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Abstract

Computations of acoustic information along the central auditory pathways start in the

cochlear nucleus. Bushy cells in the anteroventral cochlear nucleus, which innervate mon-

aural and binaural stations in the superior olivary complex, process and transfer temporal

cues relevant for sound localization. These cells are categorized into two groups: spherical

and globular bushy cells (SBCs/GBCs). Spontaneous rates of GBCs innervated by multiple

auditory nerve (AN) fibers are generally lower than those of SBCs that receive a small num-

ber of large AN synapses. In response to low-frequency tonal stimulation, both types of

bushy cells show improved phase-locking and entrainment compared to AN fibers. When

driven by high-frequency tones, GBCs show primary-like-with-notch or onset-L peristimulus

time histograms and relatively irregular spiking. However, previous in vivo physiological

studies of bushy cells also found considerable unit-to-unit variability in these response pat-

terns. Here we present a population of models that can simulate the observed variation in

GBCs. We used a simple coincidence detection model with an adaptive threshold and sys-

tematically varied its six parameters. Out of 567000 parameter combinations tested, 7520

primary-like-with-notch models and 4094 onset-L models were selected that satisfied a set

of physiological criteria for a GBC unit. Analyses of the model parameters and output mea-

sures revealed that the parameters of the accepted model population are weakly correlated

with each other to retain major GBC properties, and that the output spiking patterns of the

model are affected by a combination of multiple parameters. Simulations of frequency-

dependent temporal properties of the model GBCs showed a reasonable fit to empirical

data, supporting the validity of our population modeling. The computational simplicity and

efficiency of the model structure makes our approach suitable for future large-scale simula-

tions of binaural information processing that may involve thousands of GBC units.

Author summary

In the auditory system, specialized neuronal circuits process various types of acoustic

information. A group of neurons, called globular bushy cells (GBCs), faithfully transfer

timing information of acoustic signals to their downstream neurons responsible for the

perception of sound location. Previous physiological studies found representative activity
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patterns of GBCs, but with substantial individual variations among them. In this study, we

present a population of models, instead of creating one best model, to account for the

observed variations of GBCs. We varied all six parameters of a simple auditory neuron

model and selected the combinations of parameters that led to acceptable activity patterns

of GBCs. In total, we tested more than half a million combinations and accepted ~11600

GBC models. Temporal spiking patterns of real GBCs depend on the sound frequency,

and our model population was able to replicate this trend. The model used here is compu-

tationally efficient and can thus serve as a building block for future large-scale simulations

of auditory information processing.

Introduction

Processing of acoustic information along the auditory pathways is performed in a parallel and

hierarchical manner. In the mammalian central nervous system, the cochlear nuclei are the

first stations that receive sound information transferred from the auditory periphery [1]. Dif-

ferent types of neurons in the cochlear nuclei process and convey divergent features of the

sound waveform [2]. Bushy cells in the anteroventral cochlear nucleus (AVCN) encode precise

timing information of the sound stimulus, which is then sent to the superior olivary complex

and used for binaural sound localization [3].

Based on anatomical and physiological characteristics [1,4,5], bushy cells are subdivided

into two groups: spherical bushy cells (SBCs) and globular bushy cells (GBCs). An SBC

receives only few (typically 1–4 in cats [6,7]) large excitatory endbulb synapses from auditory

nerves (ANs) [8,9], while a GBC has a larger number (~20 in cats [7,10]) of medium-sized syn-

apses, called modified endbulbs [11,12,13]. SBCs send excitatory projections to the ipsilateral

medial and lateral superior olive (MSO/LSO) as well as the contralateral MSO [14,15,16],

which are the major brainstem structures responsible for binaural sound localization [3].

GBCs innervate several monaural and binaural nuclei in the superior olivary complex [16–19],

including the ipsilateral lateral nucleus of the trapezoid body (LNTB) and the contralateral

medial nucleus of the trapezoid body (MNTB), which provide inhibitory projections to MSO

and LSO. When stimulated with high-frequency tones (>3 kHz), SBCs show "primary-like

(PL)" peristimulus time histograms (PSTHs) that resemble those of AN fibers [15,20], and

GBCs usually present "primary-like-with-notch (PLN)" PSTHs having a short pause (~1 ms) of

spiking after pronounced onset activity (Fig 1A) [12,19,21–24]. A smaller number of GBCs

show "onset-L (OnL)" PSTHs, which resemble PLN PSTHs but with lower sustained activity

(Fig 1B) [12,19,22–24]. For low-frequency stimulation (<1 kHz), both types of bushy cells

show enhanced phase-locking and entrainment compared to ANs (Fig 1C and 1D) [25–28].

Enhancement of temporal properties, however, might be caused through different biophysical

mechanisms between SBCs and GBCs [29].

In this study, we focus on GBCs, in which the convergence of multiple AN inputs substan-

tially contributes to the improvement of phase-locking and entrainment [30–34]. In order to

simulate and investigate the acoustic information processing in GBCs, we aim to construct a

computational model that can replicate known physiological response characteristics of GBCs.

Previous electrophysiological data obtained in vivo, however, presented considerable varia-

tions among units (e.g., [25,35–38]), making it difficult to create a single "gold standard"

model that would fit all available data. Thus our goal here is to construct a population of mod-

els that can account for the observed unit-to-unit variations in spontaneous and sound-driven

activity of GBCs. A similar approach of generating a database of models, which is sometimes

GBC population model
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called "neuronal population modeling", has been shown to be useful in studying the functional

roles of various ion channels and their interplay in non-auditory systems [39,40,41] (see [42]

for a review).

Physiological single neuron models can be classified into several categories (see [43,44] for

reviews of representative classes). Prior models of bushy cells include shot-noise models that

have a simplified description of synaptic inputs and focus primarily on the input-output rela-

tions [25,45–48], integrate-and-fire-type models that have a membrane potential and an

abstracted spike-generation mechanism [33,47,49,50], and more complex Hodgkin-Huxley-

type models that deal with detailed biophysical functions of ionic conductances [30,31,46,51–

54]. Simple models are generally suitable for computationally efficient simulations and mathe-

matical analyses, while complex models are often required for the investigation of detailed

mechanisms underlying spiking phenomena [44,55]. These different model types can comple-

ment each other to advance our understanding in computational biology [55]. In this study,

we use a modified version of the coincidence counting model (Fig 1E), a member of shot-
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Fig 1. Empirical response patterns of GBC and schematic drawings of the model structure and PSTH output. A-B: PSTHs of cat GBCs: a PLN-type

(A) and an OnL-type (B). Adapted from [24]. C-D: Low-frequency phase histograms of a cat auditory nerve (C) and GBC (D). Adapted from [25]. CF:

characteristic frequency; VS: vector strength. E: Operation of the adaptive coincidence counting model (see Materials and Methods for the equations).

The model neuron receives ME excitatory synaptic inputs (red) simulated by the AN model (ME = 3 in this example). Each presynaptic input spike

(small vertical red bar) induces a postsynaptic response of a length WE and amplitude AE in the model neuron (black rectangular bump on left). The

adaptive threshold θ(t) (green), parameterized by a time scale TA and strength SA, develops according to the summed input count v(t) (black). When

the input count reaches or exceeds the threshold (arrowhead), an output spike is generated (blue). After each spike output, the model is in the

refractory period of a duration TR (gray), in which no further spikes can be generated. Insufficient synchrony of input spikes (three inputs on right)

leads to a failure of output spike generation due to the adaptive threshold. F: Components of a primary-like-with-notch (PLN) peristimulus time

histogram (PSTH) used for judging the plausibility of each instance of the modeled bushy cell. Depending on the parameters used, a second notch may

or may not exist while the other components almost always appear.

https://doi.org/10.1371/journal.pcbi.1007563.g001
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noise models [55], whose computational simplicity allows us to simulate a large number of

model neurons within a reasonable computational time. Similar models have been used for

examining the temporal coding in binaural brainstem neurons that receive inputs from the

cochlear nucleus [56,57].

In the following sections, we first present representative response patterns of the modeled

GBC, using a fixed combination of model parameters. Next, we systematically vary the param-

eters to create a population of models, examine the behavior of each model using a limited

variety of tonal stimuli, and select models that produce physiologically plausible responses. We

then analyze the accepted parameter combinations and validate the resulting model GBC pop-

ulation under a wider range of stimulus conditions. Limitations and applicability of our model

framework are addressed in the Discussion section. We expect that the population of computa-

tionally efficient GBC models developed in this study will serve as a building block for future

large-scale simulations of auditory information processing.

Results

Overview: Model structure and target properties

Adaptive coincidence counting model. To simulate the spiking activity of GBCs, we used

a modified version of the coincidence counting model [56,57] extended with an adaptive

threshold (Fig 1E). Each input from AN fibers (red) is converted into a rectangular postsynap-

tic input count (black). The threshold of the model (green) varies according to the preceding

input level. The model neuron generates an output spike (blue) when the number of input

counts reaches or exceeds the threshold (small arrowhead). After generating an output spike,

the model is in an absolute refractory period, in which no more spikes are produced. We refer

to this model as the "adaptive coincidence counting model". AN inputs to the GBC model

were simulated with the established auditory periphery model by Zilany, Bruce and others

[58–61].

The adaptive coincidence counting model has six parameters (Table 1): the number of AN

inputs ME, duration WE and amplitude AE of the excitatory input, refractory period TR, and

the time scale TA and strength SA of threshold adaptation. The duration of the excitatory input,

WE, is also called the "coincidence window" [57], because coincident arrivals of incoming pre-

synaptic spikes within this time frame are required to generate an output. In the following text,

we refer to an individual realization of the model with each specific combination of parameters

as a "model instance" (or simply an "instance"), to distinguish it from the general model frame-

work and from real neuronal units. In this study, we varied all six parameters in the range

Table 1. Parameter ranges. The total number of parameter combinations is 7×10×9×9×10×10 = 567,000. The excit-

atory input amplitude does not have a unit, as it is defined as the relative amplitude with respect to the static threshold

of θS = 1. See "Adaptive coincidence counting model" and "Selection of model instances" in Materials and Methods for

detailed explanations of the parameters and their ranges used. The parameter values used for Figs 2, 3, 4, 12A–12C,

13A–13C and 14 are shown in bold.

