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Experimental control of transport resonances in a
coherent quantum rocking ratchet
Christopher Grossert1, Martin Leder1, Sergey Denisov2,3,4, Peter Hänggi2,3,5 & Martin Weitz1

The ratchet phenomenon is a means to get directed transport without net forces. Originally

conceived to rectify stochastic motion and describe operational principles of biological

motors, the ratchet effect can be used to achieve controllable coherent quantum transport.

This transport is an ingredient of several perspective quantum devices including atomic

chips. Here we examine coherent transport of ultra-cold atoms in a rocking quantum

ratchet. This is realized by loading a rubidium atomic Bose–Einstein condensate into a

periodic optical potential subjected to a biharmonic temporal drive. The achieved long-time

coherence allows us to resolve resonance enhancement of the atom transport induced by

avoided crossings in the Floquet spectrum of the system. By tuning the strength of the

temporal modulations, we observe a bifurcation of a single resonance into a doublet. Our

measurements reveal the role of interactions among Floquet eigenstates for quantum ratchet

transport.
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A
controllable dissipationless, fully coherent quantum

transport of ultra-cold atoms is a prerequisite for several
applications, ranging from quantum information proces-

sing with atom chips1,2 to high-precision BEC-gravimetry3,4.
There are several ways to reach this goal5–7 and the ratchet effect
is one of them8–12. The essence of this effect is that a particle
in a periodic potential can be set into a directed motion by using
zero-mean time-periodic modulations of the potential only13,14.

There exists a variety of different ratchet devices13,14, with
setup-sensitive conditions for occurrence of directed transport.
Of prime importance in this context is the identification of the
dynamical symmetries which prevent the appearance of the
directed motion12. A proper choice of the system parameters,
especially of the driving field, leads to the breaking of all no-go
symmetries to yield an average net current.

There are two popular Hamiltonian ratchet setups for both,
classical13,14 and quantum systems12,15–21. While flashing
ratchets are characterized by multiplicative driven potentials,
U(x)¼V(x)F(t), rocking ratchets are realized with periodically
tilted potentials, U(x)¼V(x)þ F(t)x. In the flashing mode of
operation the forcing enters multiplicative, whereas it is of
additive character for the rocking mode. As a consequence, the
two setups belong to different dynamical symmetry groups12.
Particularly, the rocking ratchet can be realized with a single-
harmonic potential while a flashing ratchet needs a potential with
at least two spatial harmonics12.

The symmetry analysis alone, however, fails to predict the
transport direction and its average velocity. These quantities
depend on the inherent mechanisms specific to the system’s
nature and control parameters. Physical intuition may sometimes
apply, for example, a high velocity can be expected in the case of
resonant driving, when the modulating frequency matches the
characteristic frequency of the potential, as was verified with
experiments using cold atoms in the regime of classical
ratchets22–24 and, as well, with a flashing quantum ratchet
realized with a Bose–Einstein condensate of rubidium atoms11.

An intriguing phenomenon was predicted in numerical
simulations of quantum coherent ratchets10. Namely, the
ratchet current can be substantially boosted by tuning specific
Floquet states of a periodically driven potential into an avoided
crossing25–27. It was also predicted that these transport
resonances follow an universal bifurcation scenario upon
increasing the driving strength. The scenario is dictated by
generic properties of the Floquet spectra of quantum ratchets.
This theoretical result provides a possibility of a more subtle
(as compared with the symmetry-based scheme) control of the
quantum ratchet transport. The Floquet resonances were
theoretically observed with both abovementioned driving
schemes10. However, an experimental verification requires a
regime of coherent quantum transport on time scales much larger
than the period of the driving.

Our objective here is the resolution of the theoretically
predicted Floquet resonances in experiment, by using an
a.c.-driven optical potential and an atomic Bose–Einstein
condensate. In contrast to the previous experiment using a
quantum flashing ratchet11, where a biharmonic potential
building upon the dispersion of multi-photon Raman
transitions was used, the rocking setup requires only a standard
sinusoidal standing-wave optical potential. For alkali atoms with
a s-electronic ground state configuration L¼ 0, the absence of the
second harmonic in the optical potential is beneficial because it
allows for much longer coherence times as compared with those
achieved with the flashing setup. Therefore, by implementing the
rocking scheme, we can observe Floquet resonances in the mean
velocity of ultra-cold atoms and the splitting of a single resonance
into a doublet of transport resonances.

