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Inorganic pollutant, specifically heavy metals’ contamination, is a significant matter of concern and is one of the key contributors
in various health disorders including cancer. However, the interaction of heavy metals (HMs) with lung cancer has rarely been
explored yet. Therefore, the present study was intended with the aim to identify the interactions of HMs with the target
protein “epidermal growth factor receptor (EGFR)” of lung cancer and explore potential drug candidates, which could inhibit
the active site of EGFR against HM exposure. The molecular operating environment (MOE) tool was used to study the
interactions of HMs with EGFR protein. The drug-drug interaction (DDI) network approach was used to identify the potential
drug candidates, which were further confirmed and compared with the commercial medicines/control group. Various
compounds of twenty-three HMs were docked with EGFR protein. Out of which tinidazole, thallium bromodimethyl, and
silver acetate (Sn, Ti, and Ag compounds) showed strong interactions with EGFR based on lowest-scoring values (-20.42, -7.86,
and -7.74 kcal/mol, respectively). Among 1280 collected drug candidates, three synthetic compounds viz., ZINC00602803,
ZINC00602685, and ZINC06718468 and three natural compounds (berberine chloride, transresveratrol, and ellagic acid)
depicted strong binding capacity with EGFR. Specifically, the scoring value of ZINC00602803 (-30.99 kcal/mol) was even
lowest than standard lung cancer drugs (afatinib, erlotinib, and gefitinib). Our findings revealed that both natural and synthetic
compounds having strong associations with EGFR protein could be potential candidates to inhibit the interaction between
HMs and lung cancer protein and can also be used as an alternative for the prevention and treatment of lung cancer. However,
in vitro and in vivo studies should be conducted to validate the aforementioned natural and synthetic compounds.

1. Introduction

Natural, geogenic, lithogenic, and anthropogenic activities
are major contributors to environmental contamination [1,
2]. Various organic and inorganic toxins enter the human
body through ingestion, inhalation, and dermal contact from
contaminated water, soil, air, and food and cause various
health effects. Potential toxic substances such as heavy

metals (HMs) and persistent organic pollutants (POPs) have
received global paramount attention by scientists due to
their lethal nature [1, 3]. Both natural (weathering of rocks
and vulcanization) and anthropogenic activities viz., indus-
trialization, urbanization, automobiles, and extensive use of
agrochemicals are major causes of food chain contamination
[4, 5]. Various epidemiological studies have illustrated that
consumption of contaminated foods, specifically containing
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HMs, is one of the major threats to human health. Such as
intake of arsenic, cadmium, chromium, lead, mercury, and
tin via ingestion of contaminated foods causes various types
of cancers (lung, bladder, breast, esophagus, stomach, intes-
tines, prostate, and skin cancer) in humans [6–8].

Based on the recent advancements, computer-based
approaches satisfy environmental scientists/regulators in
estimating the properties of compounds, analyzing their
fate-determining processes, and feasibly predicting their
results [9]. Environmental informatics (EI), a computational
approach [10], is actively addressing the daunting issues and
bridges the gap between computer science and environmen-
tal sciences [11]. Awareness of the desired orientation in
molecular docking can be used to determine the strength
or affinity of contact between two molecules [12].

Lung cancer is the most common cancer in men and the
fourth most common cancer in women [13, 14]. Interna-
tional Agency for Research on Cancer (IARC) has estimated
that approximately 2.09 million cases of lung cancer are
diagnosed every year along with 1.76 million deaths [14].
However, there is a scarcity of data reflecting the true
incidence and mortality of lung cancer in Pakistan. Global
Cancer Incidence, Mortality, and Prevalence (GLOBOCON,
2012) placed lung cancer as Pakistan’s third most common
cancer, while Pakistan Health Research Council (PHRC,
2016), data revealed that lung cancer in Pakistan is the
10th most common cancer [15]. It has been assumed that
industrialization, urbanization, and agricultural practices
cause overexposure and long-term bioaccumulation of dif-
ferent heavy metals in the environment and food products,
which increase the incidence of lung cancer [8, 16].