Parameter Values

Number of excitatory inputs ME 9, 12, 16, 20, 25, 30, 36

Coincidence window [ms] WE 0.08, 0.16, 0.24, 0.32, 0.40, 0.48, 0.56, 0.64, 0.72, 0.80

Excitatory input amplitude AE 0.24, 0.28, 0.32, 0.36, 0.40, 0.44, 0.48, 0.52, 0.56

Refractory period [ms] TR 0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50

Adaptation time constant [ms] TA 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50

Adaptation strength SA 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30

https://doi.org/10.1371/journal.pcbi.1007563.t001

GBC population model
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shown in Table 1 to generate a population of models (567,000 instances in total) and selected

instances that satisfied our physiological criteria for GBCs (explained below).

Selection of model instances. Physiological responses of GBCs are characterized by low

spontaneous rates [15,22,23,38,62], PLN-type PSTHs [12,19,22–24] and irregular firing [30,36]

for high-frequency tone bursts, and enhanced phase-locking and entrainment for low-fre-

quency tonal stimulation [25–28]. Based on these response characteristics, we defined a set of

target properties that a model GBC instance had to satisfy. Without sound stimulus, (1) the

spontaneous spiking rate should be lower than 30 (spikes/sec). For high-frequency stimulation

(7000 Hz, 70 dB SPL), (2a) the sound-driven steady-state spiking rate should be higher than

150 (spikes/sec), (2b) the coefficient of variation of interspike intervals (ISIs) should be

between 0.65 and 0.95, and (2c) the PSTH should have a PLN shape (Fig 1F). For low-fre-

quency stimulation (350 Hz, 70 dB SPL), (3a) the vector strength (VS) should be higher than

0.9 and (3b) the entrainment index (EI) should be higher than 0.9. Both VS and EI are mea-

sures of temporal spiking patterns but with distinct definitions: a high EI requires nearly one-

to-one correspondence between the spiking rate and stimulus sound frequency, whereas a

high VS can be achieved even with lower spiking rate as long as the spike timings are well

aligned with a certain stimulus phase. See Materials and Methods for the complete definition

and relevant references of each output measure; limitations of these criteria will be addressed

in the Discussion section.

Whereas a majority of GBCs have PLN-type PSTHs, a smaller fraction of GBCs show

"Onset-L (OnL)"-type PSTHs, in which a sharp onset peak is followed by a low sustained spik-

ing rate [12,19,22–24]. Sometimes PLN units and OnL units are not clearly distinguished and

are instead collectively grouped as PLN (e.g., [38,63]; see discussion in [36]). In the present

study, the model instances that had (2a’) a lower steady-state spiking rate (50–150 spikes/sec)

and satisfied all other response criteria above (1, 2b, 2c, 3a, 3b) were classified as OnL. We ana-

lyzed PLN instances and OnL instances separately.

Validation of model instances. After selecting model instances using the aforementioned

criteria, we validated the model population with a wider variety of sound stimuli. We varied

the tonal stimulus frequency between 200 and 5000 Hz, calculated the vector strength and

entrainment index of each selected instance at each of these frequencies, and compared the

population response with empirical data [25]. We also drove the model GBC instances with

high-intensity, low-frequency tones to obtain so-called "tail-sync" responses, in which GBCs

that are tuned to medium or high frequencies (> 2kHz) show prominent phase-locking at fre-

quencies typically below 1 kHz [63]. We then stimulate the GBC instances with sinusoidally

amplitude-modulated (SAM) tones to examine the phase-locking of high-frequency units to

low-frequency envelopes [64–66]. In the following sections, we first show the responses of a

representative GBC model instance using one fixed set of model parameters (Table 1, numbers

in bold). Next, we vary the parameters to study the relationship between the model parameters

and output measures. Then we validate the outcome of the selected model population using

empirical data of GBC responses.

Representative model responses

General activity patterns of a PLN instance. Fig 2 shows representative response patterns

of the AN model and the GBC model driven by low- (350 Hz), medium- (1400 Hz) and high-

frequency (7000 Hz) tones. The number of AN inputs to this GBC model instance was fixed to

20, and the other parameter values (Table 1, bold numbers) were chosen as the median values

of the admitted PLN population with ME = 20 inputs. At all frequencies tested, the PSTHs of

the GBC model showed sharper peaks (Fig 2B) than those of the AN model (Fig 2A). At the

GBC population model
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high frequency (7000 Hz), the GBC output presented a notch after the onset peak in the PSTH,

while the AN input showed a smooth, gradual decrease after the onset. The steady-state

responses of the AN and GBC models to high-frequency sounds were relatively irregular, with

a modified coefficient of variation (CV’) of ISIs over 0.65, matching previous in vivo measure-

ments [30]. The average spontaneous rate of the GBC model (below 30 spikes/sec) was much

lower than the AN spontaneous rate (~70 spikes/sec), because synchronized arrivals of multi-

ple inputs are required to generate a spike in the GBC model.

In accordance with the sharpened PSTHs, phase (Fig 2C and 2D) and interspike interval

histograms (ISIHs; Fig 2E and 2F) also showed sharper peaks for the GBC output than the AN

input. In response to the low-frequency stimulation (350 Hz), the GBC output presented a

marked enhancement of phase-locking (Fig 2D, left) and entrainment (Fig 2F, left). This

enhancement is explained by the convergence of multiple AN inputs [30–34]. For the low-fre-

quency stimulus, the ISIH of the GBC model showed a pronounced peak at around ~2.9 ms

(reciprocal of 350 Hz) (Fig 2F, left), while the AN model had multiple sidepeaks (Fig 2E, left).

The lower sidepeak below 1 ms was due to the occurrence of multiple spikes in one tonal cycle,

which was eliminated in the GBC model because of the refractory period and threshold adap-

tation. The second and third sidepeaks around 5.7 ms and at 8.6 ms were due to skipping
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https://doi.org/10.1371/journal.pcbi.1007563.g002
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cycles, which were also reduced in the GBC model. The synchrony of the converging AN input

fibers was sufficient to evoke a GBC spike in every tonal cycle; consequently, the driven activity

of the GBC model (341.9 spikes/sec) was highly entrained to the stimulus frequency of 350 Hz.

Entrainment of the GBC output diminished for frequencies at 1400 kHz (Fig 2F, center), since

the ISI of the model GBC could not be smaller than the refractory period (1.2 ms in this

example).

Level-dependent activity. Fig 3 presents the level-dependence of the spiking activity of

the AN and the GBC model. Simulated spiking rates almost monotonically increased with

level and saturated over 40 dB SPL (Fig 3A–3C, top), while the degrees of phase-locking mea-

sured as VS were stable above 20 dB SPL. The PSTH shape of the AN model were relatively

unaffected with the level (Fig 3D, red inset). In contrast, the GBC model (Fig 3D, blue) gradu-

ally changed its PSTH shape from PL to PLN with an increasing sound level. A similar transi-

tion was observed in previous in vivo recordings [19,24,36]. Based on these observations, we

fix the sound level at 70 dB for tonal stimuli to obtain stable results in the following simulations

(see Discussion for possible limitations of using one fixed sound level).

Frequency-dependent activity. The sound-driven activity of the GBC model was

entrained to low-frequency tones up to about 600 Hz (Fig 4A, blue), while the spike rates of

the AN model were mostly unchanged with frequency (Fig 4A, red). This trend corresponds to
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https://doi.org/10.1371/journal.pcbi.1007563.g003
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the frequency-dependent change of the entrainment index (Fig 4E). The output rates of the

GBC model at mid-to-high frequencies (>2000 Hz) were almost constant (Fig 4B). The CV’

values of the GBC for frequencies over 2000 Hz was consistently higher than 0.65 (Fig 4C),

indicating relatively irregular spiking outputs [30]. Phase-locking and entrainment of the GBC

model were most prominent for 300–400 Hz (Fig 4D and 4E) and gradually decreased with

frequency. The GBC model output presented better phase-locking than its AN input up to

about 3000 Hz (Fig 4D, blue and red). For frequencies below 1000 Hz, phase-locking of the

GBC model (Fig 4D, blue) was even better than the measured upper bound of AN fibers (Fig

4D, purple). Such enhancement of low-frequency phase-locking was reported in various ani-

mals (cats [25,27]; rats [26]; chinchillas [27]; gerbils [28]). At very low frequencies (200–300

Hz), VS of the GBC model was lower than the peak value at 350 Hz, because of multiple spike

generation in one tonal cycle (see [28] for a review and discussion on such peak-splitting).

GBC population—Model selection

Selecting PLN model instances. Whereas our GBC model with the default parameters

was able to reproduce typical bushy cell response characteristics, reported GBC activity in vivo
(e.g., data points in Fig 4D) show considerable variations among units. To account for this
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unit-to-unit variability, we varied all six model parameters and created over half a million

model instances (Table 1). As described briefly in a previous section titled "Selection of model

instances" and more thoroughly in Materials and Methods, we systematically tested each

instance of this population with its spontaneous and sound-driven activity. Here we use a

method called "dimensional stacking" [67,68] to visualize the 6-dimensional parameter space

in 2-dimensional plots. In a dimensional stack, two parameter dimensions are selected for

each layer and the layers are nested in one another (Fig 5A). The order of the dimensions was

manually selected so that the trends of parameter-dependent responses could be seen in the

resulting images.