Results
Experimental realization. The quantum rocking ratchet is
described by the time-periodic Hamiltonian10,12

Ĥ ¼ p̂2=2mþV0cosð2kx̂Þ� FðtÞx̂; ð1Þ
where m denotes the mass of the atom, k¼ 2p/l is the wave-
vector of the potential, where lC783.5 nm is the wavelength of
the laser beams used in the experiment, and V0 is the tunable
lattice depth. A time-periodic force, F(t)¼ F(tþT), is
implemented by modulating one of the two counter-
propagating lattice beams with a time-dependent frequency
O(t). In the lab frame, this field produces a moving lattice
potential, V(x0,t)¼V0 cos[2kx0–f(t)], f ðtÞ ¼

R tþ t0

t0
OðsÞds, where

the temporal evolution starts at the (starting) time t0A[0,T]. This
parameter specifies the strength of the rocking force when the
modulations are switched on. In the co-moving frame, this
corresponds to a stationary potential subjected to a rocking
inertial force FðtÞ ¼ m

2k
€f ðtÞ, see (1). Similar to the setup in

refs 22–24 we use a biharmonic frequency modulation

OðtÞ ¼ O0 sin½omt� þ bsin 2omtþ y½ �f g; ð2Þ
where O0 denotes the modulation amplitude, om is the
modulation frequency, and b and y are the relative amplitude
and relative phase of the second harmonic. Thus, in the co-
moving frame this corresponds to the Hamiltonian in (1) with a
rocking force F(t) of the form10

FðtÞ ¼ A1cos½omt� þA2cos½2omtþ y�; ð3Þ
with A1 ¼ m

2k O0om and A2 ¼ m
k O0bom.

In our experiment, a Bose–Einstein condensate (BEC) of 87Rb
atoms is produced first in the mF¼ 0 spin projection of the F¼ 1
hyperfine ground state by evaporative cooling. After that the
condensate expands freely for 3 ms and converts the internal
interaction energy of the dense atomic cloud into kinetic energy.
From the resulting velocity distribution, a narrow slice of the
momentum width Dp¼ 0.2‘ k is separated with a 330-ms long
Raman pulse, transferring atoms into the mF¼ � 1 spin
projection state. The atoms are then loaded into a rocked
periodic potential formed by an optical standing wave, detuned
3 nm to the red end of the rubidium D2-line. After the interaction
with the optical potential, the atomic cloud is allowed to expand
freely for 15–20 ms and then an absorption image is recorded. By
using time-of-flight images, we analyse the velocity distribution of
the atomic cloud, see Fig. 1. The interaction with the lattice
potential during a time span [t0, t0þ t] results in a diffraction
pattern with a set of discrete peaks, separated by two photon
recoils, with the nth order peak corresponding to a momentum of
pn¼ 2‘ kn; see Fig. 1a. The mean momentum of the atomic cloud
is calculated as �p ¼

P
n bnpn, where bn is the relative population

of the nth momentum state. Due to finiteness of the contrast and
sensitivity of the imaging system, we restrict the summation to
n¼ � 3,y,3.

Dependence of atom current on the modulation starting time.
The atomic current produced by the rocking quantum ratchet,
equations (1–3), can be evaluated in terms of the eigenfunctions
of the operator which propagates the system over one period of
the driving, U(T), caðTÞj i ¼ expð� ieaT=‘ Þ faðTÞj i. These
eigenfunctions are stroboscopic snapshots of the time-periodic
Floquet states {|fa(t)}a¼ 1,2,..., |fa(tþT)i¼ |fa(t)i (refs 28–30).
In the lab frame, the system Hamiltonian is a spatially-periodic
operator and its reciprocal space is spanned by the quasienergy
Bloch bands, ea(k), kA[� p/Llat, p/Llat], with Llat¼ l/2, a¼ 1,2,...,
and the Floquet states are parameterized by the quasimomentum
values ‘k, |fa,k(t)i(ref. 31). A non-vanishing transport is expected
for k¼ 0 when A1;A2=¼0 and y=¼l � p; l 2 Z. This choice of
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parameters results in the breaking of the sole dynamical
symmetry,

Ŝt : fx; p̂; t; t0g ! fx; � p̂; � t; � t0g; ð4Þ

preventing the de-symmetrization of the eigenstates8–11. The
average velocity of a-th Floquet state |fa,k(t)i at
quasimomentum k is determined by the local slope,
ua,k¼‘ � 1qea(k)/qk (refs 8–10). An initial wave packet can be
expanded over the instantaneous Floquet basis,
cðt0Þj i ¼

