioinformatics 11: 119. https://doi.org/10.1186/

1471-2105-11-119 PMID: 20211023

27. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis

of high-throughput community sequencing data. Nat Methods 7: 335–336. https://doi.org/10.1038/

nmeth.f.303 PMID: 20383131

28. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, et al. (2013) Predictive functional pro-

filing of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31: 814–821.

https://doi.org/10.1038/nbt.2676 PMID: 23975157

29. Sun L, Liu W, Zhang LJ (2019) The Role of Toll-Like Receptors in Skin Host Defense, Psoriasis, and

Atopic Dermatitis. J Immunol Res 2019: 1824624. https://doi.org/10.1155/2019/1824624 PMID:

31815151

30. Yao J, Rock CO (2017) Exogenous fatty acid metabolism in bacteria. Biochimie 141: 30–39. https://doi.

org/10.1016/j.biochi.2017.06.015 PMID: 28668270

31. Mallick H, Ma S, Franzosa EA, Vatanen T, Morgan XC, et al. (2017) Experimental design and quantita-

tive analysis of microbial community multiomics. Genome Biol 18: 228. https://doi.org/10.1186/s13059-

017-1359-z PMID: 29187204

32. Price MN, Arkin AP (2017) PaperBLAST: Text Mining Papers for Information about Homologs. mSys-

tems 2. https://doi.org/10.1128/mSystems.00039-17 PMID: 28845458

33. Szalkai B, Grolmusz V (2019) MetaHMM: A webserver for identifying novel genes with specified func-

tions in metagenomic samples. Genomics 111: 883–885. https://doi.org/10.1016/j.ygeno.2018.05.016

PMID: 29802977

34. Kuehne A, Hildebrand J, Soehle J, Wenck H, Terstegen L, et al. (2017) An integrative metabolomics

and transcriptomics study to identify metabolic alterations in aged skin of humans in vivo. BMC Geno-

mics 18: 169. https://doi.org/10.1186/s12864-017-3547-3 PMID: 28201987

PLOS ONE Charting host-microbe co-metabolism in skin aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0258960 November 10, 2021 16 / 16

https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662
https://doi.org/10.1038/nmicrobiol.2016.88
https://doi.org/10.1038/nmicrobiol.2016.88
http://www.ncbi.nlm.nih.gov/pubmed/27573110
https://doi.org/10.1093/nar/gku702
http://www.ncbi.nlm.nih.gov/pubmed/25260589
https://doi.org/10.3389/fmicb.2018.02322
http://www.ncbi.nlm.nih.gov/pubmed/30349509
https://doi.org/10.1038/s41564-018-0337-x
https://doi.org/10.1038/s41564-018-0337-x
http://www.ncbi.nlm.nih.gov/pubmed/30718848
https://doi.org/10.1371/journal.pone.0009490
http://www.ncbi.nlm.nih.gov/pubmed/20224823
https://doi.org/10.1093/bioinformatics/btt582
http://www.ncbi.nlm.nih.gov/pubmed/24115168
https://doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1016/j.cub.2015.10.060
http://www.ncbi.nlm.nih.gov/pubmed/26671671
https://doi.org/10.1128/mBio.01578-15
http://www.ncbi.nlm.nih.gov/pubmed/26489866
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
http://www.ncbi.nlm.nih.gov/pubmed/20211023
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
https://doi.org/10.1038/nbt.2676
http://www.ncbi.nlm.nih.gov/pubmed/23975157
https://doi.org/10.1155/2019/1824624
http://www.ncbi.nlm.nih.gov/pubmed/31815151
https://doi.org/10.1016/j.biochi.2017.06.015
https://doi.org/10.1016/j.biochi.2017.06.015
http://www.ncbi.nlm.nih.gov/pubmed/28668270
https://doi.org/10.1186/s13059-017-1359-z
https://doi.org/10.1186/s13059-017-1359-z
http://www.ncbi.nlm.nih.gov/pubmed/29187204
https://doi.org/10.1128/mSystems.00039-17
http://www.ncbi.nlm.nih.gov/pubmed/28845458
https://doi.org/10.1016/j.ygeno.2018.05.016
http://www.ncbi.nlm.nih.gov/pubmed/29802977
https://doi.org/10.1186/s12864-017-3547-3
http://www.ncbi.nlm.nih.gov/pubmed/28201987
https://doi.org/10.1371/journal.pone.0258960