High-frequency sound-driven spiking rates of the population are presented in Fig 5B. The

light blue areas near the bottom-right corner indicate that the spike rate became high for a

large number of synaptic inputs combined with weak adaptation. Vertically arranged stripes of

the middle layer (in each of the 7 × 10 rectangles) show that the driven rate was affected also

by the input amplitude but not by the refractory period. The degrees of phase-locking (VS) to

low-frequency sound is shown in Fig 5C. The brightest blue areas in the top-right corner sug-

gest that a combination of strong adaptation and many converging inputs is required for a

prominent enhancement of phase-locking with VS > 0.95. In contrast, insufficient adaptation

led to excessive spiking activity and thus to degraded phase-locking (Fig 5C, orange areas). In

a later section, we present further quantitative analyses of the dependence of the output mea-

sures on the model parameters. Applying the thresholds for spontaneous and sound-driven

activity, we selected 35378 candidate instances (Fig 5D). We then analyzed their PSTH shapes

and obtained a population of 7520 model instances that satisfied all of our criteria (see "PSTH

shapes" in Materials and Methods) to be accepted as a GBC-like, PLN-type unit (Fig 5E). The

resulting PLN model instances still showed some variation in the shapes of PSTH and ISIH

(Fig 6A–6E).

Model instances that had low sustained spiking rate (50–150 spikes/sec) and satisfied all the

other PLN criteria were categorized as OnL units (Fig 6F and 6G), which we adopted for further

analyses (4094 model OnL instances in total). The candidate instances whose PSTHs did not

meet our PLN/OnL criteria included choppers (Fig 6H) and dipper units (Fig 6I and 6J). Chop-

ping responses with multiple peaks and troughs at the onset whose intervals were irrelevant to

the stimulus frequency were typical for stellate cells but not for bushy cells in the cochlear

nucleus [2,22]. In our simulations, instances that had no or weak threshold adaptation tended

to be choppers. Dip-type responses with a relatively long (2–10 ms) pause after the onset were

also atypical for bushy cells [30]. Units with a long integration time (i.e., long coincidence win-

dow) and/or long adaptation time constant often showed a dip in their PSTHs, because of the

long-lasting threshold augmentation after onset. Choppers and dippers were excluded from

further analyses below, even though some of them presented an enhancement of VS and EI

(Fig 6H–6J, inset) compatible to that of GBCs (see Discussion). In the population of candidate

GBC instances (Fig 5D), we found no PSTHs that were clearly classified as PL (without a

notch) at 70 dB SPL. The absence of PL responses corresponds to previous modeling results

that convergence of multiple inputs generally leads to a notch after onset [30].

Parameter distribution in the 6-dimensional space. Fig 7A–7F shows the distribution of

each model parameter value for the accepted 7520 PLN instances. The number of excitatory

inputs distributed relatively uniformly (Fig 7A, 12–36 inputs), compared to other parameters

having unimodal shapes (Fig 7B–7F). For ME = 9 inputs, only one instance was accepted as a

PLN unit. We note that, when the criterion for the spontaneous rate was loosened (e.g., from

30 to 50 spikes/sec), more instances with small numbers of inputs were accepted. The distribu-

tions of the other five parameters were skewed, showing a longer tail in one direction than in

the other (Fig 7B–7F). The length of the coincidence window WE (= duration of excitatory

GBC population model
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inputs) had a peak count around 0.16 ms and a long tail up to 0.80 ms (Fig 7B). The adaptation

time constant TA (Fig 7E) had a broad distribution, indicating that this parameter may not

have a strong effect on the resulting model outcome. In contrast, the excitatory input ampli-

tude AE (Fig 7C), refractory period TR (Fig 7D), and adaptation strength SA (Fig 7F) showed a

mild limit, above which the number of accepted instances dropped substantially. This implies

that these limits can be related to the limits of our criteria used for selecting PLN units. A long

refractory period (TR = 1.5 ms), for example, often led to more regular spiking (CV’ < 0.65)

than empirical GBC data [30]. Instances with a large input amplitude (AE = 0.56) presented

excessive excitability that resulted in either too large a spontaneous rate (SR> 30 spikes/sec)

or insufficient output synchrony (VS< 0.9 or EI< 0.9) due to multiple spiking in one tonal

cycle.

As noted above, the OnL response pattern is another representative category for GBCs.

Some of our model instances presented OnL-type PSTHs (Fig 6F and 6G) that had a lower

Fig 5. Dimensional stacking plots of the model parameter space. A: Schematic presentation of dimensional stacking. Six-dimensional parameters are nested into

three layers of two-dimensional spaces. Each rectangular cell of the outer layer, which corresponds to a specific combination of two parameters (number of inputs

ME and adaptation strength SA, in this case), represents a middle layer (input amplitude AE and refractory period TR), which, in turn, consisted of the cells of the

inner layer (coincidence window WE and adaptation time constant TA). B: Steady-state driven rates (7000 Hz pure tone, 70 dB SPL) of all 567,000 model instances

shown with dimensional stacking. The spiking rate threshold of 150 (spikes/sec) is shown in black: instances that had lower spiking rates than this threshold (white-

orange) were discarded, while instances with spiking rates equal to or higher than this threshold (dark to light blue) were adopted for further analyses. C: Degree of

phase locking quantified as VS (350 Hz pure tone, 70 dB SPL) of all model instances. The VS threshold of 0.9 is shown in black: instances that showed lower VS than

this threshold (white-orange) were discarded and those with higher (blue) were accepted. D: Steady-state driven rates of model instances that satisfied all the criteria

of spontaneous activity, high-frequency sound-driven activity (rate and coefficient of variation) and low-frequency sound-driven activity (phase-locking and

entrainment). E: Steady-state driven rates of model instances that satisfied all the criteria in D and additionally showed PLN-type PSTHs. In D and E, discarded

model instances are shown in white, while accepted models are shown by the same color code as in B.

https://doi.org/10.1371/journal.pcbi.1007563.g005
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used for each panel are shown in Table 2.

https://doi.org/10.1371/journal.pcbi.1007563.g006
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sustained rate than PLN units. Parameter distributions of OnL instances are shown in Fig 7G–

7L. In comparison to PLN units, the number of excitatory inputs of OnL instances was biased

to large values (Fig 7G) while the excitatory input amplitude was smaller (Fig 7I), suggesting
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https://doi.org/10.1371/journal.pcbi.1007563.g007

Table 2. Parameter values used for Fig 6.

Figure 6A 6B 6C 6D 6E 6F 6G 6H 6I 6J

Number of excitatory inputs ME 20 20 20 20 36 20 20 20 20 20

Coincidence window [ms] WE 0.24 0.32 0.48 0.56 0.40 0.40 0.32 0.56 0.40 0.40

Excitatory input amplitude AE 0.32 0.44 0.48 0.28 0.32 0.32 0.40 0.32 0.48 0.48

Refractory period [ms] TR 1.00 1.40 0.90 1.30 1.20 1.20 1.20 1.20 1.20 0.70

Adaptation time constant [ms] TA 0.50 0.20 0.15 0.30 0.30 0.25 0.25 0.25 0.30 0.30

Adaptation strength SA 0.50 1.00 0.90 0.60 0.80 0.80 1.00 0.40 1.20 1.20

https://doi.org/10.1371/journal.pcbi.1007563.t002
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that having many small inputs leads to a low sustained rate. The peak count for the refractory

period was slightly shifted to a smaller value (Fig 7J). The other three parameters (Fig 7H, 7K

and 7L) had largely similar distributions between PLN and OnL.

In the 6-dimensional parameter space, the distribution of the accepted model instances

may form either a connected or disconnected set. As seen in the image with sparse blue dots

(Fig 5E), however, the dimensional stack does not provide the information about the connec-

tivity of the parameter set [68]. And each histogram in Fig 7 shows only one-dimensional pro-

jection of the parameter distribution in the 6-dimensional space. Therefore, we performed an

additional analysis to test the connectivity of the PLN model instances. Using the most conser-

vative definition of neighbors (i.e., accepting only one-dimensional neighbors; see "Connectiv-

ity" in Materials and Methods), we found 104 clusters of instances. Accepting up to three-

dimensional neighbors in the grid space, however, resulted in only one large cluster in which

all the model instances belonged. This means that each PLN instance can be translated into

another PLN instance by changing at most three parameters to their neighboring values in the

parameter grid (Table 1). These results suggest that the PLN instances form a largely connected

set in the 6-dimensional parameter space. In other words, it is unlikely that the category of

PLN units originates from two or more distinct parameter regions.

Depending on the shape of the parameter set in the high-dimensional space, the mean of

two accepted models may or may not be an accepted model [42]. To test this with our PLN

population, we performed a convexity analysis. We randomly selected two PLN model

instances (called parents) and checked the response characteristics of child model instances

created by an interpolation of parameters between these parents. Out of 10500 child model

instances tested, 6527 (62.2%) satisfied our PLN criteria. This means that the set of PLN

instances is not convex but skewed in the 6-dimentional parameter space. Corresponding to

this, we note that the median model, whose parameters were set as the median value of all

instances identified as PLN (ME = 25, WE = 0.24 ms, AE = 0.44, TR = 1.20 ms, TA = 0.25 ms, SA
= 0.80), was not an acceptable PLN unit, because its spontaneous rate was too high (51.5

spikes/sec). When restricted to the PLN population with one fixed number of inputs ME, how-

ever, the median model was still a PLN instance (e.g., Figs 2–4 show the responses of the

median model for ME = 20 inputs). These results agree with previous findings (reviewed in

[42]) that nonlinear dependence among parameters should be considered when multiple

parameter sets are combined to create a new model instance.

Inter-parameter dependence and input-output relations. Because of the constraints

imposed on the output characteristics, model parameters of the accepted GBC instances

cannot vary independently from each other. Fig 8 (upper triangle) illustrates how pairs of

parameters for the GBC population covary. Our correlation analysis (lower triangle of Fig 8)

confirmed that some parameters should be varied together to keep the GBC-type responses.

For example, increase of the number of inputs ME, which normally leads to increased sponta-

neous and driven rates, can be partly compensated either by reducing the input amplitude AE

or the coincidence window WE or by increasing the adaptation strength SA. Similarly, long-

lasting adaptive effects due to a large TA can be counteracted in part by either reducing the

duration of input WE or the strength of adaptation SA. Moreover, increase in refractory period

TR has, to some extent, comparable effects to strengthening the adaptation SA, because these

two factors are both relevant to the control of interspike intervals through refractoriness.

