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Abstract

The emergence of signaling systems has been observed in numerous experimental and real-

world contexts, but there is no consensus on which (if any) shared mechanisms underlie such phe-

nomena. A number of explanatory mechanisms have been proposed within several disciplines, all

of which have been instantiated as credible working models. However, they are usually framed as

being mutually incompatible. Using an exemplar-based framework, we replicate these models in a

minimal configuration which allows us to directly compare them. This reveals that the develop-

ment of optimal signaling is driven by similar mechanisms in each model, which leads us to pro-

pose three requirements for the emergence of conventional signaling. These are the creation and

transmission of referential information, a systemic bias against ambiguity, and finally some form

of information loss. Considering this, we then discuss some implications for theoretical and exper-

imental approaches to the emergence of learned communication.

Keywords: Communication; Cultural evolution; Signaling games; Reinforcement learning;

Feedback learning; Observational learning; Agent-based models; Exemplar theory

1. Introduction

Human language provides a uniquely flexible and expressive system of communication,

but we are not the only species capable of communication. Signaling behavior is found
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throughout nature: Virtually every species has a means of communicating about, for

example, the presence of food or predators, potential as a mate, or presence of a competi-

tor. However, only human communication displays such open-endedness (Tomasello,

2010) in the number of signals learned, the contexts in which they are elicited, and the

responses they effect. This flexibility arises because the basic building blocks of human

language—words—are learned socially, by observing word use by others. In contrast, the

articulatory form of signals in the vast majority of animal communication systems are, as

far as we know, not socially learned. For instance, among our closest relatives, the form

of alarm calls (distinctive calls used to warn conspecifics of the presence of particular

types of predators) are thought to be largely genetically determined (Fedurek & Slo-

combe, 2011); even among the other apes, while the decision to employ a given call may

be intentional (Slocombe et al., 2010), there is only limited evidence for any flexibility or

group-level variation in the form of those calls (Crockford, Herbinger, Vigilant, &

Boesch, 2004; Seyfarth & Cheney, 1986). There are of course obvious exceptions; for

instance, many bird species are capable of both learning and innovating songs (Podos,

Huber, & Taft, 2004). However, vocal learning in birds (and in other animals where it

has been observed, such as cetaceans, elephants, and bats: Janik, 2014; Poole, Tyack,

Stoeger-Horwath, & Watwood, 2005; Boughman, 1998) is most probably a case of con-

vergent evolution, rather than reflecting some ancestral cognitive capacities shared by the

extremely distant common ancestor of all vocal learning species.

Innately specified communication systems are presumably the product of natural selec-

tion (Maynard Smith & Harper, 2003). As such, the major questions concern the nature

of the evolutionary route to signaling, as well as the selective pressures involved. The

emergence of learned communication, on the other hand, is less well understood. First,

we might ask when and why a learned system would replace an innately specified signal-

ing system (Lachlan, Janik, & Slater, 2004; Ritchie & Kirby, 2006). Second, socially

learned communication systems are potentially shaped by an entirely different set of pres-

sures. In a learned communication system, unlike its innate equivalent, natural selection

cannot directly tune the structure of the signaling system; rather, socially learned signal-

ing systems are shaped by the processes through which they are learned and used (see lit-

erature review in next section). Their functional properties are then determined by the

nature of the learning and usage mechanisms involved (which are themselves potential

targets for biological evolution). Understanding the nature of these mechanisms is crucial

to understanding when and how a learned communication system such as human lan-

guage might evolve.

Our focus in this study is therefore: What are the necessary social and psychological

adaptations which allow populations to develop, via processes of learning and use, func-

tional learned communication systems? Semiotic experiments (such as surveyed by

Galantucci & Garrod, 2011) demonstrate that human subjects can rapidly bootstrap com-

municative conventions across a range of modalities and interactive conditions. Moving

beyond the laboratory, the recent emergence of indigenous sign languages (e.g., Nicara-

guan Sign Language and Al-Sayyid Bedouin Sign Language: Senghas, Senghas, & Pyers,

2005; Sandler, Meir, Padden, & Aronoff, 2005) is a compelling reminder that functional
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communication systems are able to self-organize in human populations in the absence of

any explicit, centralized coordination. Presumably, the same mechanisms also underlie

the development of other human signaling conventions, including all other human lan-

guages. Identifying these mechanisms—which must be particular to human cognition and

interaction—will shed light on what enables Homo sapiens to be such a fundamentally

communicative species.

The emergence of functional learned communication has been studied across a number

of seemingly loosely related disciplines, including Classical and Evolutionary Game The-

ory (e.g., Lewis, 1969; Nowak, Krakauer, & Kingdom, 1999; Skyrms, 2010), Artificial

Life (e.g., Steels & Loetzsch, 2012), Cognitive Science (e.g., Barr, 2004), and Evolution-

ary Linguistics (e.g., Oliphant, 1996; Smith, 2002). The assumptions made and conclu-

sions drawn in these various fields regarding the prerequisites for functional

communication appear on the surface to be quite different, if not mutually incompatible.

To cut through a rather confusing mesh of approaches, models, and results, we have cre-

ated a framework to replicate a representative selection of the approaches outlined above.

Having done this, we then identify a basic framework—an urn-model—which strips the

individual models back to the simplest set of common underlying mechanics.

We then employ an additive approach to this framework: We first add the characteris-

tic features of each model in terms of interaction and learning. None of these basic

instantiations reliably lead to optimality; as such, we then investigate which particular

mechanisms are responsible for doing so. By adding each mechanism in isolation, we are

able to investigate exactly which are responsible for driving the behavior of each model.

The subsequent direct comparison reveals that the apparent diversity of mechanisms driv-

ing the emergence of functional learned communication is overstated in the literature; in

fact, the same fundamental processes underpin all of the current accounts.

The rest of this study is organized as follows. In Section 2 we discuss the issues of

conventionality and optimality, and how these are tackled in models drawn from the vari-

ous disciplines mentioned above. We first motivate and then describe the exemplar-style

framework which we have used for our model replications in Section 3, before discussing

each replication in more detail in Section 4, along with the adjustments we have made

for comparison, and which aspects of each model are necessary for the development of

optimal communication. In Section 5 we propose that three fundamental principles—the

creation and propagation of referential information, a bias against ambiguity, and a mech-

anism leading to information loss—determine whether any system is able to bootstrap

functional communication. Finally, this leads into a discussion in Section 6 regarding

how this can help us interpret the various theories of the emergence of communication

outlined above.

2. Past approaches to the emergence of functional learned signaling

For any form of communication to be functional, it must be conventional; in particular,

there must be consensus within a population about how signals are produced and inter-
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preted. Conventions are widespread in human populations and extend far beyond the

communicative domain (we have, for instance, conventions about what to wear to work,

what side of the road to drive on to get to work, what times one should work at, and

appropriate language at work).

In his classic study, Lewis (1969) analyzes convention as a type of game-theoretic co-
ordination problem: Two or more agents have a choice of behaviors, and coordinating

those behaviors leads to mutual benefit. Even working under the assumption that such

coordination provides a mutual benefit, the mechanisms leading to the establishment of

conventions are not immediately obvious. Lewis proposed a critical role for common
knowledge (Lewis, 1969; p. 56): All agents are aware of a set of propositions, each agent

knows that every other agent also knows those propositions, and so on recursively ad
infinitum. Populations of agents can employ this knowledge to create conventions by

making rational choices targeting maximal individual payoffs. However, in the case of

these simple conventions (where an atomic choice is made from an unordered set of alter-

native behaviors, such as the side of the road we drive on), Vylder (2008) shows that

such sophisticated reasoning is unnecessary: Whenever agents strongly amplify observed

behavior, population-wide agreement on a single convention is assured. (This is where

agents sample from each other’s behavior, and the suite of behaviors is represented as a

ranked probability distribution. In strongly amplified copying, the ratio of likelihoods

between any two subsequently ranked behaviors is strictly increased in favor of the more

highly ranked one.)1

However, being conventional is not enough to ensure a functional communication sys-

tem. Lewis’s Signaling Game (1969) is the canonical problem in the emergence of

learned communication. In its most basic form, the Signaling Game involves a single sig-

naler and a single hearer. The signaler must communicate one of two possible world-

states to the hearer with two available signals, and the hearer has a choice of two possible

responses. Each world-state has a corresponding “matched” response which triggers a

mutual payoff; mismatched responses provide no payoff. Lewis showed that even this

simple game has several Nash equilibria, where a Nash equilibrium is any state where

the best payoff for any given player is to continue with her current strategy, leading to a

global stasis where no further change in play can occur. Only two of these Nash equilib-

ria are optimal strategies, designated by Lewis as signaling systems, which guarantee that

the hearer will select the appropriate response based only on the signaler’s signal. The

others—pooling equilibria—are stable but non-optimal strategies; for example, if the sig-

naler sends the same uninformative signal for every world-state and the receiver always

chooses the action with the greatest average payoff. This ambiguity of signal-to-response

mapping will be referred to below as homonymy.
Moving beyond the simplest scenario of two world-states, two signals, and two

responses results in a drastic increase in the number of possible system states, and the

chance of multiple partial pooling equilibria: These are stable states that are a mixture of

informative strategies and pooled, non-informative ones (see Fig. 1). As such, in addition

to being conventional, a functional communication system must be at least somewhat

informative; in Lewis’s terms, it must allow the hearer to select the correct response with
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greater than chance frequency. The most functional systems are optimal; in Lewis’s

terms, such systems require that all world-states must map to at least one signal, and each

of those signals must be unambiguously associated with a matched response. Identifying

how conventional, optimal, learned signaling systems develop has therefore become the

benchmark problem in this field; the existence of many non-optimal stable states in the

face of Lewis’s rational behavior suggests that the reliable development of optimal signal-

ing occurs via some other means. In the sections that follow, we review the proposals

made in various fields as to what that mechanism might be.

