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Abstract: This study explored the effects of age and body fat content on responses to whole body
cryotherapy (WBC) following a downhill running bout. Forty-one male participants (mean ± SD age
42.0 ± 13.7 years, body mass 75.2 ± 10.8 kg) were allocated into WBC (n = 26) and control (CON,
n = 15) groups. WBC participants were divided into old (OLD, ≥45 years, n = 10) and young (YNG,
<40 years, n = 13), as well as high fat (HFAT, ≥20%, n = 10) and low fat (LFAT ≤ 15%, n = 8) groups.
Participants completed a 30 min downhill run (15% gradient) at 60% VO2 max. The WBC group
underwent cryotherapy (3 min, −120 ◦C) 1 h post-run and CON participants passively recovered
in a controlled environment (20 ◦C). Maximal isometric leg muscle torque was assessed pre and
24 h post-run. Blood creatine kinase (CK) and muscle soreness were assessed pre, post, one hour
and 24 h post-run. Muscle torque significantly decreased in both groups post-downhill run (WBC:
220.6 ± 61.4 Nm vs. 208.3 ± 67.6 Nm, p = 0.02; CON: 239.7 ± 51.1 Nm vs. 212.1 ± 46.3 Nm, p = 0.00).
The mean decrease in WBC was significantly less than in CON (p = 0.04). Soreness and CK increased
24 h post for WBC and CON (p < 0.01) with no difference between groups. Muscle torque significantly
decreased in OLD participants (p = 0.04) but not in YNG (p = 0.55). There were no differences between
HFAT and LFAT (all p values > 0.05). WBC may attenuate muscle damage and benefit muscle strength
recovery following eccentrically biased exercises, particularly for young males.

Keywords: whole body cryostimulation; muscle damage; sport; exercise; eccentric

1. Introduction

Whole body cryotherapy (WBC) is an extremely cold treatment (typically below
−100 ◦C) that has been used for pain remission, musculoskeletal disorders and skin le-
sions [1,2]. Its recent emergence in sport and exercise has added a unique perspective to
sports recovery practice [3,4]. Several reported effects of WBC post-exercise include attenu-
ated blood markers such as creatine kinase (CK) [5], muscle soreness [6], inflammation [7,8]
and alleviated reductions in muscle torque [9,10]. Despite these effects, the precise impact
of WBC in sports and performance remains equivocal [11,12], whilst negative effects have
also been reported [13]. Consequently, there remains a need to address the efficacy of WBC
in greater depth to better inform the sporting community of its overall merit.

Inter-individual variability—specifically age and body fat—is a potentially important
consideration when evaluating the impact of WBC and informing optimal practices. Prob-
able causes of reduced recovery and performance capacity with ageing include muscle
mass and strength loss (sarcopenia), oxidative damage and chronic inflammation [14],
which could affect responses to cryotherapy post-exercise. There is a paucity of literature
concerning differences in responses to cryotherapy between young and old populations.
Cutaneous vasoconstrictor and cold-induced vasodilation following extreme cold can be
blunted in older compared to younger individuals [15]. Reduced blood vessel responsive-
ness and distensibility [16] may be significant in the context of cryotherapy because of the

Int. J. Environ. Res. Public Health 2021, 18, 2906. https://doi.org/10.3390/ijerph18062906 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph18062906
https://doi.org/10.3390/ijerph18062906
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18062906
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18062906?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 2906 2 of 15

impact on blood redistribution and heat transfer. Therefore, it is conceivable that older
individuals would respond to the treatment less optimally than their younger counterparts.

Outcomes to cryotherapy treatments among differing body compositions have not
been investigated extensively despite body fat content influencing cold exposure reac-
tions [17]. Higher fat individuals may retain core and tissue temperatures to larger extents
following cryotherapy (owing to reduced vasodilation) compared to leaner individuals [18].
Additionally, subcutaneous fat provides thermal insulation and decreases thermal con-
ductance [15]. Thus, the response and overall tolerance to cold temperatures can vary
accordingly. A link has been demonstrated between body fat content and duration required
to reduce intramuscular temperatures following cold treatments [19]. The theory that
higher adiposity could affect the response to WBC is supported by observations of strong
negative correlations between body fat percentage and skin temperatures [20,21]. Despite
the reported differences in outcomes too cold between different body compositions, the im-
plications of such variances for WBC application post-exercise remains under-investigated.