Approximately, 80-85% of lung cancers are non-small-
cell lung cancer (NSCLC) [17]. However, in association with
some lung cancers, mutations in epidermal growth factor
receptor (EGFR) have been reported [18]. The EGFR is a
transmembrane receptor tyrosine kinase protein in some
normal epithelial, mesenchymal, and neurogenic tissue that
regulates signaling pathways but its overexpression has been
reported in the pathogenesis of many human malignancies,
including NSCLC [18]. Half of the newly diagnosed patients
with NSCLC have progressive disease, which offers a poor
prognosis due to the drug resistance of EGFR protein (land-
mark target of NSCLC). And effectiveness of the standard
drugs such as erlotinib, gefitinib, and afatinib is limited
[17]. To resolve acquired EGFR resistance, various strategies
have been explored but still, monotherapy in the first line is
needed to be developed [19]. Though it is well established
that HMs are contributing to various types of cancer, their
association with EGFR protein is not clearly understood
yet. Therefore, present findings could contribute to under-
standing the mechanism of molecular interactions of various
inorganic toxins, specifically HMs and their role in lung can-
cer and the application of alternative compounds to treat
this lethal health disorder. It has been reported that human
exposure to certain HMs present in his surrounding envi-
ronment increases the risk of lung cancer; especially, Cd,
Cr, Ni, and Pb contents were found significantly higher in
the urine of lung cancer patients compared to noncancer
controls [20]. Various studies are in the view that HMs con-

tribute in lung cancer. Such as arsenic (As) and beryllium
(Be) compounds depicted significant association with lung
cancer both in vitro and in vivo [21, 22]. The International
Agency for Research on Cancer and the US National Toxi-
cology Program have classified cadmium (Cd) compounds
as human carcinogens based on strong associations between
occupational Cd exposure and lung cancer in humans [23],
because Cd causes inflammation in human lungs via
increased oxidative stress, resulting in tissue destruction,
obstructive lung function, and cancer. However, there is a
contradiction in the carcinogenic effect of iron (Fe), specifi-
cally its role in lung cancer [24]. In this context, the present
study was intended with the aim (i) to study molecular inter-
actions of various heavy metals’ compounds with lung
cancer protein “EGFR” using in silico approach and (ii) to
explore the potential drug candidates from a database of
synthetic and natural compounds to inhibit interactions
between HMs and EGFR.

2. Materials and Methods

2.1. Disease Selection and Identification of Gene. Direct or
indirect exposure to inorganic toxins, like HMs, could con-
tribute to various types of cancer [25], which have been pre-
dicted to be the most significant threat to rising life
expectancy in every nation of the world [26]. In this study,
NSCLC, a common malignant form of lung cancer, was
selected which is one of the most lethal type of cancer [14].
The selection and identification of mutated gene of lung
cancer were based on previous literature [19] and were also
subsequently confirmed using the online database Gene-
Cards (https://www.genecards.org/). The GeneCards is an
extensive, integrated, annotative, and sophisticated search
engine [27]. Finally, EGFR gene was selected as a target
based on its highest-scoring value, which was approximately
21.25 as given in Table 1.

2.2. Protein Selection and Preparation. The target protein
was selected based on identified gene, and its structure was
downloaded through Research Collaborator for Structural
Bioinformatics Protein Data Bank (RCSB PDB) database
(https://www.rcsb.org/), which provides structural data
information of biological molecules [28]. Protein prepara-
tion was carried out using the MOE tool, which is a widely
used program for chemical computing, molecular modeling,
and other scientific applications [29]. Open Sequence Editor
module was used to delete the nondesired chains and resi-
dues, followed by the addition of hydrogen bonds, while
the energy of the protein molecule was minimized using
the energy minimization algorithm. Energy minimization
was settled when the root mean square gradient reaches less
than 0.05.