R1
�1½f ðkÞ

P
a Ca;k t0ð Þ fa;kðt0Þ

�� �
�dk. The distribution

f(k) is determined by the momentum profile of the initial wave
packet, which is transformed into the profile in the
k-space. The velocity after an overall interaction time t then
reads12

v t; t0ð Þ ¼
Z 1
�1
½f ðkÞ

X
a

Ca;k t0ð Þ
�� ��2ua;k�dkþ vbeat t; t0ð Þ

¼ va t0ð Þþ vbeat t; t0ð Þ; ð5Þ

where the last term on the rhs accounts for the interference
between different Floquet states. Its time average disappears in the
asymptotic limit, limt!1hvbeatðt; t0Þit ! 0, provided that either
there are at least several Floquet states which overlap substantially
with the initial wavefunction that is well-localized at k¼ 0,
f(k)Ed(k)10, or the initial wave packet is spread over the
quasimomentum space (we discuss the corresponding
mechanism in the next section). In the latter case it is enough to
have two Floquet bands effectively overlapping with the initial
wave packet; this latter situation is the case in our experiment; see
Fig. 2c. The theoretical quantity m � v(t, t0) should be compared
with the mean momentum of the atomic cloud, �pyðt; t0Þ, a quantity
measured in the experiment and defined in the previous section.

Because of the explicit time-dependence of the Floquet states,
the weights Ca,k(t0) depend on the starting time t0, so that the
asymptotic velocity depends on the starting time even when the
initial wave function and all other parameters are held fixed10,11.
We first studied this quantum feature, namely the dependence of
the atomic transport on the starting time t0A[0, T], T¼ 2p/om.
Our Fig. 1b depicts the experimental results for two values of
y, p/18 (filled blue dots) and 17p/18 (filled green squares). In both
cases we observe a strong dependence of the ratchet transport on
the starting time t0. Theory predicts a particular symmetry,
reading, �pp� yðt; T=2� t0Þ ¼ �pyðt; t0Þ. This symmetry follows
from the invariance of the quantum Hamiltonian (1–3) under
the transformation of y and t0, combined with the double reversal
{t,x}-{� t, � x} and complex conjugation. The result of this
transformation applied to the experimentally measured
momentum dependencies is depicted with Fig. 1c. Within
experimental uncertainty, the momentum dependencies
perfectly match each other. We interpret this finding as key
evidence for the coherent character of the dynamics of our
quantum ratchet.

Temporal evolution of the mean atomic momentum. Figure 2a
depicts the mean atomic momentum h �pi, where h...i denotes the
averaging of the momentum over the starting time t0, versus the
number of modulation periods. The interference between the
contributing Floquet states comes into play immediately after the
switch-on of the modulations and induces the appearance of a
non-zero current already after several periods of the modulations.
Upon increasing elapsing interaction time t, the mean
momentum exhibits several oscillations, as expected from the
interference beating (note the last term on the rhs of equation (5),
and saturates towards a nearly constant value. The initial wave-
function of the loaded BEC can be effectively represented as a
coherent superposition of two Floquet states, see Fig. 2c. The
spectral gap at the avoided crossing point (near k¼ 0), obeat¼ de/‘ ,
de¼ |ea–eb|, specifies the time scale of the interference beating.
The theoretical model yields obeat¼ 0.04om, cf. Fig. 2c, which
matches the time, tmaxE20T, after which the first maximum
appears in the dependence h�pðtÞi versus interaction time t.

The finite momentum dispersion of the BEC produces an
additional, while fully coherent, damping-like effect for the time
evolution of the current. Namely, contributions of Floquet
eigenstates from different k—bands, characterized by
continuously changing quasienergies, ea(k), cf. Fig. 2c, result
upon elapsing interaction time in a self-averaging of the
interference term vbeat towards zero. Thus, the finite momentum
width of the initial packet removes the need for the additional
run-time averaging of the current in order to obtain the
asymptotic velocity va(t0) (this averaging was used in ref. 10
when calculating ratchet dynamics of the wave packet
f(k)¼ d(k)]. For a broader momentum BEC slice, this effect
causes with increasingly elapsing interaction time t a substantial
damping of the oscillations, note the filled green squares in
panel Fig. 2a.