This study aimed to examine the effect of WBC following a downhill run, a common ex-
ercise protocol imposing continual eccentric contractions on the quadriceps muscles. Such
bouts cause muscle torque losses, elevated soreness, plasma CK, inflammatory cytokines
and reduced running economy [22–25], established characteristics of exercise-induced
muscle damage (EIMD). One theme of interest is how cryotherapy could potentially allevi-
ate this muscle breakdown and damage, which would present an advantage for athletes
since EIMD has negative consequences on locomotor biomechanics and subsequent per-
formance [26,27]. Since downhill running is a whole-body exercise that stresses several
physiological systems, it is of interest to determine if WBC could enhance recovery follow-
ing this modality. Other commonly adopted damage protocols, such as isolated eccentric
leg extensions [28] and arm curls [29,30] may be less sports specific, so any WBC-induced
responses may be less applicable for general sports recovery. Despite the extensive liter-
ature on downhill running and WBC, no study has yet to assess the impact of WBC on
recovery following a downhill running bout. Additionally, previous studies that have
demonstrated positive effects for WBC treating EIMD (e.g., [6,10]) typically used multiple
treatments post-exercise, which are less economical and practical than a single treatment.

Therefore, the principal aims of this study were as follows:

1. To assess the overall impact of a single WBC treatment on recovery following a
downhill run.

2. To assess the impact of age and body fat content on recovery response to a single
WBC treatment post-exercise.

It was hypothesised that (1) WBC would attenuate muscle damage markers post-
downhill running, thereby supporting its use as a means to enhance recovery after muscle
damaging exercise; and (2) younger men with lower body fat contents would respond
more positively to WBC than other populations.

2. Materials and Methods
2.1. Participants

A sample size calculation (G*Power: significance level 0.05, power 0.8, effect size 0.5)
revealed that 9 participants per group would be appropriate to detect an effect. Forty-
one male volunteers (mean ± SD age 42.0 ± 13.7 years, height 1.76 ± 0.08 m, body
mass 75.2 ± 10.8 kg, body fat 19.2 ± 4.5%) were recruited for the study, which adopted
an independent groups design. Participants were randomly assigned as cryotherapy
(WBC, n = 26) and control (CON, n = 15). To assess the influence of differing ages and
body fat contents, the WBC group was sub-divided into old (OLD, ≥45, mean ± SD age
58.1 ± 7.9 years, n = 10) and young (YNG, <40, mean ± SD age 29.2 ± 7.6 years, n = 13) [31],
as well as high fat (HFAT, ≥20%, mean ± SD body fat 23.0 ± 2.9%, n = 10) and low fat
(LFAT, ≤15%, mean ± SD 13.8 ± 1.4%, n = 8) groups [30]. Three WBC participants were
aged 40–44 and 8 WBC participants had 15.5–19.5% body fat, which were not part of these
sub-groups. They were still included in the overall analysis between WBC and CON.
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All participants were of a suitable fitness level for the demands of the study, consis-
tently partaking in physical activity a minimum of twice a week. Prior to further screening
and assessment, all participants’ blood pressure was assessed and written informed con-
sent was provided. Ethical approval was obtained from the University of Northampton
Graduate School Research Ethics Committee and the study was conducted according to
guidelines of the Declaration of Helsinki.

Sample characteristics for each group are summarised in Table 1.

Table 1. Summary of characteristics for whole body cryotherapy (WBC) and control (CON) participants. Data presented as
mean ± SD.

WBC
(n = 26)

CON
(n = 15)

OVERALL
(n = 41)

T Test between WBC
and CON

Age (yrs) 41.8 ± 15.5 42.3 ± 10.4 42.0 ± 13.7 p = 0.93
Height (m) 1.78 ± 0.09 1.75 ± 0.06 1.76 ± 0.08 p = 0.21

Body mass (kg) 74.9 ± 10.8 75.6 ± 11.1 75.2 ± 10.8 p = 0.85
Body mass index (kg/m2) 23.7 ± 2.2 24.7 ± 2.9 24.1 ± 2.5 p = 0.22

Body fat % 18.8 ± 4.3 20.0 ± 4.9 19.2 ± 4.5 p = 0.4
Absolute VO2 max (L/min) 3.61 ± 0.55 3.53 ± 0.63 3.58 ± 0.57 p = 0.67