2.3. Validation. To validate whether our approach can dis-
tinguish between active and inactive compounds, a virtual
screen (VS) experiment was performed using actives (843
EGFR inhibitors, i.e., binders) as positive control and decoys
(18000 compounds, i.e., nonbinders) as negative datasets
obtained from the Database of Useful Decoys: Enhanced
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(DUD-E). All the dataset compounds were docked into the
binding site of ERα (PDB ID: 6DUK).

2.4. Toxicity Prediction of Heavy Metals and Ligand
Preparation. Data on various heavy metals were collected
through literature [7] and online database PubChem
(https://pubchem.ncbi.nlm.nih.gov/) as reported earlier
[25]. In addition, admetSAR, a web server, was used to pre-
dict the chemical toxicity of the heavy metals [30], on
humans, plants, animals, or the environment [31]. Ligand
identification by any biomolecule depends on its three-
dimensional orientation and electrostatic interactions [32].
To find the correct conformations, ligands were prepared
through MOE tool, in which ground state geometries of
the ligands were optimized through energy minimization.

2.5. Molecular Docking. Molecular docking was employed to
explore the possible binding mode between a small molecule
(ligand) and the target protein or receptor [33]. MOE was
used for molecular docking [34], and calculations were car-
ried out based on S-value and RMSD value. Before docking
the database, the docking protocol was validated by using
the redock method, and the cocrystallized ligand was
redocked into the binding site of 6duk, and root mean
square deviation (RMSD) was computed. The quality of
docking accuracy/docking pose was assessed with the follow-
ing RMSD values range: ≤1:10 = good pose, <1.11-1:90 =
close pose (bold), and ≥2.00 bad pose (bold-italic) as men-
tioned in Table 2. Docking results were visualized and inter-
preted using 2D and 3D structures through Discovery Studio
Visualizer.

2.6. Collection and Mining of Drug Candidates. ZINC data-
base (https://zinc.docking.org/) supports virtual screening,
ligand discovery, pharmacophore screens, benchmarking,
and force field advancement [35] and was used to collect
drug candidates (synthetic and natural) along with their
structures and chemical properties such as “Zinc ID or drug
ID, LogP, molecular weight, hydrogen bond donors (HBD),
Hydrogen bond acceptors (HBA), rotatable bonds, non-
polar dissociation, and polar dissociation.” In the process
of data mining, the processed data from multiple perspec-
tives is summarized into valuable information that can be
used to raise revenue, reduce costs, or maybe both [36].
Lipinski rule of five was used to extract data, and according
to the rule, value for hydrogen bond donor, hydrogen bond
acceptors, segment coefficient log P esteem, and several
rotatable bonds should be less than 5, 10, 5, and 10, respec-
tively, and subatomic weight should also be less than 500 g/

mol [37]. Therefore, drug candidates that comply with the
Lipinski rule were selected.

2.7. Clustering of Screened Drug Candidates and DDI
Network Generation. Clustering of drug candidates was
accomplished through the Weka tool by the “simple K
means clustering” method. In this method data set
(x1, x2, x3⋯⋯:xn) was classified into K clusters according
to their properties [38]. Drug-drug interaction networks
facilitate in the identification of clear correlations of drug
candidates within each cluster that supports the identifica-
tion of strongly interacted drugs. Gephi tool was used in
the generation of DDI networks, which is an open-access
platform for importing, visualizing, spatializing, filtering,
manipulating, and exporting all kinds of networks [39].

2.8. Validation of Drug Candidates. Only those drug candi-
dates which have higher modularity values in a strong DDI
network were selected, and their activity was further con-
firmed through docking. The drug candidates were validated
through molecular docking that confirms the binding activ-
ity of drug candidates to the active site of EGFR protein. And
compounds having the highest scoring value were recom-
mended to be used exclusively or synergistically to attain
optimal efficiency against lung cancer.

3. Results and Discussion

3.1. Selection of EGFR Protein’s ID. The EGFR protein’s ID
was selected using a cross-docking approach. Figure 1 illus-
trates the superposed diagram of the redocked ligand on the
experimental ligand. Three-dimensional structures of three
EGFR proteins were retrieved from PDB. For every available
structure, each native ligand was docked. The results of
cross-docking as mentioned in Table 2 indicate that docking
simulations carried out on 3D structures in complex with
different ligands had only about 44% of chance of reliable
pose. Based upon cross-docking results for further studies,
we used PDB ID “6DUK.”