Detection of transport resonances. We next turn to the issue of
quantum transport resonances present in coherently rocking
quantum ratchets, with both harmonic amplitudes A1;A2=¼0. A
theoretical analysis is elucidative in the limit f(k)¼ d(k) (the
analysis for the general case can be performed by using the recipe
in ref. 32). When the phase y ¼ l � p; l 2 Z, the system (1–3)
obeys time-reversal symmetry so that all Floquet states become
non-transporting, ua,k¼ 0�0. An asymptotic current is absent
though a transient current is still possible due to the above-
discussed interference effects. From the symmetry analysis of the
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Figure 1 | Dependence of atom transport on starting time. (a) Time-of-

flight image recorded after 15 ms of free expansion time, showing the

atomic velocity distribution after 100 modulation periods. The white circles

mark the position of the visible diffraction peaks. (b,c) Mean atomic

momentum as a function of the starting time t0 measured for two different
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y¼ p/18. The measurements were performed after an interaction time of

t¼ 100T. The experimental parameters are V0¼4.5Er, O0¼ 241.8 kHz,
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frequency equals or¼ Er/�h¼ 2p � 3.74 kHz.
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Schrödinger equation with the Hamiltonian (1–3), it follows that
the dependence of the averaged (over t0) asymptotic velocity
va(y)¼hva(y;t0)i on y obeys va(y)¼ � va(y±p)¼ � va(� y)
(ref. 10). The results of experimental measurements nicely fit
this theoretical prediction, see Fig. 2b.

Theoretically one may find10 a resonant-like increase
of the average current versus y when tuning the amplitude of
the driving. All Floquet states are ordered with respect to their
averaged kinetic energy in ascending order a¼ 1,.... The Floquet
state f1(t) has the lowest kinetic energy and any initial
wavefunction which has a lower kinetic energy overlaps
with this state mainly. This state is strongly affected by the
change of the potential shape and thus the corresponding
dependence e1(y) exhibits noticeable dispersion upon the
variation of y, with a ‘tip’, either minimum-like or maximum-
like, at the point of maximal asymmetry, y¼±p/2; note the the
bottom sketch in Fig. 3a. Floquet states with high kinetic
energies possess large average velocities �u. We call them ‘ballistic
states’. The quasienergy dependence on y of a typical
ballistic state, ea¼ n(y), n � 1, is close to a straight line
because the state is only weakly affected by the variations of the
potential shape.

Even when being distant on the energy scale, the two bands,
a¼ 1 and a¼ n, can be brought into an avoided crossing on the
quasienergy scale, eaA[�‘o/2, ‘o/2], by tuning the amplitudes
of the modulating force, A1 and A2 (refs 10,27). Due to the
parabolic-like structure of the dependence e1(y), the two states
always meet first (if they do) at the points y¼±p/2, see second
(from the bottom) sketch in Fig. 3a. The eigenstates mix at these
avoided crossings33, so that their wave functions exchange their
structures. This effect leads to an increase of the average velocity
of the Floquet state with minimal kinetic energy. Because the
crossing is forbidden, a further increase of the modulation
strength causes a bifurcation of the avoided crossing point into
two avoided crossing points, with the latter moving apart upon
even further increase, as it shown on third and forth (from the
bottom) sketches on Fig. 3a. For an initial wavefunction which
substantially overlaps with the Floquet state assuming minimal
kinetic energy the ‘mixing’ of the Floquet states will reveal itself
through a resonance-like behaviour of the velocity dependence
hvai (ref. 10). The particular choice of the initial low-energy wave
function, for example the zero-plane wave |0i or the ground state

of the stationary potential V(x), is not essential because it does
modify the results only slightly. The avoided crossing should not
be sharp, however, otherwise the beating time tbeat¼ 2p‘ /De will
be larger than the time scale of the experiment and the mixing
effect cannot be detected.
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Figure 3 | Bifurcation of a transport resonance. (a) A sketch of the

interaction scenario between quasienergy Floquet bands (bottom to top).