Relative VO2 max (mL/min/kg) 48.4 ± 5.1 46.8 ± 6.5 47.8 ± 5.6 p = 0.32

2.2. Initial Trial

Participants were asked to refrain from alcohol and strenuous exercise for 24 and 48 h
respectively prior to all trials. Initially, participants’ anthropometric characteristics were as-
sessed, including height and body mass. Body fat content was assessed by skinfold calipers
(Harpenden Indicators, UK) according to the International Society for the Advancement of
Kinanthropometry. Four skinfold sites were used: Biceps, triceps, subscapular and iliac
crest, with the total skinfold thickness converted into body fat percentage [32]. Participants
were familiarised to a muscle torque assessment using a dynamometer (Section 2.5), which
involved two submaximal isometric contractions (60% and 80% effort), followed by a
singular maximal contraction.

Maximal aerobic capacity (VO2 max) was measured using an online breath by breath
analyser (Cortex Metalyser, Germany) calibrated prior to assessment, following an in-
cremental treadmill (Cosmos, Germany) protocol. From a starting speed of 6 km/h and
gradient of 1%, the speed increased every two minutes by 2 km/h until 16 km/h was
reached. Thereafter, gradient was increased by 2% each stage. Rating of perceived exertion
(RPE) [33] and heart rate (HR) were recorded at the end of each stage. The assessment
was terminated once the participant experienced volitional exhaustion. The absolute and
relative VO2 max values were reported and 60% of the absolute VO2 max was calculated.

Participants then completed the muscle torque assessment involving four maximal
contractions with the highest torque determined as the pre-torque score.

2.3. Second Trial

Within 3 to 14 days of the first trial, participants returned to the laboratory (ambient
temperature 20 ± 0.5 ◦C) to perform their main trial. Initially, skin temperatures were
assessed using four sites—chest (c), triceps/posterior upper arm (a), anterior thigh (t) and
calf (ca)—using a thermal imaging camera (FLIR systems, Sweden). Images were captured
whilst the camera was held 3.0 metres from the participant and set at an emissivity factor
of 0.98. The images were stored using FLIR Tools+ software and analysed based on pre-
established regions of interest on the four body regions. The mean skin temperature was
calculated as follows [34]:

Ts = 0.3 × (c + a) + 0.2 × (t + ca)
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Tympanic temperature was assessed by a thermometer (Braun Thermoscan 7) inserted
into the right ear canal. Participants provided a 30µl fingerstick blood sample for the
measurement of CK levels using a test strip inserted into a Reflotron Plus analyser (Oberoi
Consulting, Derby).

Muscle soreness and mental wellbeing were assessed via visual analogue scales
(VAS) [35]. For soreness, participants squatted against a wall with knees flexed to a 90º
angle [35], holding the position for three seconds. Participants marked on the scale how
much pain they felt in their upper legs from “no pain” to “pain as bad as it could possibly
be”. Mental wellbeing was marked on a scale from “I do not feel comfortable, healthy and
satisfied” to “I feel extremely comfortable, healthy and satisfied”. The distances marked
were converted to percentages.

Following a two minute warm up at 5 km/h, participants commenced their 30 min
treadmill (HPCosmos, Germany) downhill run at a 15% decline gradient with HR and
RPE monitored every 5 min. The treadmill speed was gradually adjusted so that the
participants’ average HR throughout the 30 min was roughly equivalent to their target HR.
The predetermined HR was extrapolated from the VO2 max vs. HR relationship, so that a
running intensity corresponding to 60% of their absolute VO2 max was maintained. After
completing the run, tympanic and skin temperatures were immediately assessed, followed
by CK, muscle soreness and mental wellbeing.

Cryotherapy participants were transported to a therapy centre for their WBC treatment
at −120 ◦C scheduled for 60 min post-downhill run. Control participants remained seated
in the laboratory under controlled conditions (20 ◦C). Thermal images were again taken
5 min post-WBC. Tympanic temperature, CK, muscle soreness and mental wellbeing were
measured 10 min post-WBC. Measures for the control participants were recorded at the
same time points as stated above.