3.2. Interaction of HMs with EGFR Protein. It is well estab-
lished that heavy metals are suspected to enhance the ratio
of different types of cancer in humans [40], including lung
cancer. EGFR protein, having protein ID “6DUK”, one of
the landmarks for lungs’ cancer therapy was prepared for
docking to evaluate the interactions with heavy metals and
screened drug candidates. Oral toxicity of screened heavy
metals (n = 23) was anticipated through admetSAR along
with molecular weight, water solubility, and signal. As
shown in Table 3, most of the HMs were lying in toxicity

Table 1: Scoring values of protein coding NSCLC genes.

S. # Symbol Description Score

1 EGFR Epidermal growth factor receptor 21.25

2 KRAS KRAS proto-oncogene, GTPase 14.42

3 ALK ALK receptor tyrosine kinase 12.58

4 ERBB2 Erb-B2 receptor tyrosine kinase 2 12.47

Table 2: Cross-docking results for various PDB IDs from EGFR.

PDB IDS of EGFR protein
RMSD (Å)

6DUK 5GTY 3IKA

6DUK 0.89 0.98 1.73

5GTY 1.01 1.10 2.73

3IKA 2.13 2.24 1.67
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class 3. The molecular weight of screened HMs was ranged
between 50 and 238mg/mol, while their water solubility
was between 0.03 and 11.3mol/L.

According to the United States Environmental Protec-
tion Agency (USEPA) and the International Agency for
Research on Cancer (IARC), various epidemiological studies
have reported that As, Cd, Cr, Hg, Ni, and Pb are either clas-
sified as “known” or “probable” human carcinogens [41].
However, our findings revealed that tinidazole, thallium bro-
modimethyl, and silver acetate compounds of three heavy
metals viz., tin (Sn), thallium (Ti), and silver (Ag) have
strong associations with EGFR protein based on lowest-

scoring values (-20.42, -7.86, and -7.74 kcal/mol, respec-
tively) as demonstrated in Table 4.

Various factors including solubility, the ability of a metal
to bind at active sites of proteins, and the degree to which
the metal complexes are sequestered, metabolized, and
excreted may affect the metal’s ability to cause toxic effects
[42]. Moreover, when metal is introduced into the body by
the oral or dietary route, the liver substantially decreases
its bioavailability to 90% through excretion. While, remain-
ing amount, which is not disposed of, interacts with proteins
by reacting to certain chemical groups in the protein’s struc-
ture and forms a metal-protein complex. In the case of
excessive doses, the removal pathways are saturated, and
tissue deposition is increased. This facilitates the formation
of such complexes that cause various adverse effects includ-
ing cancer [43].

Different natural and anthropogenic activities involve in
the contamination of HMs, specifically Sn, Tl, and Ag in the
food chain. Sn compounds (organic and inorganic) are used
in toothpaste, perfumes, soaps, coloring agents, food addi-
tives, and dyes, from where they enter into the human body
through various routes, i.e., air, water, soil, and food. The
provisional tolerable daily intake (PTDI) for tin is 14mg/
kg body weight, and recommended maximum permissible
levels of tin in food are typically 150mg/kg for canned bev-
erages [44]. Coal-burning and smelting are primary sources
of Tl contamination specifically, in the vicinity of industrial
zones, elevated levels of Tl contaminate vegetables, fruits,
and tissues of farm animals. The admissible limit of Tl in
food is 0.1mg/g while its oral reference dose is 0.056mg/
day/person. The toxicity of thallium-based compounds is
mainly due to the similarity between thallium and potassium
ions, and thallium interference creates disorder in
potassium-associated metabolic processes [45]. Ag is used
as a food additive and has also been used for surgical prosthe-
ses and splints, fungicides, and coinage [46]. But due to its
adverse health effects, OSHA and the National Institute for
Occupational Safety and Health (NIOSH) prescribed the per-
missible limit < 0:01 to 2.6μg/kg for all forms of silver [42].