For low values of the modulation amplitude, the Floquet ground band

(upper parabolic curve) lies far from a ballistic band (straight line). Upon

increasing the modulation amplitude, the tip of the Floquet ground band

approaches the ballistic band and touches the latter at the points of the

maximal asymmetry y¼ p/2. Because the crossing is forbidden, a further

tuning of the parameter causes a bifurcation of the avoided crossing point

into two avoided crossing points (for the sake of clarity, the smallness of

the avoided crossings are exaggerated). The colour of the frames

corresponds to the colouring used for the right panel. (b) Mean atomic

momentum as a function of y for different values of the modulation

amplitude O0. The measurements were performed after the interaction

time t¼ 70T and averaged over eight equidistant values of t0A[0, T]. The

thin lines correspond to numerical results obtained for the Gaussian initial

wave packet. The shown error bars correspond to the standard deviation of

the averaged mean momentum. The experimental parameters are

V0¼ 3.55Er, b¼ 13/7E1.86 and om¼ 16or .
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corresponding two Floquet states dominantly contribute to the velocity, equation (5).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10440

4 NATURE COMMUNICATIONS | 7:10440 | DOI: 10.1038/ncomms10440 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Figure 3b depicts the mean momentum of the atomic cloud as
a function of the phase y for different values of the amplitude O0.
For small values of O0, we observe an enhancement of transport
at the point y¼ p/2. It is attributed to a local contact of Floquet
states as indicated on the two lower panels on Fig. 3a. For larger
values of the amplitude O0, the peak splits into a doublet. This
bifurcation is attributed to the splitting of a single avoided
crossing point as depicted on the top panel of Fig. 3a.

We also performed numerical simulations of the ratchet
dynamics by using the model Hamiltonian in equations (1–3).
Figure 4a,b depicts the Floquet band structure in k-space at y¼ p/2
obtained for the parameter set used in the experiment. The width
and colour of the band indicate the relative populations
(additionally averaged over starting times t0) of the bands for an
initial Gaussian wave packet. The obtained numerical results
confirm that for the chosen set of parameters and the chosen initial
condition the system dynamics indeed is governed by two bands, a
Floquet band exhibiting minimal kinetic energy (the corresponding
band assumes a flat line) and a ballistic band.

For the modulation amplitude O0¼ 70 kHz, Fig. 4a, there
occurs an avoided crossing between the Floquet state with
minimal kinetic energy and the ballistic state. This avoided
crossing is responsible for the appearance of the resonant single-
peak in the atomic current. On the other hand, for O0¼ 122 kHz,
Fig. 4b, there is almost no interaction between the ballistic state
and the low-energy state. This explains the minimum in the
momentum dependence at y¼p/2, cf. the top panel on Fig. 3a.
The bifurcated avoided crossings are shifted from the point
y¼ p/2; the latter causes the formation of a double-peak pattern
in the momentum dependence h�pi versus y.

Discussion
In conclusion, we demonstrate the control of coherent quantum
transport in a rocking quantum ratchet by engineering avoided
crossings between Floquet states. Rocking quantum ratchets allow
for an experimentally long-lasting coherent transport regime and
thus make possible the observation of specific bifurcation
scenarios, such as those transport resonances. Our results give
direct experimental evidence for the interaction between Floquet
states of the driven system to determine the directed atomic
current, enabling a fine-tuned control of transport of ultra-cold
matter in the fully coherent limit.

Other problems for which coherent controllable interactions
between Floquet states are beneficial include quantum systems

containing a leak34–36 or photonic systems with losses37,38, where
tunable external modulations can create long-lived dynamical
modes. Periodically modulated optical potentials can also be put
to work as tunable quantum ‘metamaterials’. This scenario also
allows the sculpturing of materials with Dirac cones in the
quasienergy spectrum by subtle engineering of avoided crossings
between designated Floquet states. To achieve such Dirac points,
the corresponding avoided crossing has to be sufficiently sharp,
which means the difference between the quasienergies of the
participating Floquet states, De, must assume values smaller than
the characteristic time t p 1/v, where v is the velocity of the
atomic beam moving across the optical potential. The avoided
crossing in k-space would then be ignored during the
corresponding motion along the Floquet band27. Because this
condition (to have a sharp avoided crossing) is opposite to what
we utilized in this work (to have a broad avoided crossing, in
order to resolve it on the time scale of the experiment) this latter
perspective is even more appealing. The coherence time of the
order 100T can be sufficient to meet the above condition. Possible
applications of this idea include the study of Klein tunnelling39,40,
or also the observation of interacting relativistic wave equations
phenomena, such as a chiral confinement41 in a.c.-driven
systems.