2.1. Payoff-based accounts

Game-theoretic accounts are driven by the idea of a payoff, which is instantiated

through either increased evolutionary fitness (e.g., Nowak et al., 1999) or reinforcement

learning (e.g., Skyrms, 2010), where individuals modify their behavior in response to the

payoffs they receive.

Nowak et al.’s model involves the natural selection of cultural variants (Boyd & Rich-

erson, 1985) and rests on two assumptions: First, the fitness of individuals (i.e., the num-

ber of their offspring) is determined by their communicative success within a population,

and second, the resulting children learn from their parents (with some error), thereby

inheriting their communication system via social learning. Numerical simulations show

that, under these conditions, while some populations evolve optimal systems, many stabi-

lize at partial pooling equilibria, some signals being associated with more than one mean-

ing. However, these suboptimal states occur less as the chance of learning error

increases: Error knocks the systems out of previously stable states. Note that the mecha-

nism at play here—natural selection—is the same as that invoked to explain the evolution

of signaling systems which are not socially learned, the only difference being that the

Fig. 1. An example of a partial pooling equilibrium. The first two states, signals and actions, are pooled and

mutually uninformative: The speaker always produces the Signal A and the receiver always uses Action 1.

State 3, however, leads to the informative Signal C and hence Action 3.
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mechanism through which behaviors are inherited is social learning, rather than genetic

transmission.

Skyrms (2010) surveys a type of reinforcement learning devised by Roth and Erev

(1995). Many forms of reinforcement learning (e.g., Bush & Mosteller, 1953) are essentially

“memoryless”: Each available behavior can be completely characterized by a single (proba-

bilistic) value which describes its current state. The effect of any learning experience recal-

culates this value using a parameterized function. Roth–Erev reinforcement, on the other

hand, models memory as a collection of tokens which gradually accumulate over a learner’s

lifetime; as such, calculating both behavior and the effects of learning must take into

account not just the relative proportion of memory tokens, but their absolute count as well

(experiences in later life contribute relatively little to the overall store of tokens, whereas

early experiences have larger effects). Skyrms (2010) motivates the Roth–Erev model by

showing that learners in a non-signaling scenario—one where they must learn to modify

their behavior to maximize their expected returns when presented with an initially unknown

distribution of world-states—are able to escape pooling equilibria by using Roth–Erev rein-

forcement learning, whereas parametric forms of reinforcement learning (Bush & Mosteller,

1953) are not. Incorporating this into the basic Lewis signaling game, Skyrms (2010)

describes a simple iterative strategy: Each time a pair of agents successfully communicate,

the associations involved are strengthened by both. A proof of convergence to optimality

using Roth–Erev learning in the minimal signaling game (two world-states, signals and

responses) is given in Beggs (2005). However, Barrett (2006) shows that including more

states, signals, or responses immediately increases the possibility of non-optimal equilibria,

and that simple reinforcement no longer leads to guaranteed convergence on optimal signal-

ing. Barrett (2006) goes on to propose two solutions to this problem: the addition of negative

reinforcement (also known as punishment, the term we shall use henceforth), where unsuc-

cessful associations are decremented, and forgetting (which is further investigated in Barrett

& Zollman, 2009). Both strategies greatly increase the likelihood that optimal signaling

develops and guarantee it for certain parameter regimes.

Also using Roth–Erev reinforcement (but looking at pragmatic implicatures rather than

signaling games), Franke and J€ager (2012) investigate the effects of lateral inhibition:
After successful communication, competing associations are dampened. With this effect

included, they show via simulation that optimal states are reached far more quickly. We

draw attention to the role of lateral inhibition here, as it plays an important factor in sev-

eral other models described below.

2.2. Interaction-based accounts

The program of artificial life research as set out in Steels (2012) and the neural network

populations of Barr (2004) place a critical emphasis on the fundamental roles of feedback
and alignment. Agents interact with each other multi-modally: Repeated attempts at local

alignment ultimately lead to a globally functioning communication system.

As part of a larger program to investigate the evolution of language, Steels (2012)

shows that multi-modal negotiations between embodied robotic agents situated in a com-
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plex environment lead to the development of multiple levels of language-like structures.

The seminal Naming Game described in Steels and Loetzsch (2012) is a core element in

this process. A population of agents is situated in an environment containing a number of

objects. Pairs of randomly chosen agents are presented with a limited context of objects

observable by both parties, with one particular target object chosen for a designated sig-

naler to attempt to communicate to the hearer. The agents then execute a scripted series

of actions. A signal is sent, the hearer’s interpretation is checked, and the intended ref-

erent is indicated by the speaker in the event of failure. Both agents then potentially

adjust their internal representations by strengthening and weakening associations, with

these weight adjustments determined according to the particular scenario (success or

failure) which has just occurred—these updates can be carried out by speaker, hearer, or

both agents involved in the interaction. In addition, agents possess the ability to inno-
vate terms for previously unseen objects, chosen from a very large signal space. This is

a potentially critical difference with the other models discussed in this section, which

assume limited signal spaces, and in which processes which eliminate homonymy are

critical to establishing optimal signaling. In contrast, in a typical Naming Game simula-

tion involves an initial stage in which the number of terms for any given object

explodes, before a single term wins out for each, as the result of gradual lateral inhibi-
tion of competing terms. A consequence is that homonymy is very rare: “optimality”

for these games tends to be defined not in terms of successful communication, but by

when the lexicon is reduced to a minimal size. De Vylder and Tuyls (2006) show that,

as shown with simple conventions in Vylder (2008), convergence on a minimal, unam-

biguous, conventional lexicon is guaranteed if agents utilize a strongly amplifying imita-

tion function (as described in Section 2). Baronchelli (2010) further shows that hearer

update (i.e., hearers updating their internal representations based on the success or fail-

ure of an interaction) is critical in the development of optimal lexicons, while speaker

update plays a lesser role.

Barr (2004) looks at the role of common knowledge in the emergence of conventional

communication. Employing populations of interacting agents (both neural network based

and simpler association based), he showed that not only was common knowledge (about

the signaling behavior of the population as a whole) unnecessary, but that population-

wide convergence on a single system was significantly more likely when agents used only
the information from individual interactions. The neural network model is rather sophisti-

cated, but it includes a type of parametric reinforcement learning similar to Bush and

Mosteller (1953) (outlined in Section 2.1). Also included is a form of lateral inhibition,

(although described as a mutual exclusivity bias) which acts to promote one-to-one sig-

nal/meaning mappings. Barr’s simulations reliably lead to states of optimal signaling: In

a second set of results, Barr aims to counter a possible objection to his neural networks:

as they sample over time from the whole population, they could be argued to be accruing

a type of common knowledge. To this end, he uses a modified association-based model

(based on Steels, 1997) which employs a “stay/switch” strategy—agents stick to success-

ful strategies with some chance of switching to less successful ones. This model includes

a type of memory where agents can be restricted to knowledge of their last n interactions.

M. Spike et al. / Cognitive Science 41 (2017) 629



In the end, both types of population, neural network and stay/switch, reliably arrived at

global convergence on an optimal system.2 A further observation was that stay/switch

populations proved more efficient at developing globally optimal signaling when their

memories were highly restricted, providing another strong counterexample to common

knowledge-based explanations.

2.2.1. Reinforcement versus feedback learning: An aside
It is worth clarifying the differences between reinforcement and feedback accounts, as

they actually share much in common. Another complicating point is that the models in

Barr (2004) and, to a lesser extent, Steels and Loetzsch (2012) are described at different

times in terms of both Reinforcement and Feedback learning.