3.3. Collection and Clustering of Drug Candidates. The
retrieved data set of 1280 compounds from the ZINC data-
base were filtered, and 1073 compounds were selected for
further analysis based on Lipinski rule of five. Weka tool
was used for clustering the data set of 1073 compounds. In
total, eight clusters were made using the K-means algorithm,

Table 3: Properties of heavy metals’ compounds.

S. # Metal MW (mg/mol) WS (mol/L) Signal AOTC

1 Arsenic 74.92 0.463 Danger 3

2 Lead 207.0 0.046 Danger 3

3 Cadmium 112.4 1.090 Danger 3

4 Mercury 200.6 0.064 Danger 3

5 Nickel 58.69 7.180 Danger 3

6 Thallium 204.4 — Danger 3

7 Copper 63.55 6.620 Danger 3

8 Antimony 121.8 — Danger 3

9 Bismuth 209.0 0.043 Warning 3

10 Cerium 140.1 0.381 Warning 3

11 Chromium 52.00 1.670 Danger 3

12 Gallium 69.72 1.240 Danger 3

13 Gold 197.0 0.054 — 3

14 Platinum 195.1 0.031 Danger 3

15 Tellurium 127.6 0.469 Danger 3

16 Silver 107.9 0.653 Warning 3

17 Tin 118.7 — Warning 3

18 Uranium 238.0 0.074 Danger 3

19 Vanadium 50.94 1.700 — 3

20 Cobalt 59.93 1.480 Danger 3

21 Manganese 54.94 1.590 Warning 3

22 Iron 55.85 11.30 Danger 3

23 Zinc 65.38 5.260 Danger 3

MW: molecular weight; WS: water solubility; Sig: signal; AOTC: acute oral
toxicity class.

Figure 1: Demonstration of redocked cocrystallized ligand on experimental ligand.
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because of its efficacy in terms of execution time and imple-
mentation. In each cluster (Figure 2), drug candidates
having similar properties are represented in bands according
to their x- and y-axis properties. Majority of the drug candi-
dates have an xLogP value between 1.17 and 4.98 and H-
donor value between 0 and 2.5. However, maximum drug
candidates having H acceptor value ranged from 4 to 5
and vice versa.

3.4. Drug-Drug Interaction (DDI) Networks and Their
Statistics. To overcome the problem of large and complex
data representation, the Gephi tool (0.9.1) which provides
a platform for complex network visualization, analysis, good
repositioning hints, and properties prediction was used [47].
Fruchterman rein gold parameters were used to generate
DDI networks and to organize the random network for visu-
alization and analysis. The repulsion strength of the modules
in the Force Atlas was set to be 10,000 for the appropriate
display of the network. Based on clustered data, eight DDI
networks were generated based on modularity, path lengths,
average degree, average weighted degree, degree distribution,
and graph density (Figure 3). In each network, nodes repre-
sent the drug candidates while edges show the interactions
among them. The sizes of the nodes vary due to the differ-

ence in their strength within a network while random colors
were selected as a community identifier. Drug-drug interac-
tion networks having smaller and larger sizes of nodes and
edges represent the strength and partition of the communi-
ties within the network.

3.5. Statistics of Drug-Drug Interaction (DDI) Networks.
Statistical parameters were calculated for each network.
Average degree, average weighted degree, network diame-
ter, graph density, modularity, average path length, num-
ber of nodes, and edges were considered for analysis
(Table 5). In network analysis, community detection is of
central importance. The modularity module was used for
the study and detection of communities in a network.
Based on modularity class, distant colors were assigned to
nodes and edges. The modularity value of 0.4 or greater
is generally considered meaningful for a network [48].