2.4. Third Trial

Participants returned to the laboratory 24 h post-downhill run. Blood CK, muscle
soreness and wellbeing were measured prior to the muscle torque assessment. The study
protocol is summarised in Figure 1.Int. J. Environ. Res. Public Health 2021, 18, x 5 of 18 
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2.5. Assessment of Muscle Torque

Unilateral isometric maximal torque of the right quadriceps was assessed by an
isokinetic dynamometer (Biodex Medical Systems 3, New York, NY, USA) calibrated prior
to the study. The dynamometer was fitted with a lever arm attachment with a shin pad
locked in at an angle of 90º leg extension. Participants sat on the dynamometer chair with
90◦ hip flexion. The chair was adjusted so that the pivot of the lever arm was located
adjacent to the lateral epicondyle of the right leg. The right leg was strapped to the lever
arm attachment ensuring the bottom of the shin pad was located just superior to the medial
malleolus. The shoulders, trunk and right thigh were strapped tight to avoid excessive
body movements [9]. Participants were asked to place their arms across their chests without
holding the shoulder straps.

Participants performed two warm up contractions at 60% and 80% effort respectively,
(separated by a 30 s recovery period) by exerting force against the pad with their right
leg. Following two minutes rest, they performed four maximal contractions (with two
minute recoveries) with verbal encouragement given throughout [36]. All contractions
were 5 s in duration. The peak torque (Nm) was determined as the maximum of the four
contractions. A pilot study conducted in the laboratory revealed a day to day variance of
5.3% within individuals.

2.6. Whole Body Cryotherapy Treatment

Cryotherapy treatments were undertaken in a two-stage cryogenic chamber (JUKA,
Warszawa, Poland). The source of cold was liquid cryogenic gas originating from external
pressure vessels. Participants were screened for contraindications following the completion
of a health questionnaire, including hypertension, other cardiovascular diseases, open
wounds, cold intolerance, neural/mental disorders and cancers. Before entering the cham-
ber, participants wore a head band, face mask, gloves, socks, elbow and knee bands, and
clogs. Verbal instructions were provided. Participants entered the cryotherapy chamber,
initially exposed to a vestibule chamber at −60 ◦C for 30 s, followed by the main chamber
at −120 ◦C for 150 s. On completion, the exit door for the main chamber opened and the
participant exited. Thereafter, participants were advised to stay mobile before changing in
usual clothing.

2.7. Statistical Analyses

All data was analysed using IBM SPSS Version 26. Data for all variables was assessed
for normal distribution by the Shapiro-Wilk test. With the exception of tympanic and
skin temperatures, all variables significantly deviated from normality and were therefore
log or square root transformed as appropriate. A two-way repeated measures ANOVA
was used to assess the interaction effect between group (WBC vs. CON; OLD vs. YNG;
HFAT vs. LFAT) and time for all major dependent variables: Muscle torque was assessed
with a 2 (group) × 2 (time) interaction; soreness, CK and wellbeing were assessed with
a 2 × 4; tympanic and skin temperatures were assessed with a 2 × 3. Paired t tests
and pairwise comparisons with a Bonferroni correction were applied where necessary
to examine differences between specific timepoints. Effect sizes (Cohen’s d) and 95%
confidence intervals (CI) were calculated for muscle torque, the main dependent variable
of interest.

3. Results

Original data (pre-transformation) are presented in figures.

3.1. WBC vs. CON
3.1.1. Muscle Torque

There was no significant difference in pre-muscle torque between WBC and CON
groups (p = 0.27). There was a significant decrease in maximal isometric muscle torque for
both groups following the downhill run (WBC, 220.6 ± 61.4 Nm, 95% CI [197.0, 244.2] vs.
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208.3 ± 67.6 Nm, 95% CI [182.4, 234.3], p = 0.02, d = 0.19; CON, 239.7 ± 51.1 Nm, 95% CI
[213.8, 265.5] vs. 212.1 ± 46.3 Nm, 95% CI [188.7, 235.6], p < 0.01, d = 0.57, Figure 2). The
mean decreases were 12.2 ± 24.8 Nm (6.4%) and 27.5 ± 14.6 Nm (11.5%) for WBC and CON
respectively with a significant difference between groups (p = 0.04, d = 0.67). The overall
difference between groups over time was non-significant (interaction effect, p = 0.10).Int. J. Environ. Res. Public Health 2021, 18, x 7 of 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Maximal muscle torque response between WBC (n = 26) and CON (n = 15) groups. * p < 
0.05 for decrease in both groups. Data presented as means ± standard deviations. 
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3.1.2. Muscle Soreness