One of the main factors distinguishing reinforcement (in its classic form) and feedback

involves the availability of referential information. This describes how agents associate

meanings with signals, both for when signals are sent and interpreted. In fact, in classic sig-

naling games, referential information is irrelevant. Mutually available “meanings” are split

into two: world-states perceivable by the speaker, and actions taken by the receiver. How-

ever, as every state has a single matched action which triggers a payoff event, we can (for

the sake of direct comparison) temporarily overlook this distinction and see matched state/

action pairs as directly equivalent to meanings in the other models. In any case, in reinforce-

ment accounts the equivalent of referential information is only made available after a suc-

cessful interaction, and it is provided by the environment: Signaler and receiver know that

the intended and interpreted meaning have coincided, because they receive reinforcement

from the environment; more subtly, in the event of failure the absence of positive reinforce-
ment informs each party that his or her choice has been unsuccessful. In feedback learning,

on the other hand, the environment cannot provide this information. Instead, the agents

themselves must furnish it via “pointing” behavior: Simple social interactions, presumably

via another modality, which are able to resolve reference. As such, although there is a near

equivalent to the reinforcement described above, it is analyzed in terms of the interaction

between the agents; the receiver must point at its interpreted referent, providing Interpreta-
tion Feedback, and the speaker must either indicate whether the receiver has selected the

correct meaning (what we shall term Yes/No Feedback) or provide richer information by

indicating its intended referent (henceforth Referential Feedback). With Yes/No Feedback,

then, the situation resembles reinforcement learning in that full referential information is

only made available after communicative success. The real difference between reinforce-

ment learning and Yes/No Feedback learning is seen after failure. In Reinforcement learn-

ing, the speaker can only know that his or her intended signal/meaning association was

unsuccessful. Similarly, the hearer is only aware that his or her interpreted association

failed. This is also true for Referential Feedback, but due to the availability of Interpretation

Feedback, extra information (about how the hearer interpreted the signal) is reliably avail-

able to the speaker. In Reinforcement learning this information is only available after suc-

cessful communication. Referential Feedback plays a similar role, as it provides full

information about the speaker’s intended referent to the hearer; again, with reinforcement

learning this is only available after success.
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It is the availability of this extra information in feedback learning that allows for more

subtle strategies than in reinforcement learning. With Reinforcement learning, agents

must somehow promote successful associations and inhibit failed ones. This remains the

case with Feedback learning, but speakers and hearers have reliable sources of referential

meaning which are independent of communicative success. How this information is used,

of course, depends on the particular model.

Interestingly, then, although Barr (2004) describes what must be a feedback model—in

that alignment is verified through interaction—the interaction itself is placed in a black

box. Because of this, the model uses an exact equivalent to the reinforcement dynamic:

The extra information potentially available is not actually used. In models such as that of

Steels and Loetzsch (2012), the interaction has a more fine-grained realization which is

incorporated into the model, making the extra sources of information potentially usable.

The question, then, is to determine what role those extra sources of information do play;

this will be dealt with in Section 4.

2.3. Observational learning accounts

A third strand of work has focused on the evolution of communication via iterated learn-
ing (Kirby, 2001) — repeated cycles of production and observational learning, often but not

always with population turnover. In generational turnover models, one generation of learn-

ers learns from behavior produced by the previous generation of learners and goes on to

produce behavior which is observed and learned from by a subsequent generation of learn-

ers; alternatively, new agents acquire a signaling system by observing the existing popula-

tion produce and/or interpret signals, then replace an older member of the population,

implementing a gradual turnover of the population. This observational learning paradigm

typically de-emphasizes the role of communicative interaction (see e.g., Oliphant, 1996;

Smith, 2002): Agents are assumed to be unmodified by any further interaction after an ini-

tial phase of learning, and signaling conventions can therefore only develop during this ini-

tial stage of sampling and learning. For this reason, the models place a critical emphasis on

the learning process itself. Furthermore, unlike the reinforcement and interaction-based

models discussed above, these observational learning models typically do not include any

referential uncertainty: Learners learn from observing meaning-signal pairs, rather than sig-

nals produced in some context which leaves its intended meaning unclear.

The models in Smith (2002) investigate how individual learning biases shape the evo-

lution of signaling systems in populations through iterated learning. In this study, learners

are modeled as simple associative networks, who adjust association weights after each

learning exposure according to a particular learning rule: Smith varies these learning rules

parametrically, to explore both the properties of learning at the individual level and the

consequences of these individual-level processes for the signaling systems which develop

in populations. Smith used three criteria to classify the effect of each learning rule:

whether it produced agents capable of (a) learning, (b) maintaining, and (c) constructing
optimal signaling systems; each criterion is a strict subset of the previous one. A property

shared by all constructor-type rules is an implicit bias against homonymy in the form of
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lateral inhibition. Learners with such a bias are less likely to successfully learn homony-

mous meaning-signal mappings, and over many episodes of learning this bias eliminates

homonymy entirely, leading to optimal signaling. Learning rules which are neutral to

homonymy are sometimes capable of constructing functional signaling, but usually con-

verge on suboptimal pooling equilibria. In contrast, biases against synonymy alone do not

contribute toward the development of optimal systems, although they are required for the

learning of optimal systems under certain assumptions about the relative size of the

meaning and signal spaces (K. Smith, 2004).

Oliphant and Batali (1996) adopt an alternative approach within the observational

learning framework, exploring a rational approach which they dub obverter. Their work
starts from the observation that the rational approach to signaling is to maximize the

chances of being correctly understood, while rational receivers will attempt to maximize

the chance of correct interpretation. Obverter signalers leverage this fact by calculating

which signal is most likely to be correctly interpreted as their intended meaning, based

on the observed reception behavior of the population; similarly, obverter reception

involves identifying which meaning is most likely to be signaled using the received sig-

nal, again based on observations of the population’s production behavior. Oliphant and

Batali first show that when agents have perfect information about the signaling behavior

of the population (e.g., through unlimited observation of the production and reception

behavior of that population), the communicative accuracy of a population will necessarily

increase with every new generation of learners who apply the obverter approach to pro-

duction and reception, eventually leading to convergence on an optimal system. Numeri-

cal simulations show that approximating this perfect knowledge, by estimating the

population’s signaling behavior from a limited number of observations of population

behavior, is sufficient to guarantee optimal communication.

2.4. Summary

What conclusions can we draw from the above? First, there are clearly substantial dif-

ferences between the various models (see Table 1 for a brief summary of their key fea-

tures): What is striking is their heterogeneity, with each model having at least one unique

feature, and no obvious universally shared property which might drive the evolution of

functional signaling systems. Second, the models differ in the time-scales involved. Some

accounts employ intergenerational learning and natural selection, and describe a process

which takes place over multiple generations: Selective reproduction or language acquisi-

tion is the only mechanism of change. In contrast, in other models, signaling systems are

negotiated between individuals over much shorter time periods. Finally, and most impor-

tant from our perspective, the various models seem to require rather different cognitive

capacities in individual agents. Skyrms’ (and subsequently Barrett’s) reinforcement learn-

ers have no social or cognitive capacity beyond the capacity to retain a set of signal/

meaning association weights and the ability to recognize a payoff. Nowak’s evolutionary

model excludes even the requirement for individuals to recognize communicative success,

leaving natural selection to do the work of tuning the population’s communication
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system. In contrast, the cognitive apparatus required in the Naming Game and Observa-

tional Learning paradigms seems rather more demanding—they variously require mecha-

nisms of speaker–hearer feedback (often glossed in these models as “pointing”), various

processes of competition or lateral inhibition between signals and meanings, rational rea-

soning about the optimal signaling behavior, and possibly the ability to reliably infer a

signaler’s intended meaning. However, drawing strong conclusions as to the necessary

cognitive prerequisites for the emergence of functional learned signaling seems prema-

ture, since the numerous implementational differences between the existing models poten-

tially obscure a common underlying mechanism.

At this point some notions require clarification. In our simulations reported below, our

key criterion will be whether a particular type of model develops optimal signaling—a

completely unambiguous set of signals which cover all meanings—reliably, that is, 100%
of the time. Human lexicons are not optimal but are supported by contextual cues to dis-

ambiguate words which would be ambiguous out of context (e.g., Piantadosi, Tily, &

Gibson, 2012); Why, then, are we looking for reliable optimality when it does not appear

in natural language? The first reason is largely historical: There is a long tradition in

work looking at the evolution of signaling conventions to focus on the evolution of opti-

mal signaling, with the development of signaling systems which are near-optimal in con-

text being a more complex (and under-explored) question. Second, on a practical point,

the work which follows demonstrates that models which do not always produce optimal

systems actually very rarely do so, to an extent that would be highly dysfunctional in

human language.

3. An exemplar-based framework

To cut through this diversity of models, we have replicated four of the six models

above using a minimal framework.3 The two which have been excluded are Nowak et al.

(1999) and Barr (2004). The former is excluded simply because the mechanism driving

Table 1

A comparison of the major features of the models surveyed in Section 2

Nowak Steels Barrett/Franke Oliphant/Batali Smith Barr

Transmission Vertical Horizontal Horizontal Vertical Vertical Horizontal

Model Type Association

matrix

Associative Numerical Associative Neural Neural

Mod. Hearer/

Speaker?

H & S H & S H & S H H H & S

Interaction Mutual

payoff

Feedback Mutual

payoff

Observation Observation Mutual

payoff

Features Natural

selection

Inhibition Frget/pun/

inhib

Obverter Inhibition Inhibition

Production/

Reception

Stochastic Deterministic Stochastic Deterministic Deterministic Deterministic
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the development of optimal signaling is the well-understood process of natural selection,

simply operating on traits which are inherited culturally rather than genetically; as

such, this work has relatively little to say about how the processes of learning and

use might shape signaling systems. Barr (2004) is not replicated primarily because,

unlike the other models reviewed above and presumably driven by his neural network

implementation, meanings and signals are not atomic, but are represented as dis-

tributed patterns of activation across both input and output nodes. This feature is hard

to reconcile with the other models presented here. However, as can be seen in

Table 1, Barr employs a mixed design, incorporating reinforcement and lateral inhibi-

tion. Since these features can be seen independently in one or more of the other mod-

els, we hope to derive insights into these processes in isolation which will also apply

to Barr’s model.