In all networks, modularity values were mostly greater
than 0.4. Comparatively, network 5 had the highest modu-
larity value (0.629), while network 4 exhibited the lowest
modularity value of 0.579. However, other parameters
support in identifying the strongly contacted IDs of the net-
works. The first network comprises 72 nodes and 85 edges;
the second and third networks have 207 nodes-300 edges
and 276 nodes-386 edges, respectively. The fourth network
has 3, 123 nodes and 163 edges, while 169 nodes and 215
edges were noted in the fifth network. There were 169 nodes
and 218 edges in network six, 131 nodes and 172 edges in
the seventh network, and 287 nodes and 403 edges were
noted in network eight (Table 5). A final strong DDI net-
work was generated using the drug candidates having higher
modularity values as shown in Figure 4, which has 415 nodes
and 740 edges. For partitioning the communities within the
network, the modularity class was used. To analyze the final
DDI network, the same parameters were applied as
mentioned in Table 5. The modularity value of the final
DDI network was 0.518, which means the entities/drug
candidates of the network are significant.

3.6. Validation of Strongly Interacted Drugs. To examine the
interaction of identified drug candidates against EGFR pro-
tein, molecular docking was performed using MOE, which
is used in the screening of suitable ligand that fits both
energetically and geometrically in the active site of tar-
geted protein [49]. As the active site or binding cavity
enables the protein to get attached to other macro or
micro molecules [50]. Moreover, based on modularity
values, out of 158 compounds, 55 were collected from
the final DDI network. Selected drug candidates (n = 55)
were docked with target protein, and their binding affini-
ties were evaluated.

Three lung cancer drugs, i.e., erlotinib, gefitinib, and
afatinib, were used as a positive control. As shown in
Table 6, relatively, afatinib had the lowest-scoring value
(-29.99 kcal/mol), followed by erlotinib and gefitinib (-29.49
and -29.33 kcal/mol, respectively). These drugs were docked
with active sites of EGFR protein (Figures 5(a)–5(c)). Erloti-
nib drug exhibited pi-pi T-shaped and conventional hydro-
gen bond interactions with amino acids or active residues

Table 4: Molecular docking results of heavy metals’ compounds
with EGFR protein.

S. # MC SV RMSD E-conf.

1 Tinidazole -20.42 1.455 41.16

2 Thallium, bromodimethyl -7.865 1.467 -18.09

3 Silver acetate -7.748 2.361 -42.74

4 Mercuric cyanide -6.323 3.830 -291.7

5 Arsenate -5.700 1.149 -154.4

6 Tellurium hexafluoride -5.396 0.570 -1139

7 Lead sulfide -4.744 1.157 -71.08

8 Antimony trichloride -4.256 1.131 -17.03

9 Vanadium tetrachloride -4.209 1.266 -83.48

10 Chromium iodide -4.109 1.414 -34.01

11 Bismuth trichloride -3.693 0.563 -15.09

12 Platinum tetrachloride -3.462 1.341 -36.47

13 Gold bromide -3.339 1.369 -3.975

14 Manganese dioxide -3.156 1.715 -120.8

15 Ferric chloride -2.972 2.541 -23.12

16 Nickel chloride -2.971 1.105 -39.53

17 Uranium trioxide -2.951 0.733 -253.5

18 Cerium disulfide -2.758 4.094 -61.50

19 Cobalt (II) bromide -2.708 1.443 -64.85

20 Zinc diflouride -2.007 1.256 -11.85

21 Gallium iodide -1.951 0.935 -26.38

22 Cupric chloride -1.825 2.994 -12.83

23 Cadmium bromide -1.582 1.133 -11.94

MC: metal compounds; SV: scoring values (kcal/mol); RMSD values: root
means square deviation (Å); E-conf: expected confirmation.
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(Lys745, Leu777, Phe856) of target protein (Figure 5(a)); gefi-
tinib showed sulfur-X bonds with active residues (Met790,
Met766) of the target protein (Figure 5(b)), and afatinib had
conventional hydrogen bond, halogen, pi-sulfur, and pi-
donor hydrogen bond interactions with Lys745, Asp837, and
Met766 active residues of target protein (Figure 5(c)).