These correlations suggest that some of the model parameters could be combined to reduce

the total number of parameters. However, we did not pursue this option, because the observed

correlations were rather weak (with absolute coefficients all below 0.5), the number of model

parameters was already small, and further reduction of parameters would make the interpreta-

tion of individual parameters difficult.
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Fig 9A–9E shows the distribution of the output measures of the PLN model instances. Most

of our accepted PLN instances had a spontaneous rate of 10–30 spikes/sec and a high-fre-

quency (7000 Hz, 70 dB SPL) sound-driven rate of 150–250 spikes/sec. These ranges roughly

correspond to the observed rates in GBCs [22,35,38], except that very low spontaneous rates

can be better simulated by OnL instances (see below). The distribution of the regularity mea-

sure were skewed to the lower end (CV’~0.65; Fig 9C), since the convergence of many sub-

threshold inputs usually leads to regular outputs [30]. For a low-frequency tonal stimulus of

350 Hz, the degree of phase-locking showed a unimodal distribution centered on 0.95 (Fig

9D), while the degree of entrainment was rather uniformly distributed between 0.9 and 1.0

−0.291

−0.478

−0.143

−0.196

+0.243

−0.074

+0.112

−0.399

+0.090

−0.099

−0.132

+0.321

−0.020

−0.395 −0.323

number of
excitatory inputs ME

coincidence
window WE

excitatory input 
amplitude AE

refractory
period TR

adaptation time 
constant TA

adaptation
strength SA

nu
mbe

r o
f

    
ex

cit
ato

ry 
inp

uts

co
inc

ide
nc

e

    
wind

ow

ex
cit

ato
ry

    
inp

ut 
am

pli
tud

e

ref
rac

tor
y

    
pe

rio
d

ad
ap

tat
ion

    
tim

e c
on

sta
nt

ad
ap

tat
ion

    
str

en
gth

number of
instances

400
100
 25
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(positive correlation) or purple (negative correlation) for parameter pairs with an absolute correlation coefficient over 0.2 (and with

p< 10−9 for 7520 + 4094 = 11614 instances), and in gray otherwise (i.e., with absolute correlation coefficients below 0.2).

https://doi.org/10.1371/journal.pcbi.1007563.g008
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(Fig 9E). This might indicate that the condition for good entrainment (EI = ~ 0.95) that

requires roughly one spike per cycle is more stringent than that for good phase-locking (VS =

~0.95) that can be obtained with a wider range of spiking rates. On the other hand, it is more

difficult to achieve perfect phase-locking (VS = ~1.0) than perfect entrainment (EI = ~1.0),

because the calculation of EI is not affected by minute variations of spike timings as long as

they are within the certain ISI range.

To compare with PLN instances, Fig 9F–9J shows the distributions of the output measures

for the accepted OnL instances. The spontaneous rates of most OnL instances were less than 10

spikes/sec (Fig 9F), filling the lowest range that were not fully covered by the PLN population

(Fig 9A). High-frequency sound-driven rates were skewed towards 100–150 spikes/sec (Fig

9G), because instances with low excitability generally showed insufficient entrainment to low-

frequency stimulation and were thus excluded. Regularity of spiking was similar between OnL

(Fig 9H) and PLN (Fig 9C) instances. Vector strength was, on average, slightly higher for OnL
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https://doi.org/10.1371/journal.pcbi.1007563.g009
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(Fig 9I) than PLN (Fig 9D), because OnL instances were less likely to have multiple spikes in

one period, which would lower the resulting VS. In contrast, entrainment index was skewed to

values near 0.90 (Fig 9J), because of the spiking rates of OnL instances were often not high

enough to reach perfect entrainment.

Next, we investigated the relationship between the input parameters (Fig 7) and output

measures (Fig 9), using polynomial fits (Fig 10). The total R2-values indicate that linear fits

were not a good predictor of the output measures (R2 < 0.70), except for the coefficient of vari-

ation (R2 > 0.75). Quadratic fits obtained much better performances (R2 > 0.85) than linear

fits, and cubic fits provided even better fits for all the five output measures (R2 > 0.89). These

results imply that not only single parameters but also their nonlinear interactions are responsi-

ble for determining the output properties of the model (see below). This is because the genera-

tion of spike output requires a nonlinear process of coincidence detection, where simple

summation of inputs over time is not sufficient (Fig 1E).

To reveal the contribution of each parameter (and each parameter combination) in the

polynomial fits, more detailed analyses were performed (see "Input-output regressions" in

Materials and Methods). The size of each filled circle in Fig 10 represents the relative contribu-

tion of each linear or quadratic component. We found that the coefficient of variation can be

explained mostly by the refractory period TR, indicating that a long refractory period leads to

regular spiking. The temporal properties, VS and EI, were explained most effectively by the

number of inputs ME and the input amplitude AE, but were affected also by other factors

including the input duration WE and its square WE
2. The adaptation strength SA affected, to

some extent, both high- and low-frequency sound-driven responses. Some combinations of

parameters showed non-negligible contributions to outputs (Fig 10, quadratic terms shown

with light blue circles). For example, several quadratic terms of the input duration (WE
2,

MEWE, WETA, WESA) had more than 4% of the contribution (light blue circles) to the observed

variances. The spontaneous and sound-driven rates were affected by a number of linear and

quadratic factors, supporting our interpretation that a nonlinear interaction plays a role in

determining these outputs. Overall, these observations suggest that multiple factors are respon-

sible for determining each of the output measures in our minimalistic model of temporal pro-

cessing (see [41] for a similar conclusion for more complex conductance-based models). And

these interparameter dependences may underlie the non-convexity of the parameter set of the

GBC population in the six-dimensional space described above.
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GBC population—Model validation

Phase-locking and entrainment. To examine the plausibility of our GBC model popula-

tion, we tested their temporal response properties under several stimulus conditions that were

not used for selecting model instances. Specifically, we used pure tones, high-intensity low-fre-

quency tones, and SAM tones, to confirm the validity of the model instances in a frequency

region wider than tested at the model selection stage. Sections below correspond to each of

these stimuli.

First, we used pure tones at 200–5000 Hz [25] to drive the model PLN instances receiving

inputs from AN fibers that have the same characteristic frequency (CF). The simulated upper

and lower bounds of VS (Fig 11A) covered the majority of empirical data points obtained

from putative GBCs in cats [25]. The entire trend of the simulated VS above 350 Hz followed

the frequency-dependent decay of phase-locking. Our OnL model instances (Fig 11B) showed

generally similar frequency dependence as PLN instances. The population VS at 200–250 Hz

for the PLN instances (Fig 11A) was lower than that at 300–350 Hz, because of multiple spikes

occurring in one cycle (i.e., so-called peak splitting). This effect was weaker for OnL instances

(Fig 11B) due to their lower excitability, which suppressed the generation of multiple spikes in

each stimulus cycle.

The distribution of simulated entrainment indices largely matched the reference data in

cats (Fig 11C for PLN, 11D for OnL) [25]. Below 500 Hz, EI was mostly between 0.8 and 1.0,

and both empirical and simulated distributions became broader at higher frequencies. Simi-

larly to VS, the population EI for the PLN instances at 200–250 Hz was lower than that at 300–

350 Hz, again due to peak splitting (Fig 11C), while the OnL population showed smaller

changes in EI at these frequencies (Fig 11D). Furthermore, the low excitability of OnL

instances limited the highest possible spike rates, leading to a reduced upper bound of EI for

frequencies over 500 Hz (Fig 11D). In the empirical distributions of VS (Fig 11A and 11B) and

EI (Fig 11C and 11D), a small number of data points fell below the lower bounds of the simu-

lated values. These data points could be covered if we loosened the selection criteria of

VS> 0.9 and/or EI> 0.9 at 350 Hz.

Tail-sync responses. High-CF AN fibers and GBCs can phase-lock to low-frequency

tonal stimuli, when the sound intensity is sufficiently high [63]. We tested this "tail-sync" prop-

erty with our PLN and OnL population. The model GBC instance (CF = 1–10 kHz) was

assumed to receive inputs from AN fibers tuned to the same CF, and the stimulus frequency

was fixed at 500 Hz. As shown in previous experiments [63], high-CF units that normally

show PL- or PLN-shaped PSTHs at high frequencies (7000 Hz; Fig 2A and 2B) lock to the low-

frequency tone, presenting an improvement of phase-locking from AN to GBC (Fig 12A). The

rate-threshold at 500 Hz (Fig 12B, blue) was several tens of dB higher than the threshold at CF

(Fig 12B, dashed purple). At high intensities, phase-locking was much more prominent for the

low-frequency stimulus (Fig 12C, blue) than for the CF tone (Fig 12C, dashed purple). These

results matched previous in vivo observations [63].

We tested the low-frequency tail-sync phase-locking of our GBC model population. The

simulated VS range matched the empirical median VS value of 0.95, covering about a half of

the empirical data points in a CF range of 1000–10000 Hz (Fig 12D for PLN, 12E for OnL). The

distribution of data points, however, was broader in experiments [63] than in our simulation

results. Both the AN and GBC stages can be responsible for this discrepancy. Empirical AN

tail-sync phase-locking showed large variations (data points in Fig 12F), while the AN model

we used did not have such variability and its VS almost monotonically increased with CF (Fig

12F, red curve). Furthermore, we used the same GBC model population for different CFs,

GBC population model
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although the real GBCs may have tonotopic variations of cellular and synaptic properties that

could affect the temporal fidelity of spike generation. We will revisit this point in Discussion.