We employ a simple exemplar-based “urn model” as a general framework for a number

of theoretical and practical reasons. Although the replicated models involve several different

forms of representation, all of them treat a signaling system as a set of associations between

meanings and signals. The exemplar model captures this simply—meaning/signal pairs can

be seen as “meaning” balls in “signal” urns (or vice versa): Mechanisms of learning and

adjustment are equivalent to adding and removing the balls from the specified urn. This also

allows for an unlimited number of novel signals in the same manner as Steels and Loetzsch

(2012), unlike the fixed-size neural networks of, for example, Smith (2002). In addition, this

representation is identical to the reinforcement learning of Roth and Erev (1995). Roth–Erev
learning directly captures the first two of exemplar theory’s “central notions of similarity,

frequency, and recency” (Walsh, M€obius, Wade, and Sch€utze 2010), p.1. The third factor is

more problematic, as all stored tokens in Roth–Erev learning are equally weighted. This fac-
tor means that Roth–Erev learning is a simplified exemplar model. With that said, recency

effects are introduced by including forgetting, such as in Barrett and Zollman (2009). As

such, the exemplar framework can directly replicate game-theoretic work such as Skyrms

(2010) and Barrett (2006), as well as be easily extended to include the core mechanisms

from feedback and observational learning accounts.

In the sections that follow, we describe the various components of our exemplar frame-

work, before identifying a basic framework, a baseline instantiation of our model which

includes the minimal ingredients to replicate the various results from the literature. In

Section 4 we show these replications and explore various deviations from the minimal

model which illuminate the fundamental mechanisms driving the evolution of optimal

signaling.

3.1. Exemplars, agents, populations

Discrete meanings and signals m, s are drawn from unordered sets M, S. Each exemplar

represents a simple bidirectional association between a single meaning m and signal s.
Exemplars are atomic and unweighted. The population contains a set of agents A; each
agent a consists of an unstructured set of N exemplars. The current number of exemplars

of agent a associating meaning m with signal s is denoted by Nams.
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We assume that populations are fully connected: Each agent has an equal chance of

interacting with any other. During an interaction, two agents are chosen (the particulars

of this depend on the population dynamic, which is described in Section 3.1.5 below),

and designated speaker and hearer, respectively. A context C ⊆ M of c meanings is

selected with uniform probability. Also with uniform probability, a single topic meaning t
is selected from C. The speaker produces an utterance u 2 S associated with the topic

which the hearer turns into an interpretation i 2 M. Production and interpretation can be

described as stochastic functions over probability distributions for signal production p(u|t)
and reception r(i|u, C), where C is a context containing the topic t. The different ways in

which exemplar storage gives rise to these probability distributions is specified below.

3.1.1. Production and reception
During production, given a target meaning t, an agent a must select a signal. In all the

models we consider, each potential signal s 2 S has a weight proportional to the propor-

tion of stored exemplars which feature topic t paired with s. As shown in Fig. 2, in the

standard model the production weight of a signal s is simply:

Pats ¼ NatsP
s02S Nats0

ð1Þ

We can similarly define the reception weighting of a potential interpretation i 2 M,
given an utterance u and a context C of potential meanings to which u could refer:

RamuC ¼ NamuP
m02C Nam0s

ð2Þ

To select a signal based on P, or a meaning based on R, an agent could apply either a

stochastic or winner-take-all procedure. A stochastic signaler (or receiver) simply samples a

meaning (or signal) proportional to P (or R), that is, p(u|t) / Patu, r(m|u, C) / RamuC. A sig-

naler applying a winner-take-all procedure selects with uniform probability among the set of

meanings (or signals, during reception) with the maximum value of P (R for reception); that is,

pðsjmÞ ¼ 1=jS0j if s 2 S0

0 otherwise

�
ð3Þ

where S0 is the set of meanings for which Pamu is at a maximum, and r(m|u, C) is simi-

larly defined with respect to those signals for which RamuC is at a maximum.

The obverter mechanic differs from these standard production and reception procedures

in that the obverter weights for production are simply equivalent to the reception weights

in the standard model, and vice versa, that is, Pobverter = R, Robverter = P.

3.1.2. Communicative accuracy
Successful communication occurs when the hearer’s interpretation matches the speak-

er’s intended meaning, the topic (i.e., t = i). The communicative accuracy between a

speaker a and hearer b, where T is the set of all contexts of size c is4:
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CAða; bÞ ¼ 1

C � jT j
X
C2T

X
m2C

X
s2S

pðsjm;CÞ � rðmjs;CÞ ð4Þ

The communicative accuracy of a population is the mean value after Eq. (4) is calcu-

lated for all possible pairs of agents in the population, with each member acting as both

speaker and hearer.

3.1.3. Learning, deletion, inhibition, and memory
Learning always involves storing exemplars—after an interaction one or more mean-

ing-signal pairs is added to an agent’s memory. Memory limitations are modeled by

Fig. 2. An urn-model conceptualization of the notation for exemplar counts and production weights. Signal/

meaning associations are represented as balls (signals) in urns (meanings). The weighting function simply

counts the proportion of a given ball/signal in the urn/meaning chosen as topic, in this case meaning 1. For

this example, WTA production would always produce signal B, whereas stochastic production would produce

it 60% of the time. Although this diagram represents production weights Pams, visualizing the reception

weights RamsC simply involves swapping the roles of signal and meaning to urns and balls, respectively,

excluding any meanings which are not in the context C.
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enforcing a maximum allowed number of stored exemplars per agent. When this is sur-

passed, any newly stored exemplar results in the deletion of a randomly selected older

exemplar.

Some models also involve deletion of exemplars, for example, in some reinforcement

models to adjust the speaker and/or hearer’s memories after an unsuccessful interaction.

Simple deletion removes a single exemplar with a specific meaning-signal association.

Lateral inhibition represents competition between newly introduced exemplars and

already stored ones. This can be either anti-homonymy, which deletes exemplars which

share the same signal as a given focal exemplar but a different meaning, or anti-syno-
nymy for the converse process. Lateral inhibition can be either minimal, broad, or maxi-
mal inhibition. Minimal inhibition deletes only a single competing exemplar, selected

with uniform probability from all competing exemplars. Broad inhibition affects all com-

peting associations equally: A single exemplar is deleted for each competing type. In

maximal inhibition, all competing tokens are removed. When this method is applied

against homonyms and synonyms, it guarantees that all signal/meaning mappings will be

one-to-one. This instantly removes the problem of how signals become unambiguous

(although not the problem of how populations arrive upon a shared system), and as such

we do not investigate this mechanism here.

In all the cases where lateral inhibition proves necessary, minimal inhibition is suffi-

cient: As such, we use minimal inhibition in all the replications, which shows that stron-

ger forms are not necessary for the evolution of optimal signaling.

3.1.4. Feedback and referential information
“Feedback” is not defined consistently across the literature, but it always describes a

scenario in which referential information is transmitted after signaling (see Fig. 3). This

may be about either the speaker’s intended referent (referential information) or the

hearer’s interpretation (interpretive information). Further to this, feedback can be either

Fig. 3. Feedback: the referential elements that can make up the feedback found in the different models:

Speakers select a meaning and produce a signal, which is interpreted by the hearer. Information about the

intended and interpreted referent is, depending on the model, always, sometimes, or never transmitted.
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full (the referent is unambiguously indicated) or partial (some information about the ref-

erent is supplied, by limiting the set of candidates). Depending on the particular model,

neither, one, or both of the elements in may be involved.

In reinforcement learning, full referential and interpretive information is provided after

successful communication (i.e., the environmental payoff indicates to the speaker that the

hearer’s interpretation was identical to the topic, and this indicates to the hearer that its

interpretation was identical to the speaker’s intended meaning); the absence of payoff from

an unsuccessful communication provides partial referential and interpretive information (the

signaler knows that the receiver’s interpretation was not the topic; the receiver knows that

the topic was some meaning m 2 C; m 6¼ iÞ. Observational Learning models provide full

referential information: The hearer receives the topic plus the speaker’s utterance.

Finally, several flavors of feedback are provided in the Naming Game, as discussed in

Section 2.2.1. Interpretation feedback is when full interpretive information is provided

(i.e., the hearer points at its interpretation). We again note that the interaction in the

Naming Game requires that this information is always provided. With Yes/No Feedback,
full referential information is provided after successful interpretation, but only partial ref-

erential information otherwise (i.e., after the hearer points, the speaker says yes or no). A

richer alternative to this is Referential Feedback: Full referential information is provided

(if the hearer is correct, the speaker confirms; if not, the speaker points at its intended

referent).