Based on scoring values/binding capacity, docking results
of the top three naturally occurring compounds (berberine
chloride, trans-resveratrol, and ellagic acid) are mentioned in
Table 6, while their 3D interactions with active sites of EGFR
protein are presented in Figures 6(a)–6(c). Based on scoring
value, berberine chloride had the highest binding potential

ZINC ID xLogP H Donar H Acceptor Mol. Weight Rotatable bonds

ZINC_ID

xLogP

H
Donar

H
Acceptor

Mol.
Weight

Rotatable
bonds

Figure 2: Plot matrix representation of drug candidates along with their attributes.

Network 1

Network 5 Network 6 Network 7 Network 8

Network 2 Network 3 Network 4

Network 5 Network 6 Networrrrrrrk 7 Network 8

Figure 3: Drug-drug interaction networks of the entire collected data set of drug candidates.
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(SV = −24:30kcal/mol) with EGFR protein, followed by trans-
resveratrol and ellagic acid. Relatively, the scoring values of
these compounds were even lower than the scoring values of
HMs with the same protein. Berberine chloride depicted pi-
sulfur, alkyl, and pi-alkyl interactions with active residues
(Met790, Leu777, Met766) of the target protein (Figure 6(a)).
Likewise, trans-resveratrol showed conventional hydrogen, pi-
sigma, pi-pi t-shaped, and pi-sulfur interactions with active res-
idues (Phe856, Lys745, Met790) of target protein (Figure 6(b)),
and ellagic acid exhibited conventional hydrogen, pi-lone pair,
and pi-pi t-shaped interactions with residues (Phe856, Lys745,
Leu788) of target protein (Figure 6(c)).

Our findings indicate that natural drug candidates have
significant potential to inhibit the binding capacity of HMs
with EGFR protein. As, the interaction energies between nat-
ural compounds and EGFR protein, was less than that of
heavy metals, which means that its binding affinity to form
a complex is substantial (Table 6). Therefore, the aforemen-
tioned natural compounds could be an appropriate option to
prevent lung cancer. Furthermore, root and stem bark of
“Goldenseal, grapes, turmeric, and barberry” are rich in

“berberine chloride,” while “Trans-resveratrol” a polyphe-
nolic compound present in “grape” and “Ellagic acid”
present in “strawberries, blackberries grapes, walnuts and
nuts” [51–53]. Consequently, daily intake of these fruits
and medicinal plants could an alternative therapy that
may play important role in the prevention of lung cancer,
specifically caused by heavy metals’ toxicity.

Docking results of top five synthetic compounds viz.,
IDs ZINC00602803, ZINC00602685, ZINC06718468,
ZINC01546066, and ZINC13743457 are mentioned in
Table 6. Comparatively, the binding capacity of all these
compounds with target protein was higher than HMs,
because of their low scoring values. Furthermore, the bind-
ing affinity of abovementioned synthetic compounds with
EGFR protein was confirmed by a 3D interaction plot
(Figures 7(a)–7(e)). As shown in 3D networks, synthetic
compounds bind to the active pocket of the targeted
protein, and ligand atoms showed sidechain acceptor, side-
chain donor, backbone acceptor, and backbone donor
interactions with acidic, basic, greasy, and polar residues
of receptor atoms.

As shown in Figure 7(a), ZINC00602803 had conventional
hydrogen, halogen, and pi-sulfur bonds with the active resi-
dues (Cys775, Lys745, Gly724, Met766) of the target protein.
Likewise, “ZINC00602685” had conventional hydrogen, pi-
lone pair, pi-sigma, and halogen interactions with the active
residues (Ala722, Gly721, Lys745, Leu858) of target protein
(Figure 7(b)), whereas “ZINC06718468” showed conventional
hydrogen, pi-sulfur, and pi-donor hydrogen bonding with
active residues (Lys745, Met790, Asp855) of target protein
(Figure 7(c)), and “ZINC01546066” showed conventional
hydrogen, pi-sulfur, and pi-lone pair interactions with the
active residues (Met766, Lys745, Asp855) of target protein
(Figure 7(d)), and “ZINC13743457” compound depicted con-
ventional hydrogen, halogen, pi-sulfur, and pi-pi t-shaped
interactions with active residues (Met790, Lys745, Thr854,
Phe856, Met766) of target protein (Figure 7(e)). Compara-
tively, three synthetic drug candidates, i.e., ZINC00602803,
ZINC00602685, and ZINC06718468, showed a highly signifi-
cant association with target protein based on the lowest scoring
values (-30.99, -29.75, and -29.68kcal/mol, respectively). It was

Table 5: Predicted statistical parameters for each drug-drug interaction network.