SAM responses. High-CF auditory neurons including AN fibers and GBCs can also

phase-lock to the envelope of amplitude-modulated sounds. We examined this envelope

phase-locking with our PLN and OnL instances (CF = 2–12 kHz). The model CF matched the

carrier frequency of the SAM sound. GBCs showed an enhanced phase-locking to the stimulus

envelope compared to AN inputs (Fig 13A). While the simulated spike rates almost monotoni-

cally increased with the sound level (Fig 13B), VS showed a non-monotonic level dependence

for both AN and GBC (Fig 13C), agreeing with empirical observations [66,69]. The highest VS
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https://doi.org/10.1371/journal.pcbi.1007563.g011
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was achieved at the point around which the rate-level curve had a maximal slope (Fig 13B and

13C, filled blue circles). The decrease of VS at high levels is due to multiple spike occurrence in

one cycle (i.e., the neuron fired at up to 200 spikes/sec, whereas the envelope frequency was

100 Hz), which fills the trough portion of the phase histogram [69].

For each instance, we varied the sound pressure level and used the level at which the output

VS becomes maximal. The simulated range for the maximal VS (Fig 13D for PLN, 13E for

OnL) overlapped some of experimental data recorded from putative GBC units in cats [66].

The empirical median VS value of ~0.8, however, was located near the upper bound of the sim-

ulated VS. Moreover, many empirical data points, especially units with CFs below 7000 Hz,

had even higher VS values than the upper bound of the model instances. This discrepancy
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https://doi.org/10.1371/journal.pcbi.1007563.g012
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could be explained, at least partly, by the relatively poor envelope phase-locking of the AN

model compared to the actual AN data in cats (Fig 13F). Up to about 7000 Hz, the simulated

VS of the AN model (Fig 13F, red curve) was close to the lower limit of the empirical data

(symbols in Fig 13F).

Frequency tuning. The frequency selectivity of an auditory neuron can be assessed with

its frequency response area (FRA). Fig 14 shows simulated FRAs of the AN model and the

default GBC model instance. Each color-coded pixel in the FRA plot represents the spiking

rate at one specific frequency and level. Both panels in Fig 14 have bright areas (yellow to pink)

at similar locations, indicating that the frequency-tuning of the GBC model is largely inherited

from the frequency-tuning of the AN model. The highest spiking rate of the GBC model, how-

ever, was observed at a frequency below 1000 Hz (Fig 14B, dark pink area), while the highest

rate of the AN model is attained at the modeled CF of 3500 Hz (Fig 14A, light yellow area).

The pronounced entrainment capability of the GBC (exemplified in Figs 4A and 4B, 11C and

11D), in combination with low-frequency phase-locking of converging AN fibers, is responsi-

ble for this marked increase of GBC spiking rate. Such prominent spiking activity to high-

level, low-frequency tones are a common feature of GBCs [24,27,35].

At the high-frequency edge of the FRA, a considerable fraction of GBCs recorded in vivo
showed a reduction of spiking activity below the spontaneous rate, which is called sideband
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Fig 13. SAM-tone responses. A: PSTHs of the AN (top, red) and GBC (bottom, blue) models driven by 100-Hz SAM tone at 20 dB SPL (see Table 1 for the parameter
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maximum VS was computed for sound intensities between 10 and 45 dB SPL (5 dB steps). Triangles in D and E indicate empirical single-unit data of presumed GBCs,

and hollow diamonds in F show AN fiber data recorded in cats [66].

https://doi.org/10.1371/journal.pcbi.1007563.g013
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inhibition or lateral suppression (cats: [23,24,70]; gerbils: [38]; see Discussion). However, since

our present GBC model framework lacks inhibitory inputs, the FRA of the simulated GBC

does not have an inhibitory sideband (Fig 14B). Broadband inhibition (putatively from D-stel-

late cells [54]) would be necessary to simulate such sideband effects in GBCs.

The white V-shaped curve in Fig 14A shows the threshold sound pressure level of the

model AN at each stimulus frequency. This frequency-tuning property is well preserved

between the AN and GBC (Fig 14B), especially near and above the modeled CF. At low fre-

quencies (< 1.5 kHz), however, the GBC model had lower thresholds than the AN model,

because the AN input can phase-lock at sound levels even below the rate threshold [25,63] (see

Fig 3A and 3B or Fig 12B and 12C). The steepness of a frequency-tuning curve can be quanti-

fied with a Q10 value, which is defined as the CF divided by the bandwidth of the tuning curve

measured at 10 dB above threshold. Previous in vivo recordings in cats reported that the Q10

value generally increases with CF in both ANs [71,72] and GBCs [35,62], and the distribution

of the Q10 values greatly overlap between ANs and GBCs. According to these studies, Q10 val-

ues of a large majority of ANs and GBCs with a CF of 2000–6000 Hz were in the range of 2–8

and clustered around 4–6. The Q10 values of our models (CF = 3500 Hz) calculated from their

tuning curves were 5.7 (AN: Fig 14A; see [58]) and 5.5 (GBC: Fig 14B), both matching empiri-

cal data. FRAs were not used for further validation of our entire GBC model population,
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Fig 14. Simulated frequency response areas (FRAs). A: FRA of the AN model. B: FRA of the default GBC model (see Table 1 for the parameter values

used). CF of both models was fixed to 3500 Hz. The level and frequency of the stimulus tone were varied and the resulting spiking rates of the models were

calculated and plotted in color. In both panels, the same color code was used for the range of 60–220 (spikes/sec) to facilitate comparisons. White curves

show the estimated rate-level threshold at each frequency, defined as the sound pressure level at which the spiking rate was 10 (spike/sec) higher than the

spontaneous rate.

https://doi.org/10.1371/journal.pcbi.1007563.g014

Table 3. Computational time required for calculating 500-sec responses. "AN exact" and "AN approx" refer, respectively, to the exact and approximate calculation of

the power law adaptation of the modeled AN (see [59]). Computations were carried out with Matlab 2018a (MathWorks) on a desktop computer (Dell Precision T1700)

with 64 bit Windows 7 Professional Operating System, Intel Xeon CPU E3-1270 v3 (4 core, 3.5 GHz) and a 16 GB memory.

AN exact

350 Hz CF

AN exact

7000 Hz CF

AN approx

350 Hz CF

AN approx

7000 Hz CF

GBC model

50-ms tone at CF

10000 repetitions

869.6 sec 77.0 sec 65.0 sec 65.0 sec 1.22 sec

5000-ms tone at CF

100 repetitions

776.6 sec 801.6 sec 20.0 sec 28.9 sec

https://doi.org/10.1371/journal.pcbi.1007563.t003
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because their calculation requires large computational costs especially for varied CFs, whereas

the resulting frequency tuning of each GBC model seemed to follow the tuning of input AN

fibers.

Computational time

In order to assess the computational efficiency of the AN and GBC model used in this study, we

measured the computational time spent for the calculation of a 500-second long spiking

response (Table 3). Computational time of the AN model depended strongly on the CF of the

modeled AN fiber and on the duration of each trial, even though the total length of the simulated

time was the same. Computational time of the GBC model did not depend on these factors. The

GBC model was much faster than the AN model with the approximate algorithm for its power-

law adaptation (Table 3, three columns on right). It should be noted that the actual time spent

for the AN stage will be multiplied by the number of AN fibers used for driving one GBC. There-

fore the amount of computational time for simulating the response of one GBC instance is

indeed spent mostly by the AN stage. In sum, the simple GBC model introduced here does not

make a computational bottleneck of the entire simulation. The computational efficacy of the

model is further supported by our previous comparison of different models, which revealed that

the shot-noise models similar to our GBC model were 10–100 times faster than conductance-

based models that require solving differential equations at each time step [55].

Discussion

Model GBC population and biophysical substrates

In this study, we created a population of simple models and replicated known physiological out-

put features of GBCs. Employing a model with a small number of parameters enabled us to sim-

ulate neuron-to-neuron variability of GBCs in a simplified setting, which we expect to

complement computational studies using biophysically detailed models. The parameters of the

model were systematically varied and each model instance was tested for its spontaneous rate,

low-frequency sound-driven temporal spiking patterns (VS and EI), and high-frequency sound-

driven rate, regularity (CV’), and PSTH. The population of resulting 7520 PLN and 4094 OnL

model instances (out of 567,000) presented reasonable fitting to empirical frequency-dependent

distributions of phase-locking and entrainment (Figs 11–13). We assume that simulating the var-

iability of GBC responses is important, because neuronal heterogeneity is likely to contribute to

an improvement of the overall performance of population coding [73].

Our systematic examinations of the large number of parameter combinations were enabled

by the simple structure (Fig 1E) and corresponding computational efficiency of the model

(Table 3). Prior modeling studies used similar-sized (~0.6 million [41]) or even larger (~1.7

million [39]) populations to examine how each parameter contributes to a rhythmic behavior

of a conductance-based model. Their model was much more complex than our coincidence

detection model. In our study, however, we had to repeat the same stimulation up to 1000

times to calculate the stable model outcome (rate, VS, PSTH, etc.), while their simulations

required only one trial per parameter set.

Simple models can complement more complex models by shedding light on the fundamen-

tal properties of the system under study [43,55,74,75]. The adaptive coincidence counting

model we used in this study aimed to replicate the input-output relations of the GBC without

considering its biophysical details. A similar shot-noise type model with an exponential post-

synaptic response was used in a previous modeling study [48], which found that a small num-

ber of parameters (five out of eight in their study) determined the PSTH shapes of modeled

cochlear nucleus neurons. In a complex biophysical model, a similar activity pattern can often

GBC population model
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be seen in distinct regions of its parameter space, because many physiological properties are

affected by multiple factors and some parameters can compensate with each other [40,76–79].

Such correlations of parameters, sometimes called parameter tradeoff, were also seen in our

simplified model (Fig 8).

The adaptive threshold of our model was found essential to replicate the PLN/OnL-type

response; weakening or removing the threshold adaptation led to chopper-type PSTHs (Fig

6H) that are not typical of GBCs. A computational study using an adaptive integrate-and-fire

model [50] demonstrated the importance of threshold adaptation in precisely replicating the

temporal spiking patterns of bushy cells. Our analyses using polynomial fitting showed that

the adaptive threshold is involved in controlling the output spiking rates and phase-locking

(Fig 10). The degree of phase-locking (VS) was improved with an appropriate amount of adap-

tation that suppresses the generation of more than one spike per period.

Activity-dependent threshold regulations in auditory neurons are mediated by multiple

biophysical factors, including the activation of low-voltage-activated potassium (KLVA) chan-

nels, inactivation of sodium channels, synaptic depression and inhibition (e.g., [30,50,80–83]).