3.1.5. Population dynamics
The population can be either closed or exhibit gradual replacement. Closed popula-

tions have no turnover: No agent leaves the population, no new individuals enter the pop-

ulation, and learning occurs after each interaction, such that all members of a population

continue to learn over the entire run of the model. Under gradual replacement, old agents

are continually replaced with new ones; a new agent is created and interacts with the

established population a given number of times before joining the population by replacing

the oldest agent. In this scenario, following the standard Observational Learning para-

digm, agents only learn during their initial set of interactions, on entering the population,

and do not learn in their subsequent interactions (when they are serving as language

model for some other new individual).

In both cases, the populations are fully connected: In the closed dynamic, each interac-

tion involves a new pair of agents selected at random from the population; with intergen-

erational turnover, the new learner is paired with a randomly selected member of the

established population.

3.2. The basic framework

We first establish the basic framework. This represents what we have identified as the

simplest abstraction of the models surveyed in Section 2. The purpose of this is twofold:

First, by providing a common framework, we can meaningfully compare the different

models. Second, and more important, we can apply the various mechanisms from those
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models to build up from the basic framework. This additive approach allows us to see,

both individually and (if necessary) in combination, the effects of each mechanism and

ultimately determine which factors are responsible for the development of optimal learned

signaling.

The basic framework is a type of Roth–Erev “urn” model. Agents are represented as a

collection of “meaning/signal” tokens. To produce a signal, for example, a ball is sam-

pled at random from all the balls with the specified meaning. When a new exemplar is

stored, a single new ball is added to the urn. Likewise, a deletion removes a single token.

As such, this minimal framework employs stochastic production and reception. All other

mechanisms are modifications of this base framework. As such, WTA production will

choose from the most frequent tokens instead of random sampling; broad lateral inhibi-

tion deletes a single token of each competing type.

In addition to stochastic production and reception, the basic framework has the follow-

ing properties which can be assumed to be true of all the following replications unless

otherwise stated: The population consists of 10 agents, and we fix the number of mean-

ings and signals at 5 each. There is no use of a restricted context (C = M). Agents have

no memory limitations or any other form of exemplar deletion such as punishment or lat-

eral inhibition. We employ a closed-group population dynamic unless otherwise stated.

When the gradual replacement population dynamic is used, each new agent interacts with

the existing population exactly 35 times.5

Before continuing, we must point out that we have made a number of necessarily arbi-

trary decisions about several parameters. For example, fixing the number of agents at 10

is problematic on at least two levels. The first is in terms of model comparison: In the

studies we replicate here, populations range in size between two and ten thousand. Sec-

ond, and perhaps more important, actual human populations are rarely limited to 10 indi-

viduals: We need to know whether the results we present here scale up in a reasonable

way. Similar concerns can be raised over the choice to model populations as being fully

connected (every agent can be called upon to communicate with every other agent) and

to limit the number of both signals and meanings to five. The number of signals, for

example, can be as low as two in the classic signaling Game of Lewis (1969) or be

practically unbounded in a more accurate reflection of human communication (Steels &

Loetzsch, 2012).

This being the case, we have opted to set these parameters at relatively small values.

The main benefit of this trade-off is computational efficiency: We are able to run very

large numbers of simulations, and this allows us to examine the aggregate behavior of

any given configuration. That said, the question of scaling must be addressed. Due to the

computational costs of running a large number of simulations, we are unable to provide

exhaustive results for much larger numbers of agents, signals and meanings. However,

results from smaller numbers of runs (see Section 5) indicate that the required number of

interaction to lead to optimal signaling appears to increase linearly with the size of the

population,6 and quadratic growth with the number of signals and meanings. As such, the

results presented here remain reasonable for, as an example, populations of 1,000 agents

negotiating signaling systems with 100 meanings and signals. We will return to issues of
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how our framework can address these and other simplifications in the discussion in Sec-

tion 5, in particular the fully connected network governing agent interactions and the uni-

form distribution of meanings.

4. Results: Exact and minimal replications

In each replication, our aim is twofold. The first is to confirm that our exemplar frame-

work can replicate the original results. To this end, we include all mechanisms from the

source paper. Second, and as our principal focus, we want to determine which of those

mechanisms are responsible for leading to the reliable development of optimal signaling.

This is the role of the basic framework: First, we add the base interaction of each model

type—that is, the reinforcement dynamic, the feedback dynamic, or the observational

learning dynamic as described in Section 3.1.4. We then test whether this alone leads to

reliable optimality. If this is not the case, features from the original models are then

added in, individually at first. For those individual features which do not individually lead

to optimality, we then investigate whether combinations of those features do.

The purpose of this methodology is to chart out the full range of interactions between

the different models and features. In the subsequent section, we provide an overview

which argues that despite the initially bewildering range of design choices, they can all

be seen as variations on three basic underlying themes. These three mechanisms are the

creation and transfer of referential information, a form of information loss, and a bias

against ambiguity.

4.1. Reinforcement models

We first replicate a basic reinforcement model using Roth–Erev learning as described

in Skyrms (2010), before including mechanisms of (a) negative feedback and (b) forget-

ting (following Barrett & Zollman, 2009), and finally, as an exploratory measure, (c)

gradual turnover. The basic reinforcement models require that one idiosyncratic feature is

added to the basic framework, initialization: All agents begin with one exemplar of each

possible association. This avoids a lock-in effect particular to reinforcement models,

where agents will only ever produce the first successful signal associated with any given

meaning (the result of this is that two agents who had initial success with different sig-

nal/meaning associations can never align with each other).

Our replication of Skyrms (2010), which we refer to as the Pure reinforcement model,
uses the basic framework with the reinforcement feedback dynamic described in Sec-

tion 3.1.4: After each successful interaction, both hearer and speaker update their exem-

plar store with the meaning-signal pair produced by the speaker. Following Barrett

(2006), we then add memory limitations and punishment. Results of this set of simula-

tions are shown in Figs. 4 and 5.7

Our replication reproduces the key features of the reinforcement models. Pure rein-

forcement learning as in Skyrms (2010) does not lead to optimality—no runs converge to

640 M. Spike et al. / Cognitive Science 41 (2017)



optimal signaling. Fig. 4 indicates the proportion of 10,000 simulations that have con-

verged after a given number of iterations. Similarly, Fig. 5a displays the final stable dis-

tribution of communicative accuracy scores for the same set of simulations. Our normal

criterion for optimality is that CA = 1: even when a looser criterion is used (e.g.,

CA = 0.95), the number of populations which converge is small.

Fig. 4. Replication of classic reinforcement learning models. Here, we show the proportion of 10,000 simula-

tions which had converged to an optimal communication system after a given number of iterations. Results

are plotted for the pure reinforcement model (“Pure”), pure reinforcement with a memory limit of 35 exem-

plars (“Memory Limit”), pure reinforcement with punishment for both speaker and hearer (“Punish Hearer &

Speaker”), or for the hearer only (“Punish Hearer Only”).

Fig. 5. Reinforcement models: comparing (a) pure reinforcement learning with the effects of (b) enforcing a

memory limit of 35 exemplars or punishing failed associations for (c) both speaker and hearer or (d) only

hearer. Figures indicate the final, stable distribution of communicative accuracy scores for the 10,000 simula-

tions shown in Fig. 4 after 20,000 interactions.
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Our first addition to the pure reinforcement model is a memory limit of 35 exemplars

(Fig. 5b). We confirm that, as shown by Barrett (2006), this reliably leads to optimality;

furthermore (not shown), the time taken to reach optimality reduces as the size of mem-

ory reduces unless the memory limit is too low to permit a stable set of stored exemplars

(e.g., with 5 meanings and 5 signals, once the memory drops much below 25 exemplars).

Moving to the second mechanism, punishment, we replicate the result from Barrett

(2006). When punishment is employed by both speaker and hearer, this usually (but not

always) leads to optimality (Fig. 5c). However, as can be seen in Figs. 4 and 5d, if only

the hearer modifies his or her exemplar store after each interaction by reinforcement or

punishment, optimal signaling reliably develops.

Finally, we provide the novel result (Fig. 6) that a third mechanism—gradual popula-

tion turnover, rather than a closed group—also reliably leads to the emergence of optimal

signaling: Under this population model, different types of feedback and updating merely

impact on the time taken to convergence. This suggests that limited memory and negative

reinforcement are not the only mechanisms that can lead to convergence in a reinforce-

ment model—essentially any process that leads to the removal of stored exemplars

(either targeted removal, as is the case of negative reinforcement; random removal, in the

case of a memory limit; or wholesale removal, as effected by replacement of individuals)

leads to the emergence of optimal signaling within the framework of the reinforcement

paradigm.