Soreness significantly increased from baseline to post-downhill run, one hour and 24 h
post-run for both WBC and CON groups, (overall effect of time p < 0.01 for both groups)
with a peak reached at 24 h (47% for WBC; 44% for CON, Figure 3). There was no difference
between groups over time (interaction effect, p = 0.87).
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3.1.3. Creatine Kinase

Blood CK significantly increased from baseline to 24 h post-run for both WBC
(157.3 ± 110.4 UI/L vs. 418.4 ± 325.4 UI/L, p < 0.01) and CON (176.3 ± 147.0 vs.
553.6 ± 286.1 UI/L, p = 0.02, Figure 4). There was no overall difference between groups
over time (interaction effect, p = 0.78). The mean CK increases (baseline to 24 h post) were
179.7% and 291.4% for WBC and CON participants respectively with no difference between
groups (p = 0.42).
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3.1.4. Tympanic Temperature

There was no difference in tympanic temperature from baseline to post-downhill run
in the WBC group. For the WBC group, tympanic temperature significantly decreased
post-WBC (36.8 ± 0.5 ◦C vs. 36.4 ± 0.4 ◦C; p < 0.01). There were no differences for the CON
group. There was a significant difference between WBC and CON groups at 1 h post-run
(36.4 ± 0.4 ◦C for WBC; 36.7 ± 0.3 ◦C for CON, p = 0.01, Figure 5).

Figure 5. Tympanic temperature response for WBC (n = 26) and CON (n = 15) groups. * p < 0.01 for
difference between groups at post-WBC. Data presented as means ± standard deviations.
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3.1.5. Skin Temperature

Skin temperature significantly decreased five minutes post-cryotherapy for the WBC
group (32.8 ± 0.9 ◦C vs. 27.3 ± 1.5 ◦C; p < 0.01) whilst there was no difference for the CON
group (Figure 6).

Figure 6. Skin temperature response for WBC (n = 26) and CON (n = 15) groups. * p < 0.01 for
decrease in WBC group. Data presented as means ± standard deviations.

3.1.6. VAS Wellbeing

Wellbeing scores did not significantly change between any paired time point for the
WBC group, although the overall time effect approached significance (p = 0.06). There was
no difference for the CON group (p = 0.44) and no interaction between group and time
(p = 0.53). VAS wellbeing scores are displayed in Table 2.

Table 2. Wellbeing scores for WBC (n = 26) and CON (n = 15) groups. Data presented as means ±
standard deviations.

Pre Post-Run 1 h Post 24 h Post ANOVA Time Effect

WBC 83.8% ± 16.7 82.3% ± 16.0 85.5% ± 15.0 81.1% ± 20.2 p = 0.06
CON 78.9% ± 21.6 80.8% ± 18.4 81.2% ± 19.2 78.1% ± 16.9 p = 0.44

3.2. Effect of Age and Body Fat
3.2.1. Muscle Torque

There was a significant difference between age groups for pre-muscle torque (p < 0.01).
The pre-post difference in torque was significantly affected by age (interaction effect,
p = 0.02). There was a significant decrease in OLD participants (178.3 ± 37.5 Nm, 95% CI
[155.1, 201.5] vs. 155.7 ± 49.2, 95% CI [125.2, 186.2], p = 0.04, d = 0.52) but no decrease in
YNG participants (257.3 ± 60.7 Nm, 95% CI [224.3, 290.3] vs. 253.3 ± 54.0 Nm, 95% CI
[223.9, 282.6], p = 0.55, d = 0.07), following WBC (Figure 7A). The pre-post difference in
torque was not significantly affected by body fat (interaction effect, p = 0.41). There was a
trend for a slight decrease in torque for the HFAT group (187.9 ± 31.5 Nm, 95% CI [168.4,
207.4] vs. 167.6 ± 46.6 Nm, 95% CI [138.7, 196.5], p = 0.07, d = 0.52) and no decrease for
LFAT (247.5 ± 68.0 Nm, 95% CI [200.4, 294.6] vs. 238.0 ± 70.8 Nm, 95% CI [189.0, 287.0],
p = 0.2, d = 0.14, Figure 7B).
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Figure 7. Maximal muscle torque response between YNG (<40 years, n = 13) and OLD (≥45 years, n = 10) participants (A),
as well as between HFAT (≥20%, n = 10) and LFAT (≤15%, n = 8) participants (B) within WBC group. * p < 0.05 for decrease
in OLD; ** p < 0.05 for interaction between age group and time. Data presented as means ± standard deviations.