For example, KLVA channels, which are opened by slight depolarization of the membrane

potential, counteract the accumulation of synaptic inputs and prevent asynchronous inputs

from reaching the threshold [30,52]. A previous model of bushy cells [50] used threshold adap-

tation triggered by output spike generation. In our model, spike-triggered effects were summa-

rized into the absolute refractory period, and the dynamic threshold depended only on the

input history but not on output spikes. Moreover, our model has only one adaptation time

constant, although the underlying mechanisms may include multiple time scales. Further

refinement of the model might require the consideration of both sub- and suprathreshold

adaptations.

The length of the coincidence window is determined by several factors, such as the mem-

brane and synaptic time constants (see [57] for more detailed discussion). Our population of

models calibrated with available cats’ data had coincidence time windows mostly between 0.1

and 0.5 ms (Fig 7B and 7H). This range is slightly lower than the input time scale of ~0.5 ms in

rodent bushy cells measured in vitro (mice [84,85]; rats [86]) and in vivo (rats [87]), possibly

reflecting the difference between cats and rodents. The optimal lengths of the refractory period

of our model centered on 0.9–1.4 ms (Fig 7D and 7J), roughly comparable to the estimated

refractory period of 1.4 ± 0.4 ms [50]. As already pointed out in Results, we note that the out-

put characteristics of the model are generally determined not by a single parameter but by

nonlinear interactions of multiple model parameters (Fig 10) [41], which is in line with the

non-convex shape of the parameter set of the modeled GBC population [42].

Assumptions and limitations of the model

Our GBC model naively assumed that the amplitudes of excitatory inputs do not vary between

input fibers. In our modeled GBC population, the input amplitude was distributed around 0.4

for the accepted PLN units (Fig 7C) and 0.3 for the OnL units (Fig 7I), indicating that at least

3–4 coincident inputs were required for eliciting a spike (with the static threshold fixed to 1.0).

This observation is consistent with previous theoretical results showing that convergence of

multiple AN fibers contributes to the improvement of phase-locking [30–34]. Anatomical

investigations found that the sizes of synapses can vary not only across GBCs but also within

one GBC [7,10,11,13,88]. Furthermore, some of the excitatory inputs to GBC may even be

suprathreshold [24]. In addition, bushy cells receive synaptic inputs of noncochlear origin and

form gap junctions with neighboring bushy cells [88]. Possible effects of having such heteroge-

neous synapses on temporal coding would be a topic of a future computational study.
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Convergence of multiple inputs generally leads to a pronounced PSTH peak at the onset (as

shown in Fig 6), with a reduced jitter in the first spike latency [30,47]. This jitter reduction

between AN inputs and PLN outputs was observed in previous in vivo recording studies

[22,35,36,89]. Because of the rectangular input shape (Fig 1E), the output timing of the GBC

model always coincides with the timing of one of its AN inputs. In other words, our GBC

model does not account for the axonal and/or synaptic delay between ANs and GBC. As a

first-order approximation, this discrepancy could be partly compensated by introducing a

fixed delay of 0.1–0.5 ms. Such an issue of spike-timing might become more prominent with

inputs that are only slightly above threshold. Conductance-based models [30,50] showed that

the spike generation can be delayed for barely suprathreshold inputs. To account for this

delayed spiking with our model, the rectangular input would need to be revised with a more

biologically realistic input shape.

The input AN fibers in our model was assumed to share the same CF. This assumption of

narrowband tuning is supported both by the tonotopic projections of AN fibers (reviewed in

[5]) and by the narrow frequency tuning curves of bushy cells comparable to those of AN fibers

[35,61] (see Fig 14). In addition, we assumed that our GBC model received inputs only from

high-SR AN fibers, because a prior anatomical study estimated that the distributions of AN

fibers projecting to GBCs are biased to high-SR units [7]. Adding variability to CF and/or SR

of input fibers would reduce tone-driven responses of the GBC model, because the activity of

off-CF or medium/low-SR fibers will be lower than that of on-CF, high-SR AN fibers. A previ-

ous modeling study [53] noted that the tone-driven firing properties of a modeled GBC were

not significantly affected by the inclusion of a small number of medium- or low-SR fibers. For

SAM tones, however, lowering the SR of some input fibers might still contribute to the

improvement of phase-locking in GBCs, as medium- and low-SR AN fibers generally show

better envelope phase-locking than high-SR fibers [69].

In the present study, we considered only excitatory AN inputs to GBCs, to keep the model

as simple as possible. Because of this simplification, the modeled GBC lacks inhibitory side-

bands that would appear at the high-level, high-frequency portion of the FRA (Fig 14B). A

number of prior anatomical studies, however, found inhibitory projections to bushy cells

[10,13,88,90,91]. Sources of inhibition include D-stellate cells in the AVCN with a broad fre-

quency tuning [91] and tuberculoventral (vertical) cells in the dorsal cochlear nucleus having a

narrow frequency tuning [91,92]. Commissural multipolar cells in the contralateral cochlear

nucleus can also be an additional source of inhibition [93,94]. In response to monaural on-CF

tonal stimulation, a majority of GBCs show monotonic rate-level functions [12,95]. Hence the

role of on-CF inhibition was simply assumed to be gain control [62,96] and/or echo suppres-

sion [97]. In addition, roughly half of GBCs recorded in vivo have inhibitory sidebands in their

FRAs [23,38,70,98], which may contribute to the sharpening of frequency selectivity. Because

of their low spontaneous spiking rates, however, sideband inhibition in GBCs is not always

apparent and has rarely been investigated systematically [24], making a contrast to inhibition

in SBCs with high spontaneous rates that has been studied extensively in the last decade [99–

103].

Possible benefits of lateral inhibition will probably be more apparent with complex sound

stimuli that are rich in spectral components, since our results suggested that responses to on-

CF tones can be reliably simulated without inhibition (Figs 4 and 11). Furthermore, many

cochlear nucleus neurons are inhibited by contralateral sound stimuli [104–107]. Measured

frequency-tuning and latency of commissural inhibition showed a large variation, suggesting

that both direct and indirect projections (and hence a variety of functions) may be associated

with this contralateral inhibition [106]. Further experimental and theoretical studies are

required to fully understand the physiological roles of these inhibitory inputs to GBCs. A
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recently developed model framework that simulates ipsilateral inhibitory connections from D-

stellate cells and tuberculoventral cells to bushy cells [54] might be useful towards this end.

In our model selection, we drove each model instance with both high- and low-frequency

tones, under the assumption that the membrane properties of GBCs are uniform along the

tonotopic axis. This assumption could be a reason for the discrepancy between modeled

responses and empirical data for tail and SAM tones (Figs 12D and 12E, 13D and 13E). Previ-

ous experimental studies reported tonotopic variations of ionic conductances in AN [108],

LSO [109], MSO [110] and MNTB [111], as well as tonotopic regulations of bushy cell devel-

opment [112] in several rodent species. In mice bushy cells, however, expressions of potassium

channels were rather uniform along the frequency axis [82]. Overall, it is still largely uncovered

what kind of tonotopic variations in bushy cells exist and how they might affect the temporal

spiking patterns.

For tonal stimulation, the simulated spike rate, phase-locking, and PSTH shape of the GBC

model were stable for sound levels over 60 dB SPL (Fig 3). This response stability enabled us to

use a fixed tone intensity of 70 dB SPL in our selection of models (Figs 5 and 6) and in the cal-

culation of population phase-locking at the CF of the model (Fig 11).These results do not guar-

antee, however, that responses are level-invariant for other sorts of sound stimulation. For

example, envelope phase-locking to SAM tones depends non-monotonically on the sound

level (Fig 13B and 13C). Spiking responses to off-CF tones can be more strongly affected by

the sound level than those to on-CF tones (compare the responses at 600 Hz and 3500 Hz in

Fig 14B). Inhibitory inputs discussed above as well as olivocochlear gain control [113] would

become more relevant for high-intensity or broadband signals (see "Applications and future

directions" below).

Response criteria and classification of PSTHs

Using the selection criteria for PLN/OnL units, we aimed to cover most fundamental response

characteristics of GBCs. As pointed out before [38], response properties of bushy and other

cells in the AVCN appear to form a continuum in the multidimensional space, rather than

making distinct clusters. This is confirmed by the connectivity analysis of our PLN model pop-

ulation. Previous experimental results in cats showed that a large majority of GBCs have an SR

of 0–30 spikes/sec, which we adopted for our criterion; but there was actually no clear bound-

ary for the representative SR range of GBCs [15,62]. Instead, the number of recorded GBC

units gradually decreased with SR up to 60–100 spikes/sec. Furthermore, our model instances

showed a gradual change in SR (and other output measures) with varied parameters. For these

reasons, it is highly likely that we missed some instances that might have been classified as

GBC-like if different criteria had been used.

The parameter ranges we used (Table 1) might not cover the full spectrum of real GBCs.

From the distributions of accepted parameters (Fig 7) and from the connectivity analysis that

suggested the existence of one big parameter cluster, we expect that our ranges overlapped the

most relevant part of the 6-dimensional parameter space grid. However, a small number of

instances located outside of our search grid may still present GBC-like responses. For example,

a relatively broad distribution of the adaptation time constant TA (Fig 7E and 7K) suggest that

some instances with TA> 0.5 (ms) may still satisfy our selection criteria for PLN or OnL.

A continuum of response properties appears not only in quantitative output measures

(including SR and VS) but also in more qualitative ones such as PSTH shapes. As shown in Fig

3D, the PSTH of a GBC can be transformed from PL to PLN depending on the stimulus sound

level [19,24,36]. The intermediate PSTH shapes (e.g., Fig 3D, 40 dB SPL) are on the borderline

between these two categories. The PSTH of one anatomically confirmed bushy cell appeared
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to be chopper-like [21], although a chopper PSTH is normally associated with stellate cells in

the AVCN [2,22]. Early studies established the categories of PSTH types in the cochlear nuclei

[35,36,114,115] and developed a corresponding decision tree [22]. However, there were always

a small number of units classified as "unusual", "extraordinary", or "intermediate" [22,36,115–

117], reflecting the continuous (and non-exhaustive) nature of the established PSTH catego-

ries. Our population modeling approach might be useful for examining what factors contrib-

ute to these non-canonical response patterns.