Fig. 6. (Modification of Barrett, 2006) Gradual population replacement using pure reinforcement, punishment

of speaker only, hearer only, or both speaker and hearer.
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4.2. Naming game models

First, we replicate the Naming Game model of Steels and Loetzsch (2012) using the

exemplar framework. The original model Naming Game model is essentially a reinforce-

ment model with a number of added features. Core additions are as follows: (a) full inter-

pretive information is provided after every interaction (i.e., the hearer “points” at its

interpretation); (b) referential information is provided after every interaction, although the

quality of this referential information depends on the success of the interaction (full refer-

ential information is provided after successful interpretation, but only partial referential

information otherwise—that is, after the hearer “points” to its interpretation, the speaker

says yes or no); (c) lateral inhibition of homonyms and synonyms after storing a new

exemplar (see Section 3.1.3); (d) punishment of speaker and hearer after failed communi-

cation; (e) WTA rather than stochastic production and reception. Note that our replication

differs from the original by limiting the number of signals to 5 and including no

restricted context (c = |M|).
As can be seen in Fig. 7, we replicate the original Naming Game result, namely that

optimal communication reliably emerges. Furthermore, we replicate the finding of Bar-

onchelli (2010) that when only referential information is provided (i.e., the hearer does

not identify their interpretation), whether speaker or hearer updates his or her exemplar

Fig. 7. Replication of the Naming Game results of Steels and Loetzsch (2012) and Baronchelli (2010), show-

ing a replication of the full Naming Game (“Full”). We also replicate Baronchelli’s results (with a model

equivalent to the full Naming Game model, minus referential information), showing that when only the

speaker learns from each interaction (“Speaker Only”), convergence is significantly slower than when both

Speaker and Hearer learn from each interaction.
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store after interaction impacts on time to convergence: Hearer modification leads to rapid

convergence, convergence under speaker-only modification is far slower. This result sug-

gests that interpretative information (the hearer “pointing” to his interpretation) is not

required for the emergence of optimal signaling in the Naming Game, assuming the pres-

ence of referential information—since referential information is provided in Observational

Learning models, but interpretive information is not, this removes one source of differ-

ence between these models.

We are now in a position to explore the mechanisms of the model in isolation. As

there are actually two feedback dynamics (Yes/No and Referential Feedback), both were

investigated using the basic framework.

As discussed in Section 2.2.1, Yes/No Feedback is formally identical to reinforcement

learning except for one factor: With Yes/No Feedback, the speaker has access to informa-

tion about the hearer’s interpretation. The original feedback model of Steels and Loetzsch

(2012) uses a punishment mechanism which has two features: The first is the same as

“negative reinforcement” in Barrett (2006)—the speaker punishes the association it used

and failed with. The second, which is only available in this model, is that the speaker

also punishes the hearer’s failed association. In Section 4.1, we saw that punishing the

hearer after failed communication leads to reliable optimality, while punishing the

speaker does not always do so (although it usually does). In the case of Yes/No Feed-

back, however, we can see in Fig. 8a that when speakers only use interpretive informa-

tion as the basis for update and punishment—that is, when they only punish the hearer’s

failed association—populations do not reliably develop signaling systems. As shown in

Figs. 5b and c, restoring referential information does reliably leads to optimality. How-

ever, the importance of the punishment dynamic is illustrated by Fig. 5d, in which we

can see that, for Yes/No Feedback without any punishment, lateral inhibition of homo-

nyms and synonyms does not reliably lead to optimal signaling.

We can now look at the other feedback dynamic. While punishment is an effective

strategy for Yes/No Feedback, it is not effective for Referential Feedback (not shown).

Speaker-only learning and punishment only rarely leads to optimal signaling.8

Fig. 8. Yes/No Feedback models: investigating the effects of different forms of punishment (a–c) and the

application of lateral inhibition of both homonyms and synonyms for both speaker and hearer (d).

Figures indicate the final, stable distribution of communicative accuracy scores for 10,000 simulations after

20,000 interactions.
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Turning to Referential Feedback, the lateral inhibition mechanic (Fig. 9) proves to play

a more significant role; specifically, synonyms and homonyms must always be inhibited

in order for convergence to occur. A further observation (not shown here) is that the

importance of inhibiting synonyms depends on who learns in an interaction. When both

speaker and hearer are modified after an interaction, both homonyms and synonyms must

also be inhibited; when only the hearer learns, only homonyms must be inhibited.

In summary, the different types of feedback—neither of which leads to optimality by

themselves—require different additional mechanisms to do so. As Yes/No Feedback is a

modified type of reinforcement learning, it is no surprise that punishment is a successful

strategy. What is surprising, however, is that when only interpretive feedback (which is

the only difference between this model and basic reinforcement with punishment) is used,

it never produces a signaling system. Also unexpected is that lateral inhibition does not

consistently lead to optimality for Yes/No feedback, while it is highly effective in con-

junction with Referential Feedback. In contrast, we see the restricted circumstances in

which punishment reliably leads to optimality for Referential Feedback (hearer-only

learning, WTA production). In the final analysis, none of the mechanisms of the Naming

Game are unnecessary (except interpretive information for the purposes of punishment).

Instead, the model contains a suite of mechanisms, each most effective when applied to

the two types of feedback dynamic incorporated into the original model.

4.3. Observational learning: Biased learning

Smith (2002) models agents as (|M|9|S|) associative networks and explores the conse-

quences of a range of weight-updating procedures on these networks. In doing so, he

identifies two crucial features on which learning rules vary: presence or absence of biases

against synonyms and homonyms. Our minimal replication allows us to manipulate these

same biases, by enforcing different types of lateral inhibition. Employing a closed-group

dynamic instead of the original gradual turnover, we compare the effects of these manip-

ulations, as well as the role of WTA production/reception (as used in the original) and

stochastic production/reception. As this is an observational learning model, only hearers

Fig. 9. Referential Feedback models: investigating the effects of no lateral inhibition (a), only synonyms (b),

only homonyms (c) and both (d). Figures indicate the final, stable distribution of communicative accuracy

scores for 10,000 simulations after 10,000 interactions.
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are updated after any interaction, and full referential information is provided. Before pro-

ceeding, we point out the similarities between the Referential Feedback model of the pre-

vious section and the Biased learning model. The first difference is that the original

biased learning model uses gradual turnover instead of closed groups. Second is the pro-

vision of information: Both Observational Learning and Referential Feedback guarantee

the transmission of referential information, but the dynamic of referential feedback also

includes interpretive information. However, we have shown in Section 4.2 that utilizing

this information (by punishing failed associations) is not always an effective strategy

when referential information is guaranteed.

Using the basic framework, we are able to replicate the results of the original

(Fig. 10). The emergence of optimal signaling is dependent on learners employing the

right type of lateral inhibition; critically, as seen for the Naming Game, agents must

inhibit homonyms. Again, adding inhibition of synonyms has no additional effect, while

inhibiting synonyms alone does not reliably lead to optimal signaling, and optimality

never occurs when lateral inhibition is removed altogether. In further tests comparing

WTA and stochastic production/reception, no difference was found apart from slightly

faster convergence for WTA. This once again suggests that this difference between

Smith’s model and the Referential Feedback version of the Naming Game described in

the previous section is superficial only.

4.4. Observational Learning models: Obverter models

Our replication of Oliphant and Batali (1996) uses the Observational Learning version

of the basic framework, but also employs obverter weighting as described in Sec-

tion 3.1.1. In line with the observational learning paradigm (Section 3.1.4), only hearers

are updated after any interaction. Features of the original model which are not part of our

basic framework are (a) WTA production/reception rather than stochastic and (b) gradual

replacement population instead of a closed-group populations. We will examine the

effects of these mechanisms, as well as the effects of adding a memory limit. As the

Fig. 10. Biased learner models: investigating the effects of no lateral inhibition (a), only synonyms (b), only

homonyms (c) and both (d). Figures indicate the final, stable distribution of communicative accuracy scores

for 10,000 simulations after 10,000 interactions.
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effects of lateral inhibition on observational learning models have been fully explored in

Section 4.3, none of our replications include this mechanism.

We are able to replicate the original result of Oliphant and Batali (1996): A minimal

replication employing gradual population turnover reliably leads to the emergence of

optimal signaling when WTA production/reception is used. When stochastic production/

reception is used, we still have guaranteed optimality, albeit over much longer time-scales

(Fig. 11). Results for closed groups are strikingly different (Fig. 12). In particular, opti-

mal systems do not reliably emerge unless a memory limit (here, a maximum of 35

tokens) is added to the model.

Fig. 11. Obverter production/reception, with gradual population replacement, and stochastic or WTA produc-

tion/reception.

Fig. 12. Obverter learner models: investigating the effects of WTA production with and without a memory

limited to 35 exemplars (a, b), and stochastic production with and without a memory limited to 35 exemplars

(c, d). Figures indicate the final, stable distribution of communicative accuracy scores for 10,000 simulations

after 20,000 interactions.

M. Spike et al. / Cognitive Science 41 (2017) 647



We see here an strong parallel with the results for Reinforcement Learning. Despite

the presence of a systemic bias toward functional communication, both strategies are

ineffective without the presence of some form of information loss, whether that is via

intergenerational transmission or explicit memory loss.