Networks AD AWD ND GD M APL Nn Ne

1 2.361 2.847 1 0.017 0.619 1 72 085

2 2.899 5.217 1 0.007 0.589 1 207 300

3 2.797 5.359 1 0.005 0.602 1 276 386

4 2.634 5.935 1 0.011 0.579 1 123 162

5 2.544 5.645 1 0.008 0.629 1 169 215

6 2.583 6.953 1 0.008 0.618 1 169 218

7 2.626 4.746 1 0.012 0.621 1 131 172

8 2.808 4.739 1 0.005 0.585 1 287 403

SIN 3.566 1.925 1 0.004 0.518 1 415 740

AD: average degree; AWD: average weighted degree; ND: network diameter; GD: graph density; M: modularity; APL: average path length; Nn: number of
nodes; Ne: number of edges; SIN: strongly interacted network.

Figure 4: Final drug-drug interaction network of drug candidates
having highest potential in the entire dataset.
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Table 6: Docking results of the controls, natural, and synthetic compounds with EGFR protein.

S.# Name/formula/ZINC-ID Structure SV values RMSD

Controls

1 Erlotinib (C22H23N3O4) −29:49 ± 1:3 1.87

2 Gefitinib (C22H24ClFN4O3) −29:33 ± 0:9 1.19

3 Afatinib (C24H25ClFN5O3) −29:99 ± 0:6 1.23

4 Native cocrystallized ligand −31:64 ± 1:1 1.42

Natural compounds

1 ZINC03779067 (berberine chloride-C20H22ClNO6) −24:30 ± 0:8 1.05

2 ZINC12353732 (trans-resveratrol-C14H12O3) −20:37 ± 0:5 1.60

3 ZINC03872446 (ellagic acid-C14H6O8) −18:63 ± 0:7 0.80

Synthetic compounds

1 ZINC00602803 −30:99 ± 0:7 1.30

2 ZINC00602685 −29:75 ± 0:3 1.08

3 ZINC06718468 −29:68 ± 1:2 1.59

4 ZINC01546066 −29:08 ± 1:3 1.60

5 ZINC13743457 −22:69 ± 0:1 0.59

SV: scoring values (kcal/mol); RMSD values: root means square deviation (Å); SD value: standard deviation value.
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Figure 5: 3D interactions of (a) erlotinib, (b) gefitinib, and (c) afatinib with binding site of target protein.
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Figure 6: 3D interactions of natural compounds (a) berberine chloride, (b) trans-resveratrol, and (c) ellagic acid with active site of target
protein EGFR.
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noted that the binding affinity of ZINC00602803 was higher
than all HMs and even that of standard lung cancer drugs.

4. Conclusions

In silico assessment of molecular interaction confirms the
association of heavy metals with the oncoprotein EGFR.
Our findings revealed that bioaccumulation of heavy metals
in human and animal bodies may involve lung cancer along
with other serious health disorders. So, drug validation anal-
ysis indicates that both natural and synthetic compounds
have a strong binding affinity with EGFR protein which
could inhibit the active site of EGFR against heavy metal
exposure. As, the binding affinity of berberine chloride,
and synthetic compound (ZINC0060280), with the target
protein, was even higher than the standard drugs used as
control. Therefore, these compounds could be a more appro-
priate and safe option for the treatment and prevention of
lung cancer, specifically caused by heavy metal toxicity.
However, we suggest in vitro and in vivo validation of

natural and synthetic compounds specifically that showed
significant associations with EGFR protein.
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