Although GBCs are widely associated with PLN and OnL units, the distinction between

these two categories has long been a subject of discussion. Classically, units with a sustained

discharge rate below 100 [22,36] or 150 (spikes/sec) [30] are classified as an onset-type, but

this criterion is nonetheless arbitrary [36]. It is generally difficult to clearly distinguish these

two patterns [22,117], and therefore in some studies they were jointly grouped as PLN [38,63].

In this study, we separately analyzed PLN and OnL instances, but their populations seemed to

be located next to each other. For example, an instance with a high-frequency-tone-driven rate

of ~150 (spikes/sec) was located on or near the border of the two categories. Moreover, the

conventional category of OnL [22] is a mixture of two different patterns: units with low sus-

tained rates and units with a prolonged notch after onset [24]. It is unclear whether and how

this second subcategory of OnL pattern is relevant to GBCs. Our PSTH example shown in Fig

6I could be related to this type, but we nevertheless excluded it from our GBC population by

assuming that such a dip pattern was atypical for bushy cells [30].

Applications and future directions

By varying the parameters, various types of PSTHs can be produced with our model (Fig 6).

Chopping responses (Fig 6H) that are regarded as a signature of stellate cells [2,22] were linked

to model instances with no or weak threshold adaptation. This relationship would correspond

to the observation that T-stellate cells in the ventral cochlear nucleus that lack KLVA conduc-

tance show weak adaptation and chopping PSTHs [2]. Some "pauser" units in the dorsal

cochlear nucleus [116,118,119] and in the inferior colliculus [120] have a relatively long silent

period (5–20 ms) after the onset peak. This response pattern resembled our dip-type responses

(Fig 6I and 6J). A previous modeling approach using a shot-noise model replicated multiple

PSTH patterns by changing a small number of parameters [48]. These observations suggest

that the adaptive coincidence counting model presented in this study may be applied to a

wider range of cochlear nucleus neurons than GBCs. We expect that the simplicity of the

model would facilitate future theoretical analyses to reveal how and what factors determine

response patterns found in the auditory system.

As noted in the Introduction, both GBCs and SBCs present enhanced phase-locking yet

possibly through different mechanisms. SBCs receive only few inputs (1–4 in cats [6,7]) that

seem insufficient to achieve pronounced phase-locking and entrainment (reviewed in [29]). In

gerbils, many SBCs present sideband inhibition and/or non-monotonic rate-level functions

[99–102], and phase-locking of SBCs deteriorates by blocking inhibitory inputs [103]. A

modeling approach suggested that temporally precise inhibition in SBCs may efficiently reject

weak, poorly timed excitatory inputs and contribute to an improvement of temporal fidelity of

output spikes [101]. These results indicate that the application of our model to SBCs may

require the introduction of inhibitory inputs, as was done in our previous LSO neuron model-

ing [57].

In this study, we used only limited variation of sounds to drive the model, such as pure and

SAM tones. Previous experimental studies of AVCN neurons have used a wider variety of sti-

muli, including narrow- or broadband noise [121], rippled noise [122–124], tones in noise
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[125], tones with forward-masking noise [126], amplitude-modulated tones with two-tone

complex envelope [127], Schroeder-phase harmonic complex [128], and synthetic or spoken

vowels [27,129–134]. We note that the applicability of our current AN-GBC model framework

has not been confirmed with such complex sounds. In order to apply complex stimuli to the

GBC model, the AN input stage first needs to be tested and calibrated, since the AN model

used in this study [61] showed relatively poor phase-locking to SAM tones for CFs below 7000

Hz (Fig 13F). Furthermore, as noted above, potential effects of (the lack of) inhibition may

become more prominent for spectrally rich signals that would activate multiple frequency

channels. Future studies combining a revised AN front end with a population of bushy cell

models will help us simulate and understand how complex sounds are processed along the

auditory pathways to enable acoustic communication and binaural sound localization.

Materials and methods

GBC model and sound stimuli

Adaptive coincidence counting model. The coincidence counting model, a member of

the shot-noise model family [44,55], was formerly used to simulate the temporal coding of

MSO [56] and LSO neurons [57]. In this model, the number of synaptic input is counted in a

time window of length WE. If this number of inputs reaches the pre-defined threshold, then an

output spike is generated. In other words, each synaptic input is converted into a rectangular

postsynaptic response of length WE and amplitude AE, and the summed response v(t) is com-

pared to the threshold θ. After each spike generation, the model does not produce any more

spikes for a time duration of TR that corresponds to the absolute refractory period.

To apply this model to GBCs, we modified it by replacing the constant threshold with an

adaptive threshold that temporally varies according to the input history of the model (Fig 1E).

The threshold of the model θ(t) is decomposed into the static and dynamic part θ(t) = θS +

θD(t). The static part does not change with time and is fixed to one: θS = 1. The dynamic part

obeys the first order differential equation:

TAðdyD=dtÞ ¼ � yDðtÞ þ SA � vðtÞ;

where TA and SA are the time constant and the strength of adaptation, respectively. This equa-

tion implies that the dynamic threshold develops according to the summed input counts with

the time constant TA. Without inputs, the dynamic part of the threshold gradually approaches

to zero. Because of this adaptive threshold, only well synchronized inputs can lead to spike

generation (compare two cases of three inputs in Fig 1E).

In the numerical implementation of the model, we used a time step of Δt = 0.01 ms. Input/

output timing of the model is restricted by this time step. Because of the rectangular postsyn-

aptic response shape, the summed response v(t) is constant within the open interval between

any two consecutive time steps tj and tj+1 = tj+Δt. This implies that we do not have to approxi-

mate the differential equation, but can simply obtain the exact digital solution at each time

step [135]. Namely,

yDðtj þ DtÞ ¼ expð� Dt=TAÞ � yDðtjÞ þ ð1� expð� Dt=TAÞÞ � SA � vðtjÞ:

We used this formula to calculate the adaptive threshold in a step-by-step manner.

Auditory nerve input model. We simulated the inputs to the GBC using the auditory

periphery model developed by Zilany, Bruce and others [58–61]. Specifically, we used their

2018 version for our simulations [61]. An early study in cats showed that a GBC receives excit-

atory inputs primarily from high spontaneous rate AN fibers [7]. We therefore set the
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spontaneous rate of the AN model at 70 (spikes/sec) throughout our simulations. For the addi-

tional parameters of the model, an absolute refractory period of 450×10−6 (sec) and a relative

refractory period of 512.5×10−6 (sec) were used, which are the mean of their default values

specified in the model implementation [61]. In our preliminary simulations, we varied these

refractory parameters and found no significant effects on the output properties we examined.

The GBC model was assumed to receive ME auditory nerve inputs that share the same charac-

teristic frequency (CF). Specific CFs of the model used are given in the legend of each figure.

Since the GBC model introduced above does not have internal noise sources, the output vari-

ability of each fixed GBC model instance is solely due to the stochastic nature of the modeled

AN fibers.

Sound stimuli. Each trial of CF-tonal and tail-tonal stimulations contained short tone

burst of 25 ms with a linear rise/fall of 3.9 ms [25]; we repeated 1000 trials to calculate the out-

put measures of the model (see next sections). For the calculation of sustained response prop-

erties, we used the spike responses in the time window between 10 and 25 ms after the

stimulus onset [25].

For tonal stimuli, we varied the frequency between 200 and 12000 Hz; the default sound

intensity was 70 dB SPL, unless otherwise noted. The CF of the model was set to the frequency

of the tone. For tail-tone stimuli, the frequency was fixed to 500 Hz to facilitate comparisons to

in vivo data [63], while the CF of the model was varied between 1000 and 10000 Hz; the default

sound intensity level was 95 dB SPL, unless otherwise noted. In the calculation of a frequency

receptive area (FRA), the model CF was fixed to one frequency (3500 Hz in Fig 14) and the fre-

quency and intensity of the tonal stimulus were varied.

For SAM-tonal stimuli, we applied a low-frequency sinusoidal envelope (100% depth) to a

600-ms carrier tone at the CF [136]; we repeated 80 trials to calculate the output properties of

the model. The sound intensity was varied between 0 and 80 dB SPL with a step of 5 dB. The

modulation frequency was fixed at 100 Hz to enable comparisons with available data [66]. The

carrier frequency matching the CF of the model was varied between 2000 and 12000 Hz. The

first 10 ms of the model responses (either AN or GBC) were discarded in the calculation of sus-

tained responses [136].

Output measures

Spontaneous and sound-driven rates. Spontaneous responses of the model were

obtained without sound stimulus. An admissible GBC model needed to have a spontaneous

rate of 0–30 (spikes/sec). Although this upper rate of 30 (spike/sec) is based on previous in vivo
recording results, we note that a minority of GBCs may actually show higher spontaneous

rates [15,38,62]; also see Results and Discussion.

Sound driven spiking rates of the model were calculated from the sustained part of the

response (10–25 ms after stimulus onset). In response to a 7000 Hz tone at 70 dB SPL, the sus-

tained driven rate had to be 150 (spike/sec) or higher to be classified as PLN, and 50–150

(spikes/sec) as OnL. Prior studies used the threshold of 100 (spikes/sec) [22,36] or 150 (spikes/

sec) [30] to distinguish PLN and ONL units. We adopted the higher value, because the stimulus

intensity (70 dB SPL) used was fairly high and we wanted to guarantee that the model should

still show a PLN-type response at lower intensities.

Regularity. Regularity of the model spike output was measured as modified coefficient of

variation (CV’). This measure is defined as: CV’ = σISI / (μISI - μ0), where μISI and σISI are the

mean and standard deviation of the interspike intervals (ISIs), respectively, and μ0 = 0.5 (ms)

is the correction factor for the dead time of the response [30]. In response to high-frequency

tones, the activity of a GBC is relatively irregular, with observed CV’ values scattering between
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0.65 and 0.95 [30]. We calculated CV’ of the sustained response of each model instance driven

by a 7000 Hz tone at 70 dB SPL, and excluded the instances whose CV’ was out of this range.