5. Minimal requirements for optimal signaling

Using our minimal exemplar framework we were able to replicate the results of all the

original models. As suspected, the internal representations of agents (network/associa-

tions/urn models, etc.) are not a factor behind the development of signaling; all that is

necessary is a way to model agents who can capture associations between meanings and

signals. Indeed, given the appropriate parameter settings, the replications using the basic

framework produce results which are strikingly similar or identical (Fig. 13) when we

compare a version of the Naming Game with hearer-only learning and only Referential

Feedback with the Biased Learning model (both using lateral inhibition of homonyms).

Beyond this, what conclusions can we draw? First, passing referential information (as

described in Section 3.1.4) from speakers to hearers is almost always essential. In the

case of Observational Learning and classic variants of the Naming Game where

referential information is provided, full referential information is always provided to the

Fig. 13. Model Comparison: Comparison of the different models instantiated using the basic framework

(stochastic production and reception, closed-group) of Reinforcement (with punishment, following [Barrett,

2006]), a minimal version of the Naming Game using only Referential Feedback, no punishment inhibition of

homonyms and hearer-only update (Steels & Loetzsch, 2012), Obverters with a limited memory of 35 exem-

plars (Oliphant & Batali, 1996), and Biased learners with inhibition of homonyms (Smith, 2002).
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hearer. This allows them to know with certainty which meaning the speaker intended to

convey; the only difference between the referential feedback models and observational

learning models is that, in the latter, the topic is immediately provided. In Naming Game

models with referential feedback, it is provided after the signal has been sent. However,

as evidenced by the reinforcement and Naming Game models with Yes/No Feedback

only, it is enough for referential information to only be provided sometimes. More inter-

estingly, reliable interpretive information (i.e., the hearer signaling its interpreted meaning

to the speaker) does not appear to play a significant role, as can be seen in Naming Game

models with Yes/No feedback where only the speaker learns from each interaction.

Second, information loss about previously stored associations must be present in some

form. In reinforcement learning and the obverter instantiations of the observational

learning model, this can be due to deletion, limited memory, or population turnover. In

the case of Naming Game and Biased Learning models, this can be achieved via lateral

inhibition.

In the Naming Game and Biased Learning models, lateral inhibition of homonyms also

serves to provide a bias against ambiguity. This bias seems to be intrinsic to the rein-

forcement model and obverter models; we discuss this in greater detail below.

A summary of these findings can be seen in Fig. 14, which indicates how the different

models relate to each other in terms of the basic framework, and which mechanisms are

required for each model to reliably develop optimal signaling.

5.1. Referential information

One requirement for optimal communication is conventionality: A population agrees

on how signals map to meanings. The problem is that while signals are overt, meanings

are not. If only signals passed between agents, arriving at a convention for how meanings

and signals are associated would be impossible; a mechanism for sharing this referential

information therefore must exist. Fig. 3 in Section 3.1.4 shows the two types of informa-

tion that can be made available in any interaction between agents. Referential information

details how a speaker provides an intended referent; interpretive information pertains to

how a hearer interprets a given signal. How does this apply in the models above?

In Observational Learning models, full referential information is always provided

(guaranteeing transfer of meaning as well as signal between speaker and hearer), and

interpretive information is never provided. In basic reinforcement learning, the environ-

ment provides full referential information and interpretive information after communica-

tive success, and partial information of both types after failure (although in the latter case

this information is only utilized when deletion of exemplars after unsuccessful communi-

cation is employed, i.e., punishment). The Naming Game model of Steels and Loetzsch

(2012) involves two flavors of feedback. Referential Feedback ensures that, whether a

given interaction has been a communicative success or a failure, full referential and inter-

pretive information is always provided. With Yes/No Feedback, full interpretive informa-

tion is always provided (as the hearer always indicates their interpretation), and the

amount of referential information provided depends on the success of the interaction—full
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referential information is only provided after success (as the speaker confirms the hearer’s

interpretation), whereas partial referential information is provided after failure (some

other member of the context must have been the intended meaning). Note again that this

is almost equivalent to Reinforcement learning except for the fact that full interpretive

information is always provided via the hearer’s pointing action.

This analysis in terms of information flow rather than agent interaction clarifies a num-

ber of issues. First, the reason Reinforcement models and Yes/No-only variants of the

Naming Game are slower to converge is simply that full referential information is not as

frequently provided (i.e., only after successful communication, rather than after every

interaction). Second, the identical behavior of the minimal instantiations of the Naming

Game and biased Observational Learning models shown in Fig. 13 is no surprise; in

both—despite the different sequencing of information transfer—hearers are always sup-

Fig. 14. An overview of how the different models (in blue) relate to each other in terms of the availability

of referential information (guaranteeing either partial or full referential information), and the model mecha-

nisms (in orange) which reliably lead those models to optimal signaling. Vertical learning and limited mem-

ory are grouped together as being types of information loss; the two forms of lateral inhibition are also

grouped together. Green squares represent the impact of Speaker and Hearer update, respectively; for exam-

ple, only hearer-directed punishment drives reinforcement to optimality, while both hearer and speaker-direc-

ted punishment are effective for Yes/No feedback models. For Referential Feedback, the * denotes the fact

that a specific configuration (hearer-directed punishment with WTA production) does lead to optimality, but

this is not otherwise indicated.
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plied with full referential information about the speaker’s signaling behavior. Finally,

while both Naming Game and Reinforcement models are often implemented so as to pro-

vide interpretive information, this is not a necessary component for the development of

optimal signaling, as shown in Fig. 7 in Section 4.2, in agreement with the conclusions

of Baronchelli (2010). The only exception to this is versions of Reinforcement and Feed-

back learning where only speakers learn; in this case, the guaranteed transfer of interpre-

tive information proves to be critical in ensuring optimality.

Crucially, conventionality is established in a population whenever speakers propagate

referential information to hearers. This is backed up by a mathematical result from Xue

(2006). Xue employs populations of interacting P�olya urns; this is essentially a general-

ized version of our basic framework described in Section 3.2. Xue shows that whenever

information is passed from speaker to hearer with positive probability, a state of confor-

mity will always result. This, then, is the fundamental role of the various channels of

information transfer between speaker and hearer: ensuring conformity primarily via the

transfer of referential information about the topic from signalers to hearers.

5.2. Bias against ambiguity

With the spread of referential information, we can expect the development of conven-

tionality in a population. Unless other pressures are at play, however, these conventions

are unlikely to be optimal, as illustrated by the “imitation learner” of Oliphant and Batali

(1996) and the “maintainers” of Smith (2002). A pressure toward optimality is created in

various ways: when only successful associations are strengthened, when obverter weight-

ing is used, or when there is inhibition of homonyms. What do these mechanisms have in

common?

Our definition of optimality requires that an unambiguous signal exists for each mean-

ing and that all signals are unambiguous. Ambiguity indicates the presence of some

degree of homonymy: It is no surprise that the explicit deletion of homonyms leads to an

unambiguous system. This lateral inhibition of homonyms is the pressure that drives opti-

mality in biased Observational Learning (Smith, 2002) and Naming Game (Steels &

Loetzsch, 2012) models.

In Reinforcement models, reinforcement strengthens successful associations, therefore

preferentially increasing the weight of less ambiguous associations for the hearer. That

association is then more likely to be used again, by the hearer when later acting as a

speaker. This rich-get-richer process provides the necessary pressure against ambiguity.

Obverters also have an inherent bias against ambiguity, manifested by picking the least

ambiguous signals. However, in the absence of some form of memory loss, this bias is

either never strong enough (with stochastic production) or not reliably so (WTA) to lead

to guaranteed optimality.

We draw attention to the fact that the bias against ambiguity has multiple possible

interpretations. In Reinforcement learning the bias in incorporated in both the environ-

ment (which provides a payoff when states and acts are matched), and the ability to rec-

ognize that payoff—or, when punishment is employed, the lack of a payoff. Similarly, in
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the nearly equivalent Naming Game model with Yes/No Feedback, information about

success is established through interaction. In the Naming Game with referential feedback,

as with observational learning models, the guarantee of referential information requires

an internal bias in the form of lateral inhibition of homonyms. More sophisticated still

(but mechanistically identical) is the “rational” approach of the obverter Observational

Learning model.

As a final remark, we point out a parallel between this pressure against ambiguity and

the “amplifying function” described in De Vylder and Tuyls (2006) (outlined here in Sec-

tion 2.2), which works to eliminate synonyms and guarantees convergence in the homo-

nymy-free naming game. The true function of the bias against ambiguity is seen in the

way input meaning/signal distributions map to output meaning/signal distributions, that is,

from what an agent learns, to what an agent produces. While De Vylder’s amplifying

function acts to always privilege more common variants in the mapping from input to

output, the required bias against ambiguity applies slightly differently. Instead, the bias

ensures that the least ambiguous variants be amplified via repeated cycles of learning and

production.

5.3. Information loss

Section 4.1 highlighted the necessity of information loss in the development of optimal

communication. This can take several forms: simple forgetting through limited memory

size, the sampling effects of gradual replacement of members of the population, or more

targeted processes of deletion and lateral inhibition.