3.2.2. Other Variables

The results for all other variables regarding age and body fat groups are summarised
in Tables 3 and 4 respectively.

There was no overall effect of age (p = 0.68) or body fat (p = 0.78) on the muscle
soreness response. The CK response was not affected by age group (p = 0.22) and there
was no significant difference between OLD and YNG at 24 h post, when the highest CK
value occurred (p = 0.13). There was no effect of body fat on CK (p = 0.59), including at 24
h post (p = 0.16). Tympanic temperature was significantly higher for YNG than OLD at
post-WBC (36.5 ± 0.4 ◦C vs. 36.1 ± 0.3 ◦C p < 0.01). There was no effect of body fat on
tympanic temperature (p = 0.44). There was no effect of age (p = 0.21) or body fat (p = 0.6)
on weighted mean skin temperatures. There was no effect of age group (p = 0.17) or body
fat (p = 0.22) on wellbeing scores.

Table 3. Results for all variables other than muscle torque between OLD (≥45 years, n = 10) and YNG (<40 years, n = 13)
WBC participants.

Variable WBC Age
Group Pre Post-Run 1 h Post

(Post-WBC) 24 h Post p Value for Time ×
Group Interaction

Muscle
Soreness

OLD 8.7% ± 7.2 28.6% ± 16.6 21.6% ± 15.8 42.6% ± 21.4
0.68YNG 10.1% ± 10.7 40.2% ± 22.7 31.3% ± 14.1 49.5% ± 21.8

CK (UI/L)
OLD 149.5 ± 106.2 142.6 ± 94.5 175.9 ± 119.7 351.0 ± 283.3

0.22YNG 177.0 ± 111.9 196.1 ± 124.7 212.7 ± 194.2 502.1 ± 349.1

Tympanic Temp OLD 36.4 ◦C ± 0.5 36.7 ◦C ± 0.6 36.1 ◦C ± 0.3 * n/a
0.17YNG 36.8 ◦C ± 0.4 36.8 ◦C ± 0.5 36.5 ◦C ± 0.4 * n/a

Skin Temp OLD 32.6 ◦C ± 0.6 32.2 ◦C ± 0.7 27.4 ◦C ± 1.7 n/a
0.21YNG 32.8 ◦C ± 0.6 33.3 ◦C ± 0.7 27.4 ◦C ± 1.4 n/a

VAS Wellbeing OLD 88.5% ± 16.1 84.8% ± 13.3 87.7% ± 13.4 82.6% ± 21.6
0.17YNG 85.7% ± 10.5 84.8% ± 11.8 88.9% ± 8.2 85.1% ± 9.5

* p < 0.01 for difference in tympanic temperature between groups post-WBC. Data presented as means ± standard deviations.
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Table 4. Results for all variables other than muscle torque between HFAT (≥20%, n = 10) and LFAT (≤15%, n = 8) WBC participants.

Variable WBC Body
Fat Group Pre Post-Run 1 h Post

(Post-WBC) 24 h Post p Value for Time ×
Group Interaction

Muscle
Soreness

HFAT 9.1% ± 6.8 31.9% ± 16.7 24.8% ± 17.0 44.0% ± 22.0
0.78LFAT 12.25% ± 12.4 41.9% ± 20.8 34.1% ± 14.3 55.8% ± 17.2

CK (UI/L)
HFAT 153.7 ± 103.3 147.1 ± 93.2 181.1 ± 118.3 391.2 ± 254.4

0.59LFAT 205.6 ± 131.4 233.7 ± 141.9 249.1 ± 234.2 588.3 ± 413.4

Tympanic Temp HFAT 36.5 ◦C ± 0.4 36.6 ◦C ± 0.6 36.2 ◦C ± 0.4 n/a
0.44LFAT 36.8 ◦C ± 0.4 36.7 ◦C ± 0.5 36.5 ◦C ± 0.4 n/a

Skin Temp HFAT 32.7 ◦C ± 0.7 32.4 ◦C ± 1.0 27.1 ◦C ± 2.0 n/a
0.6LFAT 32.9 ◦C ± 0.6 33.1 ◦C ± 0.7 27.3 ◦C ± 0.9 n/a

VAS Wellbeing HFAT 82.2% ± 22.8 80.7% ± 21.6 81.7% ± 21.9 79.9% ± 25.9
0.22LFAT 89.5% ± 9.4 80.8% ± 14.3 89.3% ± 9.6 80.1% ± 20.9

Data presented as means ± standard deviations.