Phase-locking and entrainment. Phase-locking to low frequency stimuli (and to low-fre-

quency envelopes of SAM sounds) was measured as vector strength (VS) [137], which is

defined as:

VS ¼ ð1=NÞ
XN

k¼1
expð2piftkÞ

�
�
�

�
�
�;

where N is the number of spikes, f is the reference frequency, tk is the timing of the k-th spike.

The entrainment index (EI) of a spike train is calculated from the interspike intervals [25] as:

EI ¼ ðnumber of ISIs between 0:5=f and 1:5=f Þ=ðtotal number of ISIsÞ:

In some plots, we used a scale of log(1-VS) to extend the area for VS> 0.8 and to allow for

a direct comparison with relevant experimental data [25].

According to previous in vivo recordings, a majority of GBCs show enhancement of VS and

EI compared to AN fibers for frequencies below 700 Hz [25]. Most of our model instances

showed the highest VS and EI around 300–400 Hz. We therefore set the criteria of VS> 0.9

and EI> 0.9 for 350 Hz tone at 70 dB SPL to judge if the model instance was regarded as a

valid GBC model.

PSTH shapes. For each model instance driven by 7000 Hz tone at 70 dB SPL, we calcu-

lated the peristimulus time histogram (PSTH). We used a time bin of 0.1 ms [22] and applied

five-point triangular smoothing. One of the most prominent response characteristics of GBCs

is the primary-like-with-notch (PLN) PSTH, in which the spiking activity is maximal at the

onset followed by a short silent period of about 1 ms [12,19,22–24]. Model instances we tested

always showed the highest spike rate at the onset, reflecting the maximal AN input rates (Fig

2A, right). After the onset peak, however, model PSTHs presented a variety of shapes, includ-

ing those shown in Fig 6.

To distinguish PLN (and OnL) PSTHs from other response types, we set the following crite-

ria for the simulated PSTH shape (Fig 1F): (P1) the first notch should be below 90% of the sus-

tained rate; (P2) the width of the first notch (measured at 90% of the sustained rate) should be

between 0.15 and 1.5 ms; (P3) the second peak rate should be below the half of the first peak

rate; (P4) the second notch should be either non-existent or shorter than 0.85 ms. The criteria

(P1) and (P2) ensure a clear notch, while (P3) and (P4) were important for rejecting chopper-

type responses (e.g., Fig 6H). In addition, (P2) and (P4) were used for excluding dip-type

PSTHs (e.g., Fig 6I and 6J), which have a longer silent period than PLN and are uncommon for

bushy cells [30].

To test the validity of the above-described criteria, we visually inspected the PSTHs of

about 2000 accepted PLN/OnL instances and randomly selected another 2000 instances that

did not satisfy our GBC criteria. We note that our method reasonably detected PLN and OnL

units in almost all cases, whereas there were nevertheless ambiguous PSTHs which might or

might not be classified as GBC-like if they had been encountered in physiological recording

experiments (see Discussion).

Selection of model instances. The GBC model has six parameters (denoted as ME, WE,

AE, TR, TA, and SA; see above for their definitions). In our preliminary simulations, we first

fixed the number of excitatory inputs ME = 20 and manually adjusted the other five parameters

to obtain the desired GBC responses stated above. We call this instance the "baseline model".

The parameters of the baseline model were: ME = 20, WE = 0.4 (ms), AE = 0.4, TR = 1.2 (ms)

TA = 0.3 (ms), SA = 0.9; and it presented similar response patterns to the default GBC model

(Table 1, bold). We next varied the model parameters around this baseline model using a
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coarse grid (4–6 values in the range between 0 and 200% of the baseline model parameters for

each dimension) and examined which parameter combination led to a GBC-like response. A

similar approach of combining a baseline model with systematic variation of parameters was

used in previous studies [40,41].

In this coarse grid search, we obtained the count of accepted models for each parameter

value (as shown in Fig 7B–7F). The resulting distribution of a parameter typically included a

peak and decayed gradually around it. The steepness of peak and decay depended on each

parameter and its adopted range. If the distribution was too narrow in comparison to the

search range of the parameter grid, then we reduced the test range used for the next round of

grid search. For example, instances with AE� 0.2 or AE� 0.6 almost never satisfied our crite-

ria for GBCs (Fig 7C) and therefore the range for the input amplitude was reduced to exclude

these values. If the width of the distribution seemed insufficient to include the tail part of the

distribution, then we expanded the test range. By repeating this coarse grid search for several

times, we gained knowledge on the relevant range for each parameter. After these attempts, we

fixed the range of the model parameters used for this paper (Table 1). The range for the num-

ber of excitatory inputs ME, however, was determined from anatomical data of cat GBCs. Our

range of 9–36 inputs covers 11 of the 12 measurements performed in [10]. In that study, the

largest number of inputs reported was 69, which we considered exceptional and excluded

from our simulations, as it was more than twice as many as the second largest count of 34. As

shown in Fig 7B–7F, the distribution of the accepted PLN model parameters showed a unimo-

dal peak and covered the whole range we adopted, indicating that the selected parameter grid

sampled the most important part of the parameter space. However, it is still probable that

some parameter combinations outside of these ranges might result in GBC-like responses (see

Discussion).

In total, we had 567,000 model instances that were further tested for their output measures

(Table 1). We calculated the spontaneous and sound-driven responses of each of these

instances and judged them using the criteria described in previous sections. We first measured

the spontaneous rate (SR), high-frequency-driven rate (DR) and irregularity (CV’) as well as

low-frequency-driven phase-locking (VS) and entrainment (EI) to select candidate GBC

instances (e.g., Fig 5B and 5C merged into 5D). We then tested their PSTHs in response to

high frequency stimulation to obtain the final population of 7520 PLN instances that satisfied

all our criteria (Fig 5E). We repeated the same procedure but with a lower driven rate criterion

(see above) to obtain an OnL population of 4094 instances.

Parameter dependence

Connectivity. To study the distributions of the GBC-like model instances in our 6-dimen-

sional parameter space grid, we performed a connectivity analysis [68]. Two model instances

are connected if there is a path between them on the grid that satisfies the following: a path is a

sequence of neighboring points (see next paragraph) in the grid space; and all the instances in

the path are members of the same class (i.e., PLN-type models in our case). We used the Matlab

function "bwconncomp" (MathWorks, Natick, MA) to calculate connectivity.

Two model instances that differ by one grid-step in one dimension are called one-dimen-
sional neighbors. In the six-dimensional space, one instance has twelve one-dimensional neigh-

bors (i.e., two directions along each of six dimensions). The n-dimensional neighbor of a model

instance is defined as the set of instances that are reached by changing at most n parameters

(out of six) to values that are next to the original parameter value. We used one-, two- and

three-dimensional neighbors for our connectivity analysis; using higher-dimensional neigh-

bors yielded the same results as for three-dimensional neighbors.
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Convexity. As seen in Results, the distribution of the accepted model instances was likely

to form one big cluster. Even though, the shape of the distribution may be skewed in the

parameter space. To test this possibility, we performed a convexity analysis. We randomly

sampled 3500 pairs from the population of our PLN instances; for each pair, we made three

intermediate instances by assigning parameters calculated with an interpolation between the

parameter values of the original pair. Our criteria for a PLN unit were then applied to each

intermediate instance: namely, we calculated the spontaneous rate, high-frequency sound-

driven responses (rate, CV’, and PSTH) to 7000 Hz to at 70 dB, and low-frequency sound-

driven responses (VS and EI) to 350 Hz at 70 dB. If the parameter distribution were totally

convex, 100% of the intermediate instances would be categorized as PLN.

Input parameter correlations. In neuronal modeling, two model instances whose param-

eters are substantially different from each other can still yield similar outcomes, because some

parameters may compensate with each other [42]. To reveal intercorrelations of the six param-

eters of the model, we calculated the correlation coefficients between each two parameters of

our GBC population (Fig 8). A positive correlation coefficient indicates that an increase of one

parameter can be (partly) counteracted by an increase of the other parameter to keep the out-

put of the model largely unchanged. A negative correlation implies that the two parameters

concerned may play similar roles in characterizing the response characteristics of the GBC

units.

Input-output regressions. In order to investigate the relationship between the input

parameters and output measures, we fitted linear, quadratic, and cubic functions of the model

parameters to the outputs of our GBC instances (Fig 10). We used the six parameter variables

(ME, WE, AE, TR, TA, SA) for the input and five spiking measures (SR, DR, CV’, VS, EI) for the

output. Before calculating the fits, we "z-scored" each input variable, by subtracting its mean

and normalizing with its standard deviation, to handle all the parameters on a common scale

[41]. Then the output variables except CV’ were converted into log(SR), log(DR), log(1-VS),

and log(1-EI), since we found that these conversion slightly improved polynomial fitting

results.

The linear fit had six variables, while the quadratic fit had additional 21 variables (6 × each

parameter squared + 15 pairs chosen out of the six). The cubic fit had 83 variables in total (6

linear, 21 quadratic, and 56 cubic). For the linear and quadratic fits, we performed an addi-

tional analysis to determine the relative contribution of each variable (or each pair of two vari-

ables). Starting from a constant term, we added one variable at each time and calculated how

much more variance of the output was explained by this added variable. The order of addition

generally affects the resulting gain of variance explained [41]. We therefore repeated the calcu-

lation 720 times for the linear fit (using all possible orders of the six parameters) and 40000

times for the quadratic fit (using orders randomly selected out of about 5 × 1019 possibilities),

and calculated the mean gain obtained for each parameter. For the quadratic fit, we used the

linear fit as the starting point, to ensure that no quadratic term was added without having its

linear component in the fit.

Code and data availability. Matlab implementation of the model and numerical data for

the simulated GBC population are available online at https://github.com/pinkbox-models.
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