Methods
Numerical simulation. In order to reproduce the experimental measurements, we
accounted for a finite width of the initial wave function and performed simulations
for a Gaussian initial wave packet. If the initial packet is not too broad and
well-localized within the first Brillouin zone the neglect of its tale contributions to
the overall current produces a uniform rescaling of the ratchet current. This
resolves the issue of the finite contrast resolution when calculating diffraction
peak populations obtained in the experiments. However, it also leads to an
overestimation of the current. In order to fit the measurements, we did perform
numerical simulations with a Gaussian wave packet with a dispersion (being the
fitting parameter used in our case) five times smaller than that used in the
experiments. The region k¼ [‘ k, ‘ k] was sliced with 500 equidistant
quasimomentum subspaces, assuming the initial state being in the form of the
plane wave. We have also performed simulations assuming the Bloch groundsate of
the undriven potential as the initial wave function (within each
k-slice). The obtained results only slightly differ from the presented ones. We
propagate the wave functions independently and after an interaction time t sum the
velocities by weighting them with the Gaussian distribution. Similar to the
experiment, these results were averaged over eight different values of t0. The
obtained dependencies are in very good agreement with the experimental data,
see thin coloured lines in Figs 2a and 3b.

Experimental details. Our experiment uses an all-optical approach to produce a
quantum degenerate sample of rubidium atoms, which subsequently is loaded
onto a modulated optical lattice potential to realize a rocking ratchet setup.
Bose–Einstein condensation of rubidium (87Rb) atoms is reached by evaporative
cooling of atoms in a quasistatic optical dipole trap, formed by a tightly focused
horizontally oriented optical beam derived from a CO2-laser with optical power of
36 W operating near 10.6 mm wavelength. A spin-polarized BEC is realized by
applying an additional magnetic field gradient during the final stage of the
evaporation, in this case a condensate of 5� 104 atoms in the mF¼ 0 spin
projection of the F¼ 1 hyperfine electronic ground state component42,43. A
homogeneous magnetic bias of 2.9 G (corresponding to a DozE2p � 2 MHz
splitting between adjacent Zeeman sublevels) is applied, which removes the
degeneracy of magnetic sublevels.

By letting the condensate expand freely for a period of 3 ms, the atomic
interaction energy is converted into kinetic energy. The measured momentum
width of the condensate the atoms then reach is Dp¼ 0.8‘ k. We subsequently use
a 330-ms long Raman pulse to cut out a narrow slice of Dp¼ 0.2‘ k width from the
initial velocity distribution, transferring the corresponding atoms into the the
mF¼ � 1 spin projection. The atoms are now loaded into a modulated optical
lattice potential formed by two counter-propagating optical lattice beams deriving
from a high power diode laser with output power of E1 W detuned 3 nm to the red
of the rubidium D2-line. Before irradiating the atomic cloud, the two optical lattice
beams each pass an acousto-optic modulator and are spatially filtered with optical
fibres. One of the modulators is used to in a phase-stable way modulate the relative
frequency of the two lattice beams with a biharmonic function. The acousto-optic
modulators are driven with two phase locked arbitrary function generators. The
maximum relative frequency modulation amplitude (E700 kHz) of the lattice
beams is clearly below the Zeeman splitting between adjacent Zeeman sublevels
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Figure 4 | Population of the Floquet bands. The populations of the Floquet

bands of the system (1–3) for two values of the modulation amplitude O0

(O0¼ 70 kHz for a and O0¼ 122 kHz for b) for a chosen relative phase

y¼ p/2. Width and colour of a band lines encode the relative population of

the Floquet ground band and ballistic bands by the initial Gaussian wave

packet (see Fig. 2c). The colour coding indicating the relative population of

the ath state (labelled as Pa) is given by the intensity bar. The remaining

parameters used are V0¼ 3.55Er, b¼ 13/7E1.86 and om¼ 16or .
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(oz/2pE2 MHz), which suppresses unwanted Raman transitions between the
sublevels.

After the interaction with the driven lattice, we let the atomic cloud expand
freely for a 15–20-ms long period and subsequently measure the population in the
F¼ 1, mF¼ � 1 state with an absorption imaging technique. For this, the
corresponding atoms are first transferred to the F¼ 2, mF¼ � 1 ground state
sublevel with a 34-ms long microwave p-pulse, and then a shadow image is
recorded with a resonant laser beam tuned to the F¼ 2-F0 ¼ 3 component of the
rubidium D2-line onto a CCD-camera, see also (ref. 43). The used time-of-flight
technique allows us to analyse the velocity distribution of the atomic cloud.
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