4. Discussion

The main finding in this study was that whole body cryotherapy blunted the decrease
in muscle torque following a downhill running bout that was observed in the control group,
indicating that WBC may attenuate muscle damage and support post-exercise recovery.
Young participants responded significantly better to WBC with regards to muscle torque
retention when compared to the older participants. These results partially support the
initial hypotheses, although there was little impact on the response to the downhill run
and cryotherapy between participants of different body fat contents.

The 30-min downhill run caused a significant decrease in muscle torque for both
cryotherapy and control participants, which is consistent with previous downhill running
studies [23,24]. The average torque decrements were 6.4% and 11.5% for WBC and control,
respectively. The decrease for the cryotherapy group is less severe than typically seen in
other downhill running studies and this moderation effect could be significant in a sports
and performance context.

To the authors’ knowledge, this is the first study to demonstrate a positive effect of a
single treatment of WBC on muscle performance 24 h post-EIMD. Previous studies that have
observed beneficial effects of WBC for treating EIMD either used multiple treatments [6,10]
or partial body cryotherapy [9], where the head is not exposed to extreme cold, therefore
having different physiological mechanisms [37]. Experiencing beneficial effects using just
a single treatment of WBC highlights the potential effectiveness of the intervention and
is likely to be more economical and feasible than applying multiple treatments. Caution
should be exerted when interpreting the findings, since the overall interaction effect for
group and time was non-significant (p = 0.10). Nonetheless, with a reasonably strong
effect size of 0.67 for difference between groups in torque reductions, it is likely that such
alleviations of muscle strength decrement following eccentrically biased exercise would
result in superior athletic recovery.

The other EIMD markers however do not indicate support for the application of WBC
post-downhill run. There was no difference in muscle soreness between the cryotherapy
and control groups. The debate on whether WBC is effective in reducing muscle soreness
has been highlighted previously [38,39] and by the discrepant findings between studies
demonstrating benefits [6,13] versus studies that have not [28].

There was no effect of WBC on the blood CK response post-downhill run. CK is
a commonly used EIMD marker due to its ease of detection in the circulation and the
indication of disrupted muscle membranes [40]. The effects of WBC on CK levels are
equivocal. The few studies that have demonstrated blunted CK responses [5,41] utilised
multiple WBC treatments which might induce more attenuation of CK levels. The lack
of impact of WBC on plasma CK post-downhill run indicates significant muscle fibre
disruption. Associated characteristics include disrupted sarcomeres and Ca+ homeostasis,
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metabolic disturbances, Z-line streaming, presence of inflammatory markers and under-
mined excitation-contraction coupling [42,43], effects consistent with the reduction in
muscle strength that was still observed in the WBC group. It is, therefore, evident that
many of the physiological effects of muscle damaging exercise were present in the WBC
participants for this study. WBC was also ineffective in enhancing mental wellbeing scores
despite other studies indicating otherwise [44,45].

The reductions observed in tympanic and skin temperatures post-WBC are comparable
to previous studies [20,46,47] and consistent with the notion that WBC causes a pronounced
vasoconstriction response, ensuring that blood flow is diverted away from the extremities
to protect internal organs. It is not clear to what extent this thermoregulatory response
can support recovery and performance post-exercise, especially since it is unlikely that
the skin temperature decreased low enough to illicit a significant analgesic response.
Assessing same day performance measures (e.g., power tests) post-WBC may provide
further understanding of how physiology responses post-cryotherapy might be linked to
functional performance.

4.1. Effects of Age and Body Fat Content

To the authors’ knowledge, this is the first study to have investigated the effects of
different ages and body fat contents on the response to WBC treatment for post-exercise
recovery. Due to physiological differences between different age groups and body fat
contents, it was hypothesised that younger and/or leaner men would respond more
optimally to WBC post-exercise than older and/or higher fat individuals, respectively. The
main finding of interest was that the young WBC participants’ muscle torques did not
decrease 24 h after the downhill run, whereas it decreased substantially for the older group.

Despite this significant finding, the young WBC participants still experienced EIMD,
since significant muscle soreness and elevated CK were observed. Nonetheless, mus-
cle torque is considered the most important marker of muscle damage [48]. The more
favourable response to WBC post-exercise observed in the younger participants (<40 years)
may have implications for coaching and training programmes with the potential use of
WBC to support recovery following eccentric muscle contractions. Half of the cryotherapy
sample (13 of 26 participants) were aged below 40 and this sub-group did not experience
muscle torque decrements to the extent of the participants aged 45 and above. Thus, WBC
appeared to be particularly beneficial for the younger participants in a functional sense.

It is not clear why the younger participants would retain their muscle strength follow-
ing the cryotherapy treatment more than the older participants. Owing to the established
effects of ageing, potential theories include enhanced blood vessel and flow response to
the leg muscles, better motor unit/muscle fibre activation, less disruption of excitation-
contraction coupling, higher muscle-tendon stiffness, higher testosterone, reduced inflam-
mation and/or the placebo effect. Due to the common occurrence of sarcopenia in elderly
individuals [14], it is conceivable that the discrepancy in muscle recovery potential be-
tween age groups post-WBC and exercise can be attributed to differences in muscle mass.
Enhanced muscle cooling is unlikely owing to the unusual finding of lower tympanic
temperatures in the older participants post-WBC. Such theories and aspects would be
potential revenues for further research to help understand how age differences can impact
response to WBC post-exercise.

The leaner participants maintained their muscle torque post-WBC more than those
with higher body fat, indicating that body fat could detriment the damage and recovery
response to WBC post-exercise. Caution should be exercised in concluding this, since the
interaction effect of body fat group was non-significant. Whilst it has been suggested that
higher body fat decreases heat loss during cold exposure [15], there were no differences
between HFAT and LFAT in tympanic and skin temperatures, which contrasts findings
from previous WBC studies [20,21]. A possible explanation for this discrepancy is that
tympanic and skin temperatures were only assessed at one time point post-WBC in this
study. There was also no influence of body fat content on any of the other variables,
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contradicting the initial hypothesis. Further studies looking at the influence of different
body compositions on response to WBC following other exercise bouts (e.g., sports fixtures,
repeated sprints) might add more perspective on WBC applications for sports recovery.

4.2. Potential Limitations

The sample included a mixture of athletes from different sporting backgrounds and
individuals who exercise recreationally. Most participants had a relative VO2 max below
50 mL/min/kg, of which a substantial portion were aged below 40. It can, therefore, be
assumed that a large proportion of the sample were not trained athletes. It was initially
the intention to include a variety of fitness levels and body sizes, but this factor should be
considered before applying the findings to higher level sports practice.

A possible limitation is that muscle damage markers (strength, soreness and CK)
were not assessed beyond 24 h post-exercise. Whilst this is the first study to examine the
response to WBC following a downhill run, two previous studies have applied cold water
immersions post-downhill run [49,50]. Both observed peak muscle damage markers 24 h
post-run instead of 48 h. Other downhill run studies have observed peak muscle soreness at
24 h [37,51,52] and 48 h [53,54] without any meaningful difference between these first two
days. The greatest inflammation and loss of muscle function also occurs within 24 h [55]
and blood CK typically peaks at 24 h [48,56,57]. Additionally, the extent of muscle strength
reduction indicates mild damage (only a 11.5% decrease for control group) where torque
typically recovers within 48 h [58]. It is therefore conceivable that the damage response at
24 h would be a reliable indicator of damage extent at 48 h and any alleviation of EIMD
at 24 h would likely result in quicker recovery to baseline. Athletes who train/compete
several days a week are usually more concerned about next day recovery to successfully
engage in further training sessions.

Finally, the logistical challenge of transporting participants to the cryotherapy chamber
could have impacted some variables (e.g., tympanic temperatures) so it was not possible to
control all ambient conditions before and after WBC.

5. Conclusions

Overall, WBC may alleviate the muscle damaging effects following downhill running
due to an attenuation of muscle torque decreases. Despite EIMD being present, younger
participants could take advantage of using WBC to mitigate muscle torque losses following
an eccentrically biased long duration exercise. Body fat does not appear to heavily influence
responses to WBC post-downhill run; however leaner individuals may benefit more by re-
taining levels of muscle strength. Future research should focus on the mechanisms through
which younger practitioners can benefit more from cryotherapy treatments following an
EIMD bout and how this could support recovery and sports performance. Additionally, it
would be useful to further explore the potential recovery benefits of single WBC treatments
following other exercise protocols.
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