Why should information loss be beneficial, rather than a hindrance? In all models, the

initial state of the population is highly disorganized: Individual agents have maximally

ambiguous meaning/signal associations and are driven in many different, mutually incom-

patible directions as a result of their early interactions. If an optimal signaling system is to

be established, the influence of these early disorganized states must be eliminated. In stan-

dard Roth–Erev learning (and hence also exemplar learning), learners have an effectively

infinite memory and place an equal weight on all observations. Because the effect of new

information is proportional to the count of previous observations, the learning rate steadily
decreases over time. In the case of classic instantiations of the Reinforcement model—and

also in obverter Observational Learning without population turnover or forgetting—we

observe a slowing effect. In the long term, populations are trapped into non-optimal pool-

ing equilibria. The only way to avoid this is some form of information loss. It provides a

“plasticity” whereby non-optimal states can always be escaped.

As in the previous section, we note that the mechanisms which lead to information loss

can have very different interpretations and apparent functions. However, they all share

two key properties: (a) new information is privileged over old, and (b) the chance that a

particular association “survives” (either within an individual or within the population as a

whole) is proportional to its relative frequency, making possible the stability of frequent

associations against noisy loss.
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5.4. Comment: Simplifications and extensions

Our framework involves a number of simplifications. To expand on our comments in

Section 3.2, increasing the population size appears to result in roughly linear growth in

the number of interactions required for convergence, but quadratic growth when increas-

ing the number of meanings and signals. To measure the effect of increasing the popula-

tion, we took the average time to convergence over 10 simulations for the original

population size. We then successively doubled that size to attain values for populations

of 10, 20, 40, 80, 160, 320, 640, and 1,280. The time to convergence was found to

roughly double for each doubling in population. A similar method was used for meanings

and signals, with 5, 10, 20, 40, 80, and 160 tested. In this case, each doubling resulted in

a roughly fourfold increase in time to convergence. However, due to the time constraints

imposed by computational limitations, we are not able to make any strong claims on this

basis, particularly in light of the fact that Barr (2004) observed something more like loga-

rithmic growth when he increased the number of agents in his simulations. In any case,

the linear or slower growth resulting from increased population sizes seems less problem-

atic than the quadratic increase which occurs when more meanings and signals are used.

The emergence of novel sign languages such as NSL involves large signal and meanings

inventories. These results suggest that this process might necessarily be piecemeal, first

establishing small number of conventional meaning-signal mappings and then expanding.

It would be an interesting direction for future research to empirically verify whether this

is indeed the case.

Moving away from matters of simple scaling, the fully connected populations used in

the model are quite unlike the social structures found in actual human societies, which

tend to exhibit the “small-world” property identified by Milgram (1967). This is a very

rich area of study and impossible to treat thoroughly here, but we draw attention to the

possibility of an interaction between the agent model and the network type; indeed, Barr

(2004) shows that one very simple strategy (stay/switch, described in Section 2.2) is inef-

fective in fully connected populations but seemingly optimal in more sparsely connected

networks. In some further preliminary work, we have investigated the effects of placing

agents on small-world networks and also very sparsely connected lattice networks. For

small-world networks, it appears that the short average path-length between any two

agents leads to no great divergence from our observations above. For lattice networks,

however, where any two agents can be separated by a significant number of intermedi-

aries, we found that the global emergence of a single set of optimal signaling conventions

was not guaranteed for the majority of simulation runs even under parameter setting

which lead to convergence in fully connected populations; rather, populations converge

on a series of local optimal conventions (as also seen in Smith, 2003). This certainly war-

rants further investigation, but we are encouraged by the fact that the more realistic net-

work structures do not appear to conflict with our proposed general requirements.

Finally, as observed by Zipf (1936), words in natural languages tend to roughly follow

a power law distribution; that is, the frequency f (w) of a word scales more or less

according to its frequency r rank r, so that f ðwÞ / 1
r. We amended our model so that the
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presentation of meanings had such a distribution, first for the case of 5 meanings and sig-

nals, and then for 50 meanings and signals, and compared the resulting number of itera-

tions to convergence with those for uniform meaning distributions. These investigations

found a distinct effect whereby the power-law distributions led to slower convergence,

but within the same order of magnitude (�1.5 times as long for 5 signals and meanings,

and �3 times as long for 50). As such, we are content that—at least in this case—our

results are robust to manipulations of meaning frequency.

6. Conclusions

To reiterate the remarks of Section 5, we argue that the necessary requirements leading

to the reliable development of optimal signaling conventions in populations of interacting

agents are as follows:

1. A way of propagating referential information
2. The presence of a bias against ambiguity/homonymy

3. Some form of information loss

One way to look at these requirements is as a solution at Marr’s computational level
of analysis (Marr & Poggio, 1976). There are, however, multiple solutions at the repre-
sentational level—presumably more than the four we have surveyed here. With this in

mind, what can we say about which strategies are actually employed by humans, whether

in naturalistic or experimental settings? At this point, it is worth re-examining two of the

requirements—reference and bias—as there is a discernibly common pattern in how they

are treated.

In contrast to Lewis’s (1969) proposal that common ground must play a role in the

establishment of optimal signaling, none of the theories here require global knowledge

beyond agreement on a set of shared meanings and signals. Where they differ is in how

reference is established through individual interactions. Reinforcement learning requires

environmental cues to create reference where none existed before; models in the Naming

Game framework assume the existence of referential meaning but concern themselves

with how pairs create shared reference; in observational learning models, the salience of

reference is assumed. In all cases, referential information is shared during interaction.9

The different roles of reference in these models can be construed as involving increasing

degrees of cognitive sophistication: first environmental stimulus, then explicitly negoti-

ated, and finally implicitly available. Humans use all these strategies (Ashby, Maddox, &

Bohil, 2002; Fay, Arbib, & Garrod, 2013; Scott-Phillips, Kirby, & Ritchie, 2009). Rein-

forcement learning is arguably the simplest account here in cognitive terms.

A similar trend can be seen with the bias against ambiguity. Reinforcement learning

requires only recognition of variability in stimuli:Operant conditioning (surveyed in Staddon
& Cerutti, 2003) has long been established as a common animal behavior. Inhibition of homo-

nymy is a type of mutual exclusivity bias (Markman & Wachtel, 1988), and more complex

pragmatic inference resembling obverter learning has been experimentally observed in lan-
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guage games by Frank and Goodman (2012). Again, reinforcement learning appears to pre-

sent the simplest strategy, while not necessarily the most efficient one.

Modern humans can utilize all the cognitive abilities described above. Which, then, are

involved in the self-organization of functional communication systems we see in the wild

(e.g., in the emergence of homesign or indigenous sign languages such as NSL or ABSL

and in the lab (e.g., in studies on experimental semiotics)? Presumably, there must be

some interplay between the individual task demands of the particular communicative set-

ting—whether naturalistic or experimental—and the cognitive expenditure which is

required. It is very likely, for example, that certain communicative settings will favor a

particular strategy where others favor a different one, perhaps selected depending on the

type and quality of feedback available. We suggest that this may be a fruitful line of

enquiry for future experimental work.

What we hope our comparative approach has shown is the multiple realizability of

behavior that leads to the emergence of signaling conventions. Compelling evidence for

the explanatory role of any particular mechanism (e.g., learning bias or feedback) should

not be taken as evidence for that being the only explanation. Hopefully, we can instead

integrate these numerous insights and gain a richer understanding of the tapestry of

human communicative behavior.
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Notes

1. This is essentially a type of conformist frequency-dependent bias (Boyd & Richer-

son, 1985).

2. This is in the case of well-connected populations: Neural network populations did

not arrive at global convergence when they were placed on “small neighborhood”

network topologies.

3. The source code for the model can be found at https://github.com/matspike/

Cogscisignaling

4. Formally, T = {C � PðMÞ| |C| = c}.
5. This sufficiently reduces the probability that any given meaning is not sampled.

6. Note, however, that Barr (2004) observed non-linear, logarithmic growth when

using expanded populations.

7. In subsequent figures, we will make use of time-course graphs when we feel some

indication of relative speed of convergence is necessary. The final distribution of

communicative accuracy scores will be shown otherwise. We point out that these

distributions are stable and are not to be taken as intermediate stages which may

yet develop optimality.
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8. On closer inspection of individual simulation time-courses, hearer-only learning

and punishment reliably tends toward optimality but almost never reaches it. This

is due to the stochastic nature of the basic framework: Because minority meaning/

signal associations are less likely to be used by the population, they are also

increasingly less likely to be deleted (a type must be used to be unsuccessful). In

the specific case of WTA hearer-only learning and punishment, this effect is

avoided. This is the only time when WTA instead of stochastic processes prove to

be a critical factor in the development of optimal signaling.

9. There is an issue we have not addressed here, which Smith (2005) refers to as the

“signal redundancy paradox”; that is, why signal if meaning can be transferred

otherwise, for example, via pointing? There are a number of approaches to this

problem, ranging from the observation that signaling, once established, allows for

both displaced reference and communication out of the line of sight, to the pro-

posal by Smith (2005) that most meaning transfer must not be explicit but require

sophisticated inference. This is very interesting work, but we follow the precedent

in much of the earlier work on the evolution of signaling systems by deferring the

study of this important